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Abstract: Pooling metabolomics data across studies is often desirable to increase the statistical power
of the analysis. However, this can raise methodological challenges as several preanalytical and
analytical factors could introduce differences in measured concentrations and variability between
datasets. Specifically, different studies may use variable sample types (e.g., serum versus plasma)
collected, treated, and stored according to different protocols, and assayed in different laboratories
using different instruments. To address these issues, a new pipeline was developed to normalize
and pool metabolomics data through a set of sequential steps: (i) exclusions of the least informative
observations and metabolites and removal of outliers; imputation of missing data; (ii) identification of
the main sources of variability through principal component partial R-square (PC-PR2) analysis; (iii)
application of linear mixed models to remove unwanted variability, including samples’ originating
study and batch, and preserve biological variations while accounting for potential differences in the
residual variances across studies. This pipeline was applied to targeted metabolomics data acquired
using Biocrates AbsoluteIDQ kits in eight case-control studies nested within the European Prospective
Investigation into Cancer and Nutrition (EPIC) cohort. Comprehensive examination of metabolomics
measurements indicated that the pipeline improved the comparability of data across the studies.
Our pipeline can be adapted to normalize other molecular data, including biomarkers as well as
proteomics data, and could be used for pooling molecular datasets, for example in international
consortia, to limit biases introduced by inter-study variability. This versatility of the pipeline makes
our work of potential interest to molecular epidemiologists.

Keywords: cancer epidemiology; normalization; pooling; technical variability; metabolomics;
metabolites

1. Introduction

Metabolomics is a powerful tool for investigating candidate etiological pathways
for chronic diseases [1–4]. Using either untargeted or targeted (via sets of pre-defined
annotated metabolites) approaches, prior metabolomics studies have identified metabolites
associated with the risk of several chronic conditions, including type-2 diabetes (T2D) [5],
cardiovascular diseases (CVD) [6], and cancer [7–9]. Metabolomics has also been used
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to characterize specific signatures of anthropometric measures and lifestyle exposures,
including body mass index (BMI) [7,10], adherence to a Mediterranean diet [6], and coffee
consumption [5], as a way to investigate candidate biological mechanisms underpinning
the relationship between these exposures and chronic diseases.

As with other-omics technologies, pre-processing metabolomics data is critical be-
fore relating them to phenotypes, such as cancer endpoints or lifestyle exposures [11,12].
After a matrix of p metabolites (or features) measured in n samples has been generated,
pre-processing usually involves (i) feature and sample filtering, where low-quality features
and samples are excluded, (ii) data imputation, to take care of missing values, and (iii) data
normalization, to correct for sources of unwanted variation in metabolomics data, such
as batch effects and other factors related to the handling of samples [11,13–16]. Following
the success of data acquisition efforts in large-scale epidemiological investigation, collab-
orative consortia have been put in place, offering the possibility to pool metabolomics
data acquired in different studies in order to increase sample size and range of biological
variation, and eventually enhance the statistical power of the analysis. However, pooling
metabolomics data across studies raises methodological challenges as several preanalytical
and analytical factors can induce differences in metabolite measurements and unwanted
variability between datasets. Specifically, sample types (e.g., serum versus plasma), fasting
status of the participant, and any other elements related to sampling conditions, sample
treatment, and storage represent preanalytical factors, while analytical factors include
information on the organization of samples in batches, the acquisition instrument, the
acquisition time (i.e., time at which the sample was assayed), and the laboratory [17].
Correcting for these sources of variations is crucial in order to conduct accurate statistical
analyses on pooled datasets.

Data on common quality controls assayed in all studies and/or reference assay data
from a subset of samples in each study can be used for normalization [17,18]. However,
these data are not always available in large international investigations and consortia. Ac-
cordingly, we developed a pipeline for the normalization and pooling of metabolomics data
acquired in different studies that does not require data on quality controls or reference assay
data, which covers four main steps. First, data cleaning identified and removed features
and samples exceeding certain thresholds of missingness and outlying samples [11,16]. Sec-
ond, the remaining missing values were imputed within each study using information on
limits of detection and quantification when available and appropriate, and measurements
were log-transformed to reduce skewness. Third, the principal component partial R-square
(PC-PR2) technique was implemented to identify sources of variation in the metabolomics
data [13]. Last, mixed effect models were used to correct for unwanted variability while
preserving biological variability [14]. The ComBat method [19] implemented in the R sva
package [20] and a PCA-based method [21,22] were also implemented for comparison.
Our pipeline was applied to targeted metabolomics data acquired in eight case-control
studies nested within the European Prospective Investigation into Cancer and Nutrition
(EPIC) [23]. Comprehensive analytical and graphical examinations of measurements were
performed to assess whether different normalization approaches improved the comparabil-
ity of metabolomics data. For illustration, metabolomics data were pooled and related to
study participants’ BMI.

2. Results
2.1. Description of the Study Population

Targeted metabolomics data acquired within the EPIC study and centralized at
the International Agency for Research on Cancer (IARC) included 16,060 pre-diagnostic
blood samples originating from eight case-control studies nested within EPIC (details in
Section 4.1) on seven types of cancer: breast cancer (one study denoted by BREA; n = 3172
samples) [8], endometrial cancer (ENDO; n = 1706) [24], gallbladder cancer (GLBD; n = 112),
liver cancer (LIVE; n = 596) [25], kidney cancer (KIDN; n = 1213) [26], prostate cancer (PROS;
n = 6020) [9,27], and colorectal cancer (two studies denoted by CLRT1 and CLRT2; n = 946
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and n = 2295, respectively). As displayed in Table 1, samples collected at recruitment were
assayed at IARC for BREA, LIVE, KIDN, PROS, and CLRT1, at the Helmholtz Zentrum
(München, Germany) for CLRT2 and GLBD, and at the Imperial College London (UK) for
ENDO. Across all studies, measurements of a total of 171 metabolites were acquired using
either the AbsoluteIDQ p180 or the AbsoluteIDQ p150 (for CLRT2 only) commercial kit
(Biocrates Life Science AG, Innsbruck Austria), following the procedure recommended
by the vendor. As displayed in Table 1, samples were assayed on different liquid chro-
matography (LC) and mass spectrometry (MS) instruments across the different studies,
but each study used one single pair of LC-MS instruments for all samples. Samples were
mostly either serum or citrate plasma, and samples within one study all originated from
the same type of blood matrix, except in BREA and GLBD where samples from Swedish
participants originated from a different blood matrix compared to the other participants.
For these two studies, samples assayed within each batch all originated from the same
blood matrix (not shown). Samples were assayed between 2013 and 2018. The pipeline
detailed in Section 4.2 was applied to the (n × p) matrix with n = 16,060 samples and the
p = 118 metabolites measured in all studies. Specifically, they included 13 metabolites
(amino acids) measured by a quantitative LC-MS/MS method (liquid chromatography
coupled with tandem mass spectrometry) and 105 metabolites (76 glycerophospholipids,
12 sphingolipids, 16 acylcarnitines, and 1 hexose, the sum of six-carbon sugars) acquired
by a semi-quantitative FIA-MS/MS method (flow injection analysis coupled with tandem
mass spectrometry, one-point calibration, no individual internal standards).

Table 1. Main characteristics of the study population.

Acronym Number of
Samples Matrix Laboratory MS Instrument LC Instrument Kit Used

BREA 3172 Citrate plasma 1 IARC SCIEX QTRAP
5500 Agilent 1290 p180

CLRT1 946 Citrate plasma IARC SCIEX Triple
Quad 4500 Agilent 1290 p180

CLRT2 2295 Serum HZM 3 SCIEX API 4000 Agilent 1200 p150

ENDO 1706 Citrate plasma ICL 4 SCIEX API 4000 Agilent 1290 p180

GLBD 112 Serum 2 HZM 3 SCIEX API 4000 Agilent 1200 p180

LIVE 662 Serum IARC SCIEX QTRAP
5500 Agilent 1290 p180

KIDN 1213 Citrate plasma IARC SCIEX QTRAP
5500 Agilent 1290 p180

PROS 6020 Citrate plasma IARC SCIEX Triple
Quad 4500 Agilent 1290 p180

1 except Swedish participants (n = 101; EDTA plasma). 2 except for Swedish participants (n = 14, heparin plasma). 3 Helmhotz Zentrum
München. 4 Imperial College London.

2.2. Data Cleaning and Imputation

For the exclusion of metabolites and samples exceeding a given threshold of missing-
ness, we applied the method described in Section 4.2.1 with a threshold set to 20% and
with missing values defined as “fully missing” values only, i.e., not including values out
of measurable range. Among the 118 metabolites originally retained for the analysis, the
acylcarnitine C4-OH (C3-DC) was the only one with a fully missing value in more than 20%
of the samples of at least one study (PROS), and was excluded. Among the 16,060 samples
originally retained for the analysis, none was excluded because of exceeding 20% of fully
missing values, eight were excluded because they were measured in batches with less than
10 samples, and two were excluded because they were considered outliers after a principal
component analysis (PCA). Thus, the final study population included 16,050 samples, for
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which measurements of 117 metabolites were included (Supplementary Table S1). Out of
the 1,877,850 corresponding measurements, 1066 were fully missing and 63,564 were out
of the measurable range: specifically, 63,044 were below a known LOD (limit of detection,
applicable to acylcarnitines, glycerophospholipids, hexose, and sphingolipids), 517 be-
low a known LLOQ (lower limit of quantification, applicable to amino acids), 2 above a
known ULOQ (upper limit of quantification), and 1 below an unknown LOD. All these
1066 + 63,564 = 64,630 missing values were imputed as described in Section 4.2.2, and
concentration values were log-transformed.

2.3. Identification of Major Sources of Variations

As displayed in Figure 1 (left panel), the projection of the measurements on the first
two principal components of the PCA were strongly clustered by study, suggesting the
presence of systematic sources of heterogeneity across studies. The PC-PR2 method was
applied to assess the proportion of the overall variation in the metabolomics data that was
explained by a predefined list of variables, including (i) participants’ characteristics, i.e.,
study center, gender, case-control indicator, age, BMI, alcohol intake, smoking status, and
(ii) three variables describing possible preanalytical and analytical sources of unwanted
variations: fasting status, time of the day of blood collection, study, and batch, with batch
nested within study. As shown in Figure 2 (top panel), the PC-PR2 analysis indicated that
these variables together explained more than 55% of the total variation of the metabolomics
measurements before normalization. Study explained 31% of the total variation, while batch
within study explained about 8%. Study center explained about 9% of the total variation,
and gender, BMI, and alcohol intake explained about 2%, 2%, and 1%, respectively. Fasting
status, time of blood collection, age at recruitment, smoking status, and case-control status
all explained less than 1% of the total variation.
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the second (PC2) principal components, respectively. Proportions of the total variation explained by
each component are given in parenthesis in the axis labels.
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2.4. Normalization of the Measurements

Based on PC-PR2 analysis, metabolite concentrations were normalized using the
method described in Section 4.2.4 to correct for variation due to study and batch, and
preserve the variation due to study center, gender, BMI and alcohol intake. These latter
four variables were all unequally distributed across studies and batches (not shown). They
were included as fixed effects in matrix Z (Equation (2) in Section 4.2.4; otherwise, some
of the variation they explain would be removed because of the adjustment for study and
batch, while study and batch within study were modeled as random effects in matrix X.
Other variables studied in the PC-PR2 analysis were not included in matrix X or Z as they
contributed very little to the total variation. Heteroscedastic metabolite-specific mixed
models with a study-specific variance component were used, although homoscedastic
models produced very similar results (not shown). The PCA of normalized data (Figure 1;
right panel) indicated that the projections on the first two principal components were not
clustered by study anymore, and measurements’ distribution largely overlapped. Data
from PROS (men only) were slightly shifted to the left and data from BREA and ENDO
(women only) were shifted to the right, suggesting that the normalization preserved some
variation due to gender overall. For illustration, the distribution of one semi-quantified
metabolite, SM OH C22:1, was computed within batches and across studies, for the imputed
and the normalized measurements (Figure 3). Imputed data displayed a study effect, with
concentration levels of SM OH C22:1 in the CLRT2, ENDO, GLBD, KIDN, and LIVE studies
substantially larger than those in BREA, CLRT1, and PROS. A remarkable batch effect
was observed within some studies, e.g., BREA. After normalization, the distributions
were very similar across batches and studies. Again, the distribution was slighty shifted
downward for concentration levels in PROS (men only), and upward in BREA and ENDO
(women only), compared to the other five studies CLRT1, CLRT2, GLBD, KIDN, and LIVE
(which included both men and women), confirming that the normalization preserved
some variation due to gender for this particular metabolite. The PC-PR2 analysis of
normalized data (Figure 2, bottom panel) confirmed that normalization removed unwanted
sources of variation (batch and study), but kept most variability attributed to participants’
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characteristics. Complementary PC-PR2 analysis showed that blood matrix and LC-MS
instruments contributed to less than 0.1% of the total variation after normalization (results
not shown). Compared to our approach, the PCA-based method produced rather different
results for many metabolites, while ComBat [19] produced very similar results for all
metabolites with the exception of most acylcarnitines and the glycerophospholipid PC aa
C40:1 (Supplementary Figures S1 and S2).
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Figure 3. Boxplots of SM OH C22:1 within each of the batches of the eight case-control studies for the imputed data (top)
and the normalized data (bottom). Dots indicate measurements out of the interval (q1 − 1.5 × IQR, q3 + 1.5 × IQR) with q1
and q3 being the first and third quartile, respectively, and IQR = q3 − q1 the interquartile range. In each plot, the y−axis
represents the value of the measurement and the y−axis represents each batch, arranged by study.

2.5. Technical Reproducibility of Measurements before and after Normalization

Intraclass correlation coefficients (ICC) were computed for each metabolite to assess
their technical reproducibility, using measurements from 2 × 219 = 438 duplicate samples,
i.e., samples measured once in two different studies (2 × 147 samples; see Supplementary
Table S2) or in two different batches of the prostate study (2 × 72 samples), as detailed
in Section 4.3. Figure 4 shows the distributions of ICCs for the semi-quantified (lipids,
acylcarnitines, and hexose) and quantified (amino acids) metabolites, before and after
normalization. Normalization shifted the distribution of ICCs upward for semi-quantified
metabolites. The distribution of quantified metabolites did not shift as much, but the
variability narrowed down, with no ICC value lower than 0.50. Figure 5 shows the
effect of the normalization on the ICC of each individual metabolite (top), and on the
average ICC for each class of metabolites (bottom). Before normalization, 101 (86%)
metabolites (92 semi-quantified, 9 quantified) had ICC values lower than 0.75, among
which 38 (32%: 35 semi-quantified, 3 quantified) had ICC values lower than 0.5. After
normalization, only twelve metabolites (10%: 9 semi-quantified, 3 quantified) had ICC
values lower than 0.75, among which only two semi-quantified metabolites had ICC lower
than 0.50. Moreover, class-specific averaged ICC values were consistently improved by
the normalization, in particular for glycerophospholipids and sphyngomyelins. Similar
results were observed when normalization was performed with ComBat [19], yet ICCs
were lower than those obtained when using our approach, especially for acylcarnitines
(Supplementary Figure S3). ICCs were even lower when normalization was performed with
the PCA-based method (Supplementary Figure S4). The same analysis was restricted to the
2 × 57 = 114 duplicate samples acquired in two studies from serum and citrate plasma. As
displayed in Supplementary Figure S5, ICC values were lower than 0.5 for 69 metabolites
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(59%) and 4 metabolites (3%), before and after normalization, respectively, with ICC values
greater than 0.75 for 91 metabolites (78%) after normalization.
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2.6. Impact of Normalization When Relating a Given Phenotype to the Metabolites

The relationship between the metabolites and BMI was assessed. The analysis was
restricted to control samples to reduce collider bias, and one sample was randomly chosen
from among duplicates. For each of the 117 metabolites, Pearson correlation coefficients
were computed between BMI and, in turn, the imputed measurements, the normalized
measurements, and the normalized measurements produced by a simpler normalization
approach, which corrected for study and batch effects without attempting to preserve
variation due to study center, BMI, gender, and alcohol intake. As displayed in Figure 6,
most correlation values were above the line y = x, especially for values greater than 0.1:
associations with BMI were stronger when using normalized data implementing our
approach compared to those observed with both non-normalized data and normalized
data implementing a simple, yet incomplete, normalization approach.
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3. Discussion

In this work, a pipeline for the normalization of metabolomics data acquired in differ-
ent studies was described. After a screening of informative metabolites and samples, the
PC-PR2 method was used to identify major sources of variation in metabolomics data and
linear mixed effect models were used to correct for unwanted sources of variation, while
attempting to preserve biological variation and accounting for potential heteroscedasticity.
The pipeline was applied to targeted metabolomics data acquired in eight cancer-specific
case-control studies nested within EPIC. Substantial inter-study and inter-batch hetero-
geneity was observed in the original data. Accordingly, the technical reproducibility was
low-to-moderate for many metabolites with ICC values lower than 0.50, especially for
the semi-quantified metabolites (e.g., glycerophospholipids), suggesting that quantified
metabolites might be less prone to unwanted variations due to analytical factors. Our
normalization approach eliminated most of the inter-study and inter-batch variability
and improved the technical reproducibility of a large proportion of semi-quantified and
quantified metabolites, with most ICC values greater than 0.75. Normalization using the
ComBat approach [19], which relies on a similar model but uses empirical Bayes estimation,
performed similarly for all metabolites except acylcarnitines, for which ICC values were
larger with our approach than ComBat. Normalization using the PCA-based method pro-
duced lower ICC values for most metabolites. All together, these results suggested that our
approach outperformed ComBat and the PCA-based method on the EPIC metabolomics
data. ICC values estimated from the duplicate samples originating from different blood
matrices (serum versus citrate plasma) were generally larger than 0.75 after normalization.
However, they were also generally lower than values estimated from all duplicate samples.
In particular, the ICC for methionine was 0.39 (95% confidence interval, CI: 0.14–0.57), as
compared to 0.71 (95% CI: 0.64–0.77) when ICC estimation used all duplicate samples. This
result calls for caution when pooling samples originating from different blood matrices, as
large differences were reported for specific metabolite concentrations in serum and plasma
samples [28].

As samples within each individual EPIC study were all assayed in the same laboratory
with the same LC-MS instruments, and mostly originated from the same blood matrix
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(except for GLBD that included serum and heparin plasma samples and BREA that included
EDTA and citrate plasma samples), the variability due to these factors was encompassed
into the inter-study variability and could not be assessed by the PC-PR2 analysis. In
particular, although the large inter-study variability in the non-normalized data supported
the presence of inter-laboratory and inter-instrument variability, as previously reported
for the AbsoluteIDQ p180 kit [17], correction for batch and study effects also corrected for
effects due to blood matrix and LC-MS instruments, which were both observed to contribute
to less than 0.1% of the total variation in the normalized data. However, the inter-study
and inter-batch variability also reflected biological variability, because factors like study
center, gender, BMI, and alcohol intake were not equally distributed across studies and
batches. Consequently, some of the biological variation due to these factors would be
removed if the normalized data were simply computed as the residuals in linear mixed
models adjusted for study and batch. Conversely, by accounting for study center, gender,
BMI, and alcohol intake in the mixed models and by computing the normalized residuals
using the step described in expression (2) in Section 4.2.4, the normalization preserved
(some of) the variation due to these factors. This was illustrated by the distribution of
normalized data that was shifted in opposite directions for studies including only men
or women, and by the stronger associations with BMI observed when using the complete
model for normalization compared to the simpler version that only included batch and
study as random effects.

A critical step of normalization procedures that use linear mixed models, or more
generally models with location/scale adjustments [19], is the choice of (i) factors that
may generate unwanted variation, for which a correction should be implemented, and (ii)
factors that represent biological variability, which should be preserved after normalization.
As illustrated in Section 4.2.4, while the list of variables in (i) should be included in matrix
X (like study and batch), variables in (ii) should be included in matrix Z, and the choice
depends on the study design and on the ultimate objective of the analysis. If the objective is
to identify metabolites associated with a given phenotype, e.g., BMI, it is crucial to include
BMI in matrix Z, particularly if BMI is associated with specific variables included in matrix
X. Conversely, if the ultimate objective of the study is to identify metabolites associated
with, say, alcohol, while controlling for BMI, then alcohol should be included in matrix
Z (particularly if it is associated with specific variables included in matrix X), but BMI
could be included in matrix X, so that the associations are adjusted for BMI. In any case,
performing sensitivity analyses with normalized data generated including different sets of
variables in matrices X and Z is a good practice.

In multicenter investigations like EPIC, study center is a sensitive variable as it ex-
presses technical (preanalytical) variation, likely the result of specific procedures for blood
collection, sample treatment, and storage, as well as biological variation reflecting specific
lifestyle exposures, often characterized by geographical gradients. In addition, in a mul-
ticenter context, the relationship between two sets of variables could be evaluated at the
overall level, at the center level, or at the individual level [29]. In this study, to use the
whole variability in metabolomics and BMI data, center was initially included in matrix Z.
In the sensitivity analysis, study center was included in matrix X and the center-specific
variability was removed. As shown in Supplementary Figure S6, results were similar to the
overall analysis suggesting that group-level correlations were similar to individual–level
correlations [29]. Alternative methods, like SVA [20,28] and RRmix [29], use linear (mixed)
models with latent variables to estimate variability attributed to unspecified sources of
variation, ultimately to be removed. These methods do not require prior knowledge of
the sources of unwanted variation, but require the identification of sources of biological
variation, as their effects would likely be removed if not properly accounted for in the
linear predictor of the model.

The decision to implement data normalization largely depends on the ultimate ob-
jectives of the analysis. As the relationship between metabolites and cancer risk is gener-
ally quantified in conditional logistic regression models for matched case-control studies,
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metabolite measurements are compared within each matched case-control pair. If cases and
controls are assayed within the same batch (as was the case in the EPIC metabolomics data),
the effects of study and batch on the means of the measurements are not a concern and
normalization is not required unless the variances of the measurements also vary across
studies or batches. However, if the evaluation focuses on the investigation of lifestyle
determinants of metabolomics data, as for example in mediation analysis, the matching is
“broken” and control for inter-batch and inter-study variability is required [7].

Although originally developed for the normalization of metabolomics data acquired in
different studies, our pipeline could be used for data acquired in a single study, for example
to correct for inter-batch variability while preserving biological variability and to correct
for potential heteroscedastic structures of concentration levels across batches. Our pipeline
could also be adapted to the normalization of biomarker data and other molecular data,
possibly with some modifications. In particular, for the normalization of untargeted LC-MS
metabolomics data, a step to exclude features based on comparison with blank samples
should be added to the data cleaning [16], and a K-nearest neighbors approach has been
shown to perform particularly well for the imputation of missing data [15,30] in the context
of untargeted metabolomics data. Importantly, when processing untargeted metabolomics
data from individual studies separately, different feature identifiers (e.g., mass to charge
ratio and retention time) would characterize the same molecule in each study. Therefore,
the pooling of several untargeted datasets would generally require an additional feature
alignment step consisting of identifying the features present in the different datasets, which
might be particularly challenging with data acquired in different laboratories [31].

With the increasing availability of metabolomics data in large scale epidemiological
investigations, such as those participating in the COnsortium of METabolomics Studies
(COMETS) [32], pooling will be more and more relevant as a strategy for increasing the
statistical power when investigating the relationship between metabolomics data with
disease indicators, environmental exposures, and/or other-omics and biomarker data.
Combined with analytical and graphical inspection of the data to determine sources of
unwanted variability to be removed and sources of biological variability to be preserved,
linear mixed models provide a flexible tool to normalize metabolomics data, and possibly
other -omics and biomarker data, prior to pooling data from different studies. As the
comparability of measurements across studies is improved, our normalization approach
could also be useful for studies that aim at the meta-analysis of individual patient data
from different studies, in particular if heteroscedastic patterns of variability were observed.

4. Materials and Methods
4.1. The EPIC Study

EPIC is a large prospective study of over 500,000 men and women recruited in 1992–
2000 in 23 centres in 10 European countries [23], originally designed to investigate the
relationship between diet and cancer risk. Incident cancer cases were identified through
a combination of methods including linkage to health insurance records, cancer, and
pathology registries and active follow-up through study participants and their next-of-
kin [23]. Around 386,000 participants from all countries provided a blood sample at
recruitment. Fasting before blood withdrawal was not required. Blood was collected
according to a standardized protocol in France, Germany, Greece, Italy, the Netherlands,
Norway, Spain, and the UK [23]. Serum (except in Norway), plasma, erythrocytes, and
buffy coat aliquots were stored in liquid nitrogen (−196 ◦C) in a centralized biobank
at IARC. In Denmark, blood fractions were stored locally in the vapor phase of liquid
nitrogen containers (−150 ◦C), and in Sweden, they were stored locally at −80 ◦C in
standard freezers. Our analyses used targeted metabolomics data collected within the EPIC
study and generated through the AbsoluteIDQ p180 or p150 commercial kit (Biocrates Life
Science AG, Innsbruck Austria).
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All participants provided written informed consent to participate in the EPIC study.
This study was approved by the ethics committee of the International Agency for Research
on Cancer (IARC) and all centers.

4.2. The Pipeline to Normalize Data

Given a matrix of p metabolites acquired on n samples, our pipeline implemented
four main steps, as summarized in Figure 7 and detailed hereafter for the EPIC targeted
metabolomics data. R scripts implementing these four steps, along with Rmarkdown and
html documents that can be used to reproduce the analysis of the EPIC data, are available
at https://code.iarc.fr/viallonv/pipeline_biocrates, accessed on 14 September 2021.
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4.2.1. Step 1: Data Cleaning

The objective of data cleaning was to remove the least informative metabolites and
samples, using a number of (subjective) criteria. First, the pipeline excluded metabolites and
samples exceeding a certain threshold of missingness (e.g., 20%) in each study separately.
Missing values were here defined as fully missing values, for which no information on
the real value was available. In particular, they did not include out of measurable range
values, which corresponded to values that were missing because they were below the
batch-specific limit of detection (LOD), below the kit-specific lower limit of quantification
(LLOQ), or above the kit-specific upper limit of quantification (ULOQ). An extra step was
implemented to exclude outlying samples within each batch based on principal component
analysis (PCA) [11], using a 20% proportional expansion of the Hotellings T2 distribution
ellipse, with the level of the ellipse set to 100 × (1 − 0.05)/Nb% and Nb the total number
of batches. Samples assayed in batches with less than 10 samples were also excluded
to ensure enough information during batch-specific data imputation (Section 4.2.2) and
normalization (Section 4.2.4).

4.2.2. Step 2: Data Imputation

All missing values, including the out of measurable range values, were imputed in
the cleaned dataset in each batch separately. Values below batch-specific LOD, below
kit-specific LLOQ, or above kit-specific ULOQ were set to LOD/2, LLOQ/2, and ULOQ,
respectively. Values below an unknown batch-specific LOD were set to LOD/2 after
setting batch-specific LOD to study-specific medians of known LOD values. Fully missing
values were set to the batch-specific median of non-missing values if less than 50% of the
measurements in the batch were missing and to the study-specific median of the batch-
specific medians otherwise. Measurements were log-transformed to reduce skewness.

4.2.3. Step 3: Data Normalization, Part 1: Identification of Sources of Variation

The PC-PR2 technique was used to identify main sources of variation in the metabolomics
data [13]. The PC-PR2 is a multivariate technique that combines PCA with multiple linear
regression to assess the proportion of the variability of the full metabolomics dataset
explained by a set of explanatory variables, including samples characteristics (age, sex, BMI,
alcohol consumption, study center), as well as preanalytical and analytical factors (fasting
status, sample processing protocol, blood matrix, study, batch, laboratory instrument).

https://code.iarc.fr/viallonv/pipeline_biocrates
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While the former set of factors likely determined biological variability, the latter set likely
introduced sources of unwanted variation in metabolomics data. PCA was conducted on
metabolite measurements and a number K ≥ 1 of components sufficient to explain more
than 80% of total variability was retained. Component scores were, in turn, regressed on the
list of aforementioned independent variables, say W1, . . . , WQ, in multiple linear regression
models, and the partial R2 for each covariate Wq was estimated for each component (Ck).
For example, the partial-R2 for W1 conditional on the (Q-1) other covariates for component
k was

R2
partial, k (W1) = [SSE(Ck|W2, . . . , WQ) − SSE(Ck|W1,W2, . . . , WQ)]/ SSE(Ck|W2, . . . , WQ),

with SSE(Ck|Wj, . . . , WQ) expressing the residual sum of squares in the linear regression
model of component Ck on variables Wj, . . . , WQ, for j = 1, 2. For variables with a nested
structure, for example study (S) and batch within study (B), the formula was

R2
partial, k (S) = [SSE(Ck|W2, . . . , WQ) − SSE(Ck|S, W2, . . . , Wq)]/ SSE(Ck|W2, . . . , WQ),

R2
partial, k (B) = [SSE(Ck|S,W2, . . . , WQ) − SSE(Ck|B, S,W2, . . . , WQ)]/ SSE(Ck|S,W2, . . . , WQ).

An overall R2
partial (W1) was obtained by the average of terms R2

partial,k (W1) weighted
by the eigenvalue of each component. This overall estimate provides a measure of the
variability in the ensemble of metabolite concentrations that each explanatory variable
contributes to explaining. The PC-PR2 technique is implemented in the pcpr2 R package
available on GitHub.

4.2.4. Step 4: Data Normalization, Part 2: Correction for the Unwanted Sources of Variation

In order to correct for unwanted sources of variability while preserving biological
variability, a random effects model was used for each metabolite separately [14], as

y = α + Xβ + Zθ + ε, (1)

where y is the n-vector of the measurements for the metabolite/feature under consideration
(all studies combined), the matrix X expresses variables corresponding to sources of
variations that should be corrected for, and the optional matrix Z expresses variables
corresponding to biological variations that should be preserved. Variables expressed in
matrices X and Z typically include some of the variables W1, . . . , WQ of the PC-PR2
analysis with largest R2

partial. The vector of parameters β associated to matrix X may
include both fixed- and random-effects, while the vector θ associated to matrix Z contains
fixed effects only. Parameter α is the intercept and vector ε~ Nn(0, Σ) corresponds to the
random error of the model. Residuals ε are independent of the random effects of the
model. Random effects are Gaussian, centered, and were further assumed to have diagonal
covariance matrix in our illustration.

Parameters α, β, θ, and the vector of residuals ε under model (1) are estimated by, say,
a, b, c, and e. Normalized residual measurements are computed as

u = e + Zc. (2)

In this way, normalization preserves the association between the metabolite and
variables in Z, while any association with variables in X is eliminated. As mentioned in
the Discussion, variables describing biological variations of interest should be included
in matrix Z if they are associated with variables included in matrix X (e.g., sources of
biological variations that are unequally balanced across studies or batches); otherwise,
some of the variation they explain would be removed because of the adjustment for X. In
our illustration, study center indicators, gender, body mass index, and alcohol intake were
included in matrix Z, while batch and study indicators were included in matrix X.

In the simple homoscedastic random effect models, each component of the vector ε
of residuals has the same variance: Σ = σ2In for some σ2 > 0, where we denote by Ip the
identity matrix of size p for any positive integer p. However, in practice, pre-analytical
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and/or analytical factors may not only influence the means of the measurements via the
term Xβ in model (1), but also their variance. For example, variances of components of
ε may vary across studies. This was accounted for by working under heteroscedastic
random effect models with a specified structure for the variance matrix Σ of the residuals,
e.g., Σ was made of blocks of the form σs

2Ins for observations corresponding to study s
(with ns the number of observations in study s). Then, residuals e were replaced by the
Pearson residuals in Equation (2), after rescaling them to ensure that their overall variance
equals that of the standard residuals. Homoscedastic models were implemented with the
lmer function of the lme4 R package, while heteroscedastic models were implemented
with the lme function of the nlme R package, using the weights instruction to specify the
within-group heteroscedasticity structure.

For comparison, we also considered the ComBat method [19] of the sva R package [20],
under which a fixed-effects version of model (1) is estimated using an empirical Bayes
approach, to leverage the fact that sources of variation may affect many metabolites in
similar ways. In our illustration, ComBat was applied to correct for batch effect (which
also accounts for study effect), while attempting to preserve variations due to study
center, gender, body mass index, and alcohol intake. We also considered a PCA-based
method [21,22], where (i) a PCA was performed on the full metabolomics data matrix, and
(ii), normalized measurements were the residuals obtained after regressing each metabolite
on the first K = 2 principal components of the PCA; other choices for the value of parameter
K were considered and led to similar or lower reproducibility (quantified by the intraclass
correlation coefficient; see Section 4.3).

4.3. Computation of the Intraclass Correlation Coefficient Using Duplicated Samples

The EPIC data included duplicate samples corresponding to aliquots of a baseline
blood sample from the same subject measured twice in different batches or in different
studies. These duplicated samples were used to assess the technical reproducibility of
metabolomics measurements, and in particular to compare technical reproducibility before
and after normalization. In sensitivity analyses, ICC values were estimated using only
duplicate samples originating from distinct blood matrices (serum and citrate plasma). For
each metabolite, we estimated its ICC using a linear mixed effects model of the form [16]

mik = γi + ξik (3)

where mik is the k-th replicate measurement of subject i, k = 1, 2, γi~N(µ, σγ
2) is a subject-

specific random effect (with µ corresponding to the general mean of mik), ξik~N(0, σξ
2) is

the residual random error for replicate k of subject i, and Cov(ξik, γi) = 0. Under this model,
ICC = Var(γI)/Var(γI + ξik), so the ICC estimate was defined as the ratio of the estimated
between-subject variance to the estimated total variance (between- and within-subject).
Model (3) above can be estimated even if only a portion of the subjects have replicated
samples. It was implemented using the lmer function of the lme4 R package, and 95%
confidence intervals (CI) of the ICC values were derived using the parametric bootstrap
implemented by the bootMer function of the lme4 R package.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11090631/s1, Figure S1: Correlations between normalized measurements produced by
ComBat and our approach, Figure S2: Correlations between normalized measurements produced
by the PCA-based method and our approach, Figure S3: Average ICC values for each class of
metabolites after normalization using ComBat and our approach, Figure S4: Average ICC values
for each class of metabolites after normalization using the PCA-based method and our approach,
Figure S5: Metabolite-specific ICC values before and after normalization and average ICC values for
each class of metabolites before and after normalization, Figure S6: Correlations (absolute values)
between BMI and the 117 metabolites in control samples, Table S1: List of the 117 metabolites
retained after the data cleaning step, Table S2: Study origin of duplicate samples in the EPIC targeted
metabolomics data.
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