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Abstract: Genome-scale metabolic models (GEMs) enable the mathematical simulation of the metabolism
of archaea, bacteria, and eukaryotic organisms. GEMs quantitatively define a relationship between
genotype and phenotype by contextualizing different types of Big Data (e.g., genomics, metabolomics,
and transcriptomics). In this review, we analyze the available Big Data useful for metabolic modeling and
compile the available GEM reconstruction tools that integrate Big Data. We also discuss recent applications
in industry and research that include predicting phenotypes, elucidating metabolic pathways, producing
industry-relevant chemicals, identifying drug targets, and generating knowledge to better understand
host-associated diseases. In addition to the up-to-date review of GEMs currently available, we assessed
a plethora of tools for developing new GEMs that include macromolecular expression and dynamic
resolution. Finally, we provide a perspective in emerging areas, such as annotation, data managing, and
machine learning, in which GEMs will play a key role in the further utilization of Big Data.

Keywords: genome-scale metabolic models; big data; computational tools; phenotypes; flux balance
analysis; machine learning; reconstruction; ME-models

1. Introduction

The beginning of the 21st century has initiated a new era in the generation of Big
Data. Major technological advances have enabled the generation of Big Datasets in a
cost-efficient and high-throughput manner [1]. Data generated by approaches such as
genomics, transcriptomics, proteomics, epigenomics, metabolomics, pharmacogenomics,
fluxomics, or phenomics constitutes most of the Big Data in biology and medicine [2]. In
simplest terms, Big Data refers to “multi-omics” data that is simply too big and complex
for traditional computational tools and resources to be analyzed efficiently [3].

The initial wave of biological Big Data was powered by the advancement and cost-
effectiveness of sequencing technologies, leading to repositories of a large variety of
genomes. It served as a foundation for the subsequent waves of omics, which has re-
sulted in a growing wealth of “multi-omics” repositories. The growth of multi-omics Big
Data can be perceived through the high number of published multi-omics research. For ex-
ample, a simple keyword search of different omics research areas on NCBI PubMed [4] such
as “genomics”, “transcriptomics”, “proteomics”, “epigenomics”, “metabolomics”, “phar-
fluxomics”, and “phenomics” reveals an increasing rate of publications

macogenomics”, “
over the last two decades in different “omics” research (Figure 1).
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Figure 1. Rate of publications related to different omics-related fields. PubMed search results for

keywords such as “genomics”,

”ou

transcriptomics”,

”ou

proteomics”,

”ou

”ou

epigenomics”,

metabolomics”,

“pharmacogenomics”, “fluxomics”, and “phenomics” in publications from 2000-2021. Stacks with

“black” borders represent PubMed search results with the keyword “big data” and above-mentioned

omics keywords (Supplementary File S1). Moreover, NCBI has added billions of bases to its sequence

database over the last decade. It should be noted that the figure does not intend to represent any

correlation of publications to the number of sequences.

The exponential increase of Big Data in biology has been challenging to analyze due
to the different types of omics data (e.g., by discipline, large variation in data formats,
and data structures) [5], lack of metadata (descriptors), and the limited tools to analyze it.
Moreover, omics datasets usually require different levels of data scaling, normalization,
and transformation [6]. Systems biology and machine learning approaches can help to
integrate the different omics datasets to understand the interactions between different
cellular components (Figure 2).
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Figure 2. Big Data types commonly used in metabolic modeling. The left panel represents different

omics data applied to the GEM providing different layers of biological knowledgebase. Machine

learning can be applied to increase the predictive capability of the reconstructed GEMs. Different

applications of GEMs are shown in the top right panel and discussed in detail in the text.
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Cellular components function through inter- and intra-cellular interactions that can be
represented with an “interactome” network in which components such as proteins, genes,
metabolites, and other macromolecules are represented as nodes, and the interactions
between these cellular components correspond to the edges. These networks can represent
transcriptional regulatory networks [7], protein—protein interactions networks [8], disease
networks [9], metabolic networks [10], or even host-microbe networks [11]. Genome-
Scale Metabolic Models (GEMs) are a network-based tool that collect all known metabolic
information of a biological system, including the genes, enzymes, reactions, associated
gene-protein-reaction (GPR) rules, and metabolites [12]. These metabolic networks provide
quantitative predictions related to growth or cellular fitness based on GPR relationships.
GEMs can effectively integrate other types of Big Data to validate metabolic networks
that can be used in three broad aspects [13]: (i) understanding the metabolism of archaea,
bacteria, fungi, and host organisms like humans and plants [14]; (ii) identifying potential
therapeutic targets of disease pathology [15]; and (iii) designing biological systems with
preferred features which are otherwise non-existent in nature [16]. They help to understand
molecular mechanisms in an organism and identify new processes that might be counter-
intuitive to the known biological phenomenon [17,18].

Traditionally, GEMs were developed for individual isolated organisms. However,
over the last decades, the study of microbial communities has gained a lot of interest in
the scientific community, especially to understand the complex interactions between host
organisms and their associated microbiome [19-22]. GEMs can successfully contextualize
microbial omics studies such as metagenenomics, metatranscriptomics, and metabolomics.
These complex datasets are now being integrated with other “omics” data to gather insights
into the effect of niche microbiota on their hosts [23]. For example, The Human Microbiome
Project (HMP) was developed to characterize the human-associated microbiome. Com-
bined, the Human genome and HMP generated 42 terabytes of data [24]. In 2010, the Earth
Microbiome Project (EMP) was conceived to systematically characterize the microbiome
across the globe [25]. This project has generated over 340 gigabytes of sequencing data,
and another 15 terabytes of sequencing and metadata are expected to be generated by the
completion of the project [25]. The Vertebrate Genomes Project (VGP) [26], which aims
to generate high-quality reference genomes for 70,000 vertebrate species, is expected to
generate data in petabytes. Fremin et al. developed MetaRibo-Seq that performs ribosome
profiling (Ribo-Seq) of a large number of organisms in a microbiome to measure differences
in translation of gene transcripts [27].

Here, we present a comprehensive review of the latest information of biological Big
Data and how GEMs are a reliable tool to contextualize and understand them. We discuss
how computational tools enable an in-depth understanding of experimental data to acceler-
ate our knowledge of bacteria, archaea, and eukaryotes. We also discuss available tools for
reconstructing context-specific GEMs using Big Data [28]. We discuss how biological Big
Data has been integrated into GEMs and machine learning tools to enhance their predictive
capabilities. Furthermore, we provide a brief overview of the application of GEMs in
different areas of research in industry and academia as well as the description of next
generation GEMs and future perspectives.

2. Individual and Multi-Strain GEMs Connect Genomics with Metabolism

GEMs can be reconstructed using automatic and semi-automated tools. Over 6000 metabolic
models have been generated either through semi-automatic or automatic genome-scale re-
construction tools, covering bacteria, archaea, and eukaryotes [29]. GEMs contain all known
metabolic reactions and their associated genes of a target organism; the growth rate of the
organism is predicted by simulating the metabolic fluxes in the system. Methods available to
perform predictions are well-known and include Flux Balance Analysis (FBA), 1*C-metabolic flux
analysis (3C MFA), and dynamic FBA (dFBA) [30]. While '3C MFA uses labeled isotope tracers
to predict the metabolic fluxes, FBA uses measurements of consumption rates as constraints to
predict fluxes throughout the entire network [30]. In the coming sections, we discuss various
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tools that apply FBA to predict the metabolic fluxes under different assumptions. Moreover,
we also discuss the concept of dFBA to predict the metabolic fluxes and non-steady-state condi-
tions [31]. Below, we review high-quality models that have been extensively manually curated
and validated.

3. Multi-Strain Reconstructions of Bacteria Can Help Understand Metabolic Diversity

Pan-genome analysis unravels variability among genomes of multiple strains, resulting
in divergent phenotypes across the strains [32,33]. Based on this concept, GEMs for a single
strain can now be expanded to create models for multiple strains of the same species using
genomics information [34]. In 2013, Monk et al. created a multi-strain GEM from a set of
55 individual E. coli GEMs. They created a “core” model that was the intersection of all
the genes, reactions, and metabolites of the individual models and a “pan” model that was
a union of those models [35]. In another work, Seif et al. developed a Salmonella model
from 410 individual GEMs of Salmonella strains and predicted its growth in 530 different
environments [36]. Bosi et al. developed GEMs from 64 strains of S. aureus and analyzed
its growth under 300 different growth conditions [37]. Norsigian et al. reconstructed
22 GEMs of Klebsiella pneumoniae strains to simulate growth under 265 different carbon,
sulfur, nitrogen, and phosphorus sources [38]. In 2020, Zuniga et al. created a multi-strain
GEM from six Candidatus Liberibacter asiaticus (CLas) strains. They reported conserved
and unique metabolic traits, as well as strain-specific interactions between CLas and its
hosts [14]. These studies advocate in favor of developing multi-strain models for different
species that can provide strain-specific insights at network level. Multi-strain GEMs are
based on individual GEMs. These expanded modeling analyses lay the foundation for
understanding disease-associated traits associated with multi-strain isolates. Figure 3
showcases models that have been reconstructed over the years for different bacteria species,
which can serve as primary source of information for multi-strain models. In 2021, Rajput
et al. reported the potential of the bacterial two-component system as drug targets by
performing a comprehensive pan-genome analysis of ESKAPPE (Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa,
Enterobacter spp., and Escherichia coli) pathogens [39]. Moreover, due to the broad availability
of genomics data, it is now possible to identify variations in different strains of the same
species hosted by humans or plants.
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Figure 3. Reconstructed GEMs for bacteria. Each node represents a different year. The nodes
provide information on the number of reconstructed models and their classification into Gram-

negative (pink) and Gram-positive (blue). Some of the organisms like Escherichia, Staphylococcus,

Klebsiella, Liberibacter, and Salmonella also have multi-strain models constructed as represented by

asterisk (Supplementary File S2).

4. Using GEMs to Understand the Metabolism of Archaea

Archaea are single-cell organisms that contain distinct molecular characteristics from
bacteria and eukaryotes. For example, structurally they are associated with bacteria, but
evolutionarily they are closer to eukaryotes [40]. As with bacteria, archaea do not contain
the peptidoglycan layer in their cell wall but contain a sugar-based polymer [41]. Archaea
generate energy differently from other microorganisms and can produce biological methane
that bacteria and eukaryotes cannot [42]. Archaea can survive in extreme environments
differing in temperatures, acidity, alkalinity, or saltiness. This makes their isolation and
studying very difficult. However, archaea are a good source of enzymes that function in
extreme temperatures, like Taq polymerases [43]. There are only nine available GEMs of ar-
chaea (Figure 4). Methanobacterium formicicum (MFI) is a methanogen that is usually present
in the digestive system of humans and ruminants [44,45]. It has been implicated in gastroin-
testinal and metabolic disorders in ruminants, rendering it a clinically important organism.
MFI is known to produce methane by utilizing the fermentation products carbon dioxide
and hydrogen. There have been five GEMs for members of the family Methanobacteriaceae;
namely, Methanosarcina barkeri str. Fusaro (iAF692 [46], iMG746 [47]), Methanosarcina acetivo-
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rans (iMB745 [48], iVS941 [49]), and Methanococcus maripaludis (iIMM518 [50]), aiding in our
understanding of methanogenesis.

2006 2008' 2010| 2012 2014' 2018
M. barkeri 5 N.p S. N. maritimus SCM1
IAF692 | iMM518| NmrFL413
1 1 (—W28—Wl— 1 >
M. acetivorans 2013
VS941 M. barkeri
M. acetivorans MG746
Me74 Archaea

2011

Figure 4. Available models for Archaea. The nodes in brown represent the year of GEM reconstruc-
tion and number of GEMs reconstructed for archaea (Supplementary File S3).

5. The Metabolic Complexity of Eukaryotes Is Addressed in GEMs

A vast number of modeling efforts have been focused on using novel genomics in-
formation of eukaryotic organisms by expanding the number of metabolic networks for
a broad range of organisms. Out of the 6000 metabolic models reconstructed to date, a
total 215 metabolic models were reconstructions for eukaryotic microorganisms, and only
60 of them have been subjected to manual curation [29]. Figure 5 highlights the eukaryotic
organisms with available GEMs. Eukaryotic models are growing both in scale and scope,
including organelle-specific metabolic features, multiple compartments, and transport reac-
tions to connect the metabolism across compartments. Expansion of metabolic modeling to
eukaryotic organisms envisions their application to increase precursor productiveness for
bioenergy [51,52], biocontainment [53], and human health and disease [54,55].
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Figure 5. Chronological order of GEMs of important model eukaryotic organisms. Each node
depicts the year of GEM reconstruction and the number of GEMs reconstructed for that organism.
The nodes are color coded to depict the classification of GEMs into Fungi (blue), Animalia (pink) and
Phototrophs (green) (Supplementary File 54).

Various computational tools that attempt to predict subcellular localization of proteins
have been developed. These include peptide sequence motif prediction (ASAFind) [56],
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subcellular localization of proteins in different organisms (Cell-PLoc) [57,58], heterokont
subcellular targeting (HECTAR) [59], prediction for mitochondrial targeting sequences
(MitoProt) [60], prediction of Nuclear Localization Signals (predictNLS) [61], bacterial
localization prediction tool (PSORTD) [62], subcellular localization predictor (SCLPred) [63],
hybrid subcellular localization predictor (SherLoc2) [64], signal peptide prediction (Sig-
nalP) [65], prediction of N-terminal presequences (TargetP) [66], transmembrane helix
prediction using hidden Markov model (TMHMM) [67], and protein subcellular localiza-
tion prediction tool (WoLF PSORT) [68]. Using several of these tools is highly recommended
to accurately predict the subcellular localization of proteins from as many compartments as
possible. For example, to develop the models of the green algae Chlorella vulgaris and Phaeo-
dactylum tricornutum, several prediction tools were used (e.g., TargetD, SignalP, HECTAR,
Mitoprot, and TMHMM) [69,70].

Six different tools to reconstruct eukaryotic models have been developed so far. For
example, (i) AuReMe, which had been tested for eukaryotic algae [71]. The reconstruction
process using this tool is based on seven eukaryotic model templates that included two
fungi, three algae, one plant and one human model. (ii) The reconstruction capabilities
CoReCo [72] were tested by generating 49 fungi models from the divisions Ascomycota,
Pezizomycotine, Saccharomycotina, and Basidiomycota using S. cerevisiae as a template.
All models used the same biomass composition of S. cerevisiae in the modeling reaction.
(iii) Merlin [73], which retrieves enzymatic, transport, and localization information from
the genome. The program relies on WoLF PSORT to perform this task. Additionally,
cross-referencing between Transporter Classification Database (TCDB) [74] and UniProt is
performed; however, some ambiguous transporters remain in the reconstructed network.
(iv) Pathway Tools is a bioinformatics software that enables reconstruction, prediction of
reaction atom mappings, metabolic route search, and regulatory-informatics tools. It con-
tains MetaFlux gap filler that automatically identifies missing reactions, nutrients, and
secretions [75]. Finally, (v) the Raven 2.0. toolbox, which performs genome-wide functional
annotations, using template models or KEGG as a source for protein homology alignments.
The Raven toolbox is currently the most used tool for semi-automatic reconstruction [76].
(vi) The PlantSEED includes genome information of 39 plant and algae species that enable
automated annotation and metabolic reconstruction from transcriptome data. PlantSEED
reconstructs compartmentalized drafts that can include more than 100 primary metabolic
subsystems [77]. The selection of a reconstruction tool for eukaryotic organisms should
be an informed decision since reconstruction tools usually have tradeoffs between gapless
networks and orphan reactions, meaning that obtaining larger automatic models does
not necessarily mean higher quality. Conversely, if the annotation of the genomes is poor,
heavy manual curation should be performed. Figure 5 provides a timeline of the eukaryotic
GEMs reconstructed to date.

6. A growing Branch of Big Data: GEM Reconstruction Tools and Datasets

Emerging applications of GEMs and increased demand for GEMs motivated the gen-
eration of automatic and semi-automatic computation tools to generate metabolic models
of various organisms from all domains of life. A list of GEM reconstruction tools with
their basic properties has been summarized in Table 1. Fundamentally, these tools rely on
genome annotations and reaction databases. Genomics data is often available in public
domains, such as NCBI Genome [4,78], Ensembl Genome [79], The Encyclopedia of DNA El-
ements (ENCODE) [80,81], The International Genome Sample Resource (IGSR) [82], or The
Database of Genomic Variants (DGV) [83]. In addition to published and curated GEMs,
and GEMs available in BiGG [34,84], several reaction databases, such as KEGG REAC-
TION [85], MetaCyc [86,87], MetaNetX [88], Rhea [89], SwissLipids [90], TransportDB [91],
and TCDB [74], provide metabolomics and reactions information.

GEM reconstruction tools are distinct from each other due to features like (i) annotation /re-
annotation of target genome sequences, (ii) reaction databases, (iii) presence/absence of gap-
filling module, (iv) fully-automation or flexibility of customizing parameters, (v) annotation
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and addition of transport and exchange reactions, (vi) biomass reactions, (vii) presence/absence
of subcellular localization module, and (viii) programming language. Additionally, some of
them are more used than others, for example, The COBRA toolbox, which has been cited over
2700 times in its three versions (see Table 1).

Most reconstruction tools require an already annotated proteome to map it with re-
action databases, whereas tools like merlin and ModelSEED [92] reannotate the genomes
before using them in the reconstruction process. Many tools are flexible in terms of us-
ing reaction databases; for example, AuReMe [71], GEMsiRV [93], and RAVEN [76] can
incorporate the reactions from available GEMs as well as at least one of other reaction
databases like KEGG, MetaCyc, BiGG, and ModelSEED. However, the remaining tools only
use either available GEMs or other reaction databases; for example, Pathway Tools and
ModelSEED only rely on their internal reaction databases. Most of the tools either have
a gap-filling module connected with the reconstruction pipeline or as a separate module,
except AutoKEGGRec [94], FAME [95], and Pantograph [96], which only provide the draft
genome. CarveMe [97], ModelSEED, and Pathway Tools are equipped with an automated
pipeline that generates ready-to-use draft models for flux balance analysis. However, more
refinement is required to improve the predictive capability of these models and match
the quality of manually curated models. The remaining tools allow users to customize
any parameters during the reconstruction process or generate a network without biomass,
transport, and exchange reactions.

Consequently, merlin encompasses a function to visualize all the reactions in the draft
model, and these reactions can also be mapped on the KEGG pathway browser. These func-
tionalities provide opportunities to check and refine reactions and find candidate reactions
for filling gaps in the network. RAVEN provides the options to set user-defined template
models and blast parameters (i.e., E-value, identity, sequence coverage, and alignment
length) during finding the homolog proteins between proteomes of target and template
organisms [76]. MetaDraft has in-built manually curated BiGG models in its pipeline,
but user-defined template models can also be added in the reconstruction process [98].
GEMSsiRV uses user-defined template models, and it extracts the reaction from reaction
databases like BiGG, KEGG, MetaCyc, and ModelSEED during the gap-filling process [93].

Table 1. Available GEM reconstruction tools and their features.

Tool

Reaction Databases Advantages/Limitations Platform Availability

Citations

(Average/Year) Reference

AuReMe

Available GEMs,
MetaCyc, and BiGG

It stores the information at
each step during the
reconstruction process to Docker image Public 36 (13) [71]
maintain transparency and
reproducibility.

AutoKEGGRec

KEGG

It can be used to reconstruct
models for a single organism
and a given list of organisms.
It generates an intermediate
consolidated model that
contains all the genes and
reactions for all target
comaaidared model cambe Matiab Public 2039 (4
used to generate individual
models. It does not
incorporate transports,
exchange, and biomass
reactions to the draft model.
Gap-filling is also not part of
this reconstruction tool.
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Table 1. Cont.

Tool Reaction Databases

Advantages/Limitations

Platform

Availability

Citations
(Average/Year)

Reference

CarveMe BiGG

It is an automatic tool for
reconstructing and gap-filling
the draft model. CarveMe
generates ready-to-use
models for flux balance
analysis. As a reaction
database, manually curated
BiGG models are used in the
reconstruction process.

Python

Public

151 (50.33)

[97]

COBRA toolbox,
COBRAUpy, -
COBRA ji

COBRAme Available GEMs

These tools do not provide
any function to build the
models based on annotated
genomes. However, they
provide the functions to
incorporate all the
components, such as genes,
reactions, and metabolites
into the model. In particular,
these tools are useful for
expanding upon existing
draft models.

It is used to develop ME
(Metabolism and Expression)
models, which are the
extended version of GEMs.
In addition to a high-quality
GEM, these models also
contain transcription,
translation, and tRNA
charging reactions.

Matlab, Python, and
Julia

Python

Public

Public

COBRA
toolbox
v.1-3.0—2733
(170)
COBRApy—
612 (76.50)
COBRA ji—25
(6.25)

73 (24.33)

[99-101]

[102]

Available GEMs,

CoReCo KEGG

It is a comparative
reconstruction approach that
uses available high-quality
GEMs for comparison and
reactions from the KEGG
database to build models for
closely related species. Its
capability to compare models
makes this tool useful for
conducting evolutionary
studies.

Python, R, Perl

Public

68 (9.71)

[72]

FAME KEGG

It only works on the
organisms available in the
KEGG database. It allows the
visualization of FBA results
on KEGG pathway maps.

Web-based

Public

93 (10.33)

Available GEMs,
BiGG, KEGG,
MetaCyc,
ModelSEED

GEMSsiRV

It generates the model based
on orthologous genes
between the target and
template model provided by
the user. It can perform
gap-filling using reference
databases from BiGG, KEGG,
MetaCyc, and ModelSEED.

Web-based

Public

43 (4.78)

Merlin KEGG, TCDB

It comprises several specific
features, such as annotation
of both enzymatic and
transport genes, subcellular
localization. Therefore, it can
be used to reconstruct the
models for both prokaryotes
and eukaryotes. This tool
also has a function to
visualize all reactions in the
model that can help users in
the gap-filling process using
the KEGG pathway browser.

Java

Public

90 (15)

[73]

MetaDraft Available GEMs

It uses available GEMs as
templates to build models for
a new organism. It contains
internal template models
(BiGG models) as reaction
databases; however, users
can create and use more
templates.

Python GUI

Public

28 (7)

[98]
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Table 1. Cont.

Tool

Reaction Databases

Advantages/Limitations

Platform

Availability

Citations
(Average/Year)

Reference

ModelSEED/KBase

ModelSEED

In the first step, it uses RAST to
annotate the genome of target
organisms. This tool builds the
models based on annotated
genome and internal reaction
databases. It performs
gap-filling as a part of an
algorithm based on
user-provided media or
complete media. It is a fully
automated tool and does not
allow users to customize any
steps during reconstruction. It
works on the assumption that
all the reactions in the internal
database are mass and
charge-balanced. It also
supports model reconstruction
for plants.

Web-based

Public

919 (83.55)

[92]

Pantograph

Available GEMs

It uses available models as a
reaction database and orthology
mappings between genomes of

target and template organisms

to reconstruct the GEM. It does

not apply automatic gap-filling
to the draft models.

Python

Public

22 (3.67)

[96]

Pathway Tools

MetaCyc

It generates the model based on
genes, reactions, and
metabolites stored in

organism-specific PGDB
(pathway/genome database)
and annotated genome. PGDB
also helps in filling the gaps in
the pathways. It contains 12
experimentally confirmed
biomass reactions. Based on the
taxonomy of the targeted
organism, one biomass reaction
is incorporated into the model.

Web-based, Python
(via PythonCyc)

Free for academic
and government

researchers,

a license fee applies
for commercial use.

216 (43.2)

[75]

RAVEN

Available GEMs,
KEGG. MetaCyc

It provides a flexible
environment to build a draft
model. Users can employ
multiple template models
simultaneously. This tool can
also be used to build the models
using reaction databases like
KEGG and MetaCyc.
Additionally, networks built on
different databases can be
merged into one model.
RAVEN also contains functions
for gap-filling and subcellular
localization (for eukaryotes).

Matlab

Public

97 (32.33)

[76]

rBioNet

This is a part of COBRA
Toolbox. It is not an automatic
tool to populate the reactions in
a draft model from any reaction
database. Users need to provide
manually or automatically
created reaction databases as
input for this tool. It comprises
the functions to check the
quality of newly added
reactions such as duplication,
charge, and mass balances.

Matlab

Public

71 (7.1)

[103]

SuBliMinal Toolbox

KEGG, MetaCyc

It provides the modules to
extract the reactions from
KEGG and MetaCyc and merge
both versions into a single
network. This tool creates
biomass reactions based on the
biomass precursor present in
the draft model. It also has a
module to perform subcellular
compartmentalization for
reactions in the network.

Java

Public

103 (10.3)

[104]
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Except for merlin, all reconstruction tools rely on genome annotations, template
models, and reaction databases for adding transporter and exchange reactions. Merlin
directly annotates the transport genes and reactions using a transporter database, TCDB [74].
For biomass reactions, most tools use the biomass compositions of template models or
rarely manually generated reactions based on experimental data of biomass composition.
CarveMe uses four template biomass reactions for Gram-positive bacteria, Gram-negative
bacteria, Cyanobacteria, or archaea [97,105]. The ModelSEED pipeline uses different
biomass reactions for Gram-positive bacteria, Gram-negative bacteria, fungi, and plants.
Pathway tools have 12 different biomass reactions based on experimental data from the
literature for different taxonomic linkages.

CoReCo contains a function to run comparative analysis on closely related organisms
useful for conducting evolutionary studies [72]. FAME can currently only be used to
generate models for organisms present in KEGG [95]. One advantage of using this tool is
that it can visualize Flux Balance Analysis (FBA) results on KEGG pathway maps, which
can help users to interpret flux distribution data. rBioNet is an extension of The COBRA
Toolbox [103]. This tool only encompasses the functions for adding model components
(genes, reactions, and metabolites) and relies on users to provide data of organism-specific
model components. The COBRA toolbox [99], COBRApy [100], and COBRA ji [101] were
mainly developed for reconstructing, reading, editing, and analyzing existing models.
However, they have functions to add genes, reactions, and metabolites to the GEMs.

7. Integrating Big Data and Machine Learning to Improve Manual Curation of GEMs

As discussed earlier, multi-omics Big Data is expanding at an increasing rate. Machine
learning methods have become an essential part to understand and handle the complex
nature of Big Data. Recently, machine learning (ML) has been applied to improve the
accuracy of GEMs by combining the knowledgebase of the biological system with the
predictive power of ML [106]. For example, Ryu et al. developed a deep learning model,
DeepEC, using convolutional neural networks (CNN) to predict enzyme commission (EC)
numbers and assign those to proteomics information [107]. Schinn et al., developed an
integrated machine learning and metabolic model to predict time-course dependent esti-
mation of amino acid concentrations in Chinese Hamster Ovary (CHO) cell cultures [108],
an approach validated using metabolomics data.

Unsupervised ML approaches, such as principal component analysis (PCA), and clus-
tering can help in reducing the dimensionality of omics data which can be applied to, for
example, identify active reactions in GEMs [109], create subnetworks of genes, and/or
metabolic pathways from larger GEMs to answer specific biological questions. Moreover,
supervised machine learning approaches such as linear regression, support vector machines
(SVM), etc., can infer relationships between different layers of omics data and integrate with
GEMs such as identifying essential genes using SVM, and decision trees [110,111], predict-
ing growth and changes in functional states using linear regression [112,113], identifying
biochemical effects of antimicrobial resistance causing alleles using hybrid ML and FBA
platform [114], etc. Although ML/FBA hybrid models have shown promise in harnessing
the biological knowledgebase from omics data and GEMs, there are certain limitations that
need to be considered. There is a danger of overfitting of parameters in ML models that
reduces the robustness of ML models. Feature selection and cross-validation techniques
can be used to avoid overfitting.

The curation of an individual GEM is labor-intensive and time-consuming. The
manual curation process can take several months for bacteria and years for eukaryotic
organisms. Curation involves adding orphan reactions, refinement of specific model
compartments or biomass functions, correct mass imbalanced reactions, etc. [115]. This
process highly depends on the intuition of the researcher and standardized methods to
select blast parameters and accelerate manual curation. Thus, researchers are developing
machine learning algorithms to help prioritize the curation process. These algorithms take
advantage of deploying ensemble methods to improve the performance of GEMs. Medlock
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et al. developed a tool called AMMEDEUS (Automated Metabolic Model Ensemble-
Driven Elimination of Uncertainty with Statistical learning) that develops multiple GEMs
based on experimental data and simulates these models based on single-gene knockouts.
Based on the output, the authors generated similarity profiles based on unsupervised
machine learning using cluster analysis. Random Forest classification algorithm was
deployed to predict cluster membership based on varying parameters of the model as
input. This method helps in identifying parameters that can reduce the uncertainty in the
simulation process [115].

In another study, Oyentunde et al. developed a framework called BoostGAPFILL,
which uses a combination of constraint-based and pattern-based methods for metabolic
model refinement [116]. They used ML to predict a set of possible reactions by charac-
terizing the topology of the incomplete metabolic network. BoostGAPFILL presents 60%
precision and recall. Mesquita et al. identified cost-effective ways of measuring low oxygen
concentrations, creating a surrogate artificial neural network model by simulations of a
GEM. This surrogate model was then used in a fermentation strategy [117]. Culley et al.
developed an ML-based method that integrates metabolic models with large-scale gene
expression data to understand the different mechanisms of cell growth in 1143 Saccaromyces
cerevisize mutant strains [118]. They created 1229 strain-specific models and measured their
metabolic activity (fluxomics). They then combined the gene expression and fluxomics
data to create predictive models using algorithms, such as support vector regression (SVR),
random forest (RF), and artificial neural networks (ANNS), to characterize cell growth [118].

ML techniques have also been used to annotate genes [119]. Stiehler et al. recently
developed a platform named Helixer that can improve gene annotations of eukaryotic
genomes using deep learning models [120]. Other applications of ML in gene annotation,
such as protein-coding gene identification [121], protein function predictions [122], and
metabolic pathway prediction [123], have increased the predictive power of GEMs.

8. Systems Applications of GEMs Enable a Better Understanding of Big Data

GEMs have become highly relevant during the last decades due to their ability to
computationally simulate the complex metabolic processes carried out by different or-
ganisms [124]. Metabolic models are currently used to elucidate, comprehend, analyze,
optimize, and even discover new cell functions when the studied organisms are subjected
to different conditions [124,125]. Some model organisms with high research and industrial
value have been updated several times as new genomic, genetic, biochemical, and other
biological information became available. For instance, the GEM for E. coli K-12 MG1655
has constantly been evolving. The initial model contained 660 associated genes [126], while
the most recent model more than doubled the genes in the model, containing more than
1500 genes [127].

The continuous updating of GEMs, accompanied by biological Big Data has directly
influenced the creation of well-curated modeling databases and tools to integrate the mod-
eling results with omics data. There are databases focused on collecting and retrieving
well-constructed and most recent models. The BiGG database compiles high-quality manu-
ally curated GEM databases. Additionally, CarveMe, a BIGG-based Database, has emerged
as another important modeling database focused on the reconstruction and retrieval of
bacteria and archaea microorganisms, facilitating the obtention and simulation of GEMs.

GEMs have varying biological scope and coverage [128]. GEMs might be used for (i)
elucidating general metabolic mechanisms of well-studied organisms [129-131]; (ii) identify
and predict metabolic phenotypes depending on the medium conditions [14,127,132]; (iii)
drug discovery and targeting [133-136]; and (iv) understanding the model interactions
between key model organisms and host-microbe interactions [19,137].

9. Elucidation of Underground Metabolic Mechanisms of Well-Studied Organisms

Most of the initial GEM reconstructions have been targeted to establish the first
models capable of linking the biological data of key organisms with their mathematical
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and computational representations (in silico). E. coli K12 MG1655, Saccharomyces cerevisiae,
and other key organism GEMs have played an important role in understanding general
metabolic pathways (glycolysis, pentose phosphate pathway, amino acids metabolism,
lipids metabolism, energy core metabolism, etc.) and establishing the important relations
among the elements of the GEMs (reactions, genes, metabolites, gene-protein associations,
etc.). Based on this mathematical-biological relation, GEMs are used to elucidate the general
metabolic mechanisms of the studied organisms using systems biology approaches. For
instance, the first GEM of an acetogen, Clostridium ljungdahlii DSM 13528 [138], modeled the
Wood-Ljungdhal pathway of carbon fixation [138]. GEM of Azotobacter vinelandii D] was
developed to elucidate the nitrogen fixation pathway [132]. The predictions of growth rates
and internal fluxes based are validated using the available experimental data. The resulting
GEMs are usually updated due to the constant renewal of the biological, biochemical, and
genomic data available of the key organisms. Most of the GEM updates are focused on
bacterial species [97,127] due to the low complexity of the models. However, relevant
archaea and eukaryotic organisms are also updated frequently with new GPR associations
(gene-protein reactions), reactions, metabolites, genes, or even internal metabolic fluxes.

10. Simulation of Phenotypic Traits Depends on the Medium Conditions

GEM s of several organisms have been employed to test the metabolism of a wide range
of different nutrients and substrates. Once the metabolic models are built and validated
with experimental phenotypic data (growth values, internal fluxes, or expression data), they
are usually tested with new carbon, nitrogen, phosphorus, and other elements as substrates
to identify the specific mechanisms applied by the organisms to consume these nutrient
sources. A recent example is the experimental validation of more than 3000 conditions
for E. coli K12 MG1655 using metabolic modeling predictions [127]. The new updated
model (IML1515) is capable of successfully predicting the tested conditions with more than
90% accuracy. Based on the metabolic estimations performed by iML1515, it is possible to
establish new biological processes to describe the observed phenotypes. Lu et al. developed
a comprehensive S. cerevisiae metabolic model Yeast8 along with a cluster of metabolic
models (ecYeast8, proYeast8DB, panYeast8, and coreYeast8), representing an ecosystem
that can be integrated to understand the metabolism of yeast under different carbon
and nitrogen sources and understand the genotype—phenotype relationship [139]. Chang
et al. developed a GEM for C. reinhardtii (IRC1080) to simulate growth under different
light sources. They created photon-utilizing reactions (prism reactions) that represent
11 different light sources used to study plant and algal growth, including solar, LEDs, and
other light bulbs [140]. Their platform can help in predicting light source efficiencies related
to metabolic objectives.

Another relevant example are GEMs of bacteria with polytrophic metabolism. For
example, the well-studied diazotroph bacterium Azotobacter vinelandii D] [132]. More than
40 carbon and nitrogen sources were tested to determine with statistical parameters the
quality of the initial predictions. However, the GEM was subsequently validated with
over 300 substrates to identify the possible mechanisms employed by this nitrogen-fixing
bacterium to consume a wide variety of nutrients. As a result, the model successfully
predicted the principal pathways used by A. vinelandii. The new metabolic processes
described to consume the different substrates by the metabolic model agree with the
previous experimental data from different approaches (growth, and genomic and fluxomic
data). Ultimately, the model operated as a system validator to identify the active metabolic
pathways during polyhydroxybutyrate and alginate production (both high-value secondary
metabolites) in diazotrophic and non-diazotrophic conditions.

11. Utilization of GEMs in Drug Target Identification

GEMs can predict possible biological targets of an organism under a specific condi-
tion [141]. The GEM approach has been widely employed to suggest possible metabolic
drug targets through inhibition mechanisms to reduce the negative effect or kill the
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pathogen. Developing a comprehensive metabolic network can also help identify po-
tential novel drug targets that can kill disease-causing pathogens. Recently, Viana et al.
constructed a GEM of the human pathogen Candida albicans (IRV781) with 1221 reactions,
781 genes, and 926 metabolites [142]. They identified 11 ERG genes that guide the ergos-
terol biosynthesis in the organism, and targeting the ERG pathway mimicked the effects
of a fungicide. In 2019, Minato et al. used Mycobacterium tuberculosis GEM iSM810 to
predict essential genes that can be potential drug targets [143]. In another work, Wang
et al. developed a GEM for the plant pathogen Pectobacterium carotovorum (iPC1209) that
contains 2235 reactions, 1113 metabolites, and 1209 genes [144]. They identified 19 potential
bactericide targets among essential genes through simulating single gene deletions in the
metabolic model. Haleem et al. developed a highly complex GEM of Plasmodium falciparum
(1IAM-Pf480), representing five life cycles of the malaria-causing pathogen [145]. They
report 95% accuracy in predicting single-gene knockouts and 71% accuracy in predicting
drug inhibition phenotypes. They identify 48 genes that can be potential drug targets for
malaria [145]. Weglarz-Tomczak et al. developed a novel method called Gene Expression
and Nutrients Simultaneous Integration (GENSI) for the human reconstruction Recon3D
that uses gene expression data and nutrient availability data and converts it into fluxes. The
study explored the effect of diet on cancer cell metabolism and the rate of progression [146].
In another study, Puniya et al. developed a GEM to identify possible drug targets for
CD4* T cell-mediated diseases. They first identified essential genes and then perturbed
the network using existing Food and Drug Administration (FDA) approved drugs and
compounds. They were able to identify 55 potential drug targets for three autoimmune
diseases, such as rheumatoid arthritis (RA), multiple sclerosis (MS), and primary biliary
cholangitis (PBC) [147]. These studies highlight the potential of GEMs to become an integral
part in identifying novel therapeutic targets. However, experimental validation of these
drug targets can be a challenging task.

12. Contextualization of Disease-Associated Big Data—Systems Medicine

A disease phenotype is usually a result of perturbations in cellular interaction net-
works, not only due to an abnormal gene [148]. Systems approaches help understand these
cellular networks and a particular disease and provide potential drug targets. GEMs have
an equally useful role in understanding human metabolism and, in turn, human diseases.
There have been many research studies that employ GEMs to understand various cancers.
Nilsson et al. presented a comprehensive review on methods applied to generate GEMs
in cancer research [149]. Pandey et al. analyzed different subtypes of renal cell carcinoma
using the transcriptomics data in conjunction with human GEM. They identified alterations
related to amino acid metabolism, redox homeostasis, glycolysis, and TCA cycle in cancer
subtypes [150]. Gatto et al. assessed how cancer-specific GEMs differ from normal tissue
GEMs. They were able to identify reactions catalyzed by ARG2, RHAG, SLC6 and SLC16
family gene members, and prostaglandin-endoperoxide synthase (PTGS1 and PTGS2) were
exclusively present in cancer models. However, their findings suggest a vast similarity
between cancer-specific GEMs and normal tissue GEMs, and targeting tumor metabolism
could cause toxicity as the GEMs have the same underlying metabolic functions [151].

GEMs have been deployed to identify biomarkers for complex diseases such as cancers.
In cancer, there are genetic and epigenetic alterations in the metabolism. By incorporating
omics data into the metabolic models, cancer biomarkers can be predicted by estimating
the exchange rates of different metabolites in the model [152]. To understand changes in
brain metabolism under disease conditions, Moolmalla et al. reconstructed GEMs for three
psychiatric disorders: schizophrenia, bipolar disorder, and major depressive disorder, and
compared it with the human Recon3D model [153]. By applying transcriptomics data to
the models, they were able to identify alterations between the three psychiatric disorders at
flux level [153].
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13. Multi-Level Integration of Big Data in Emergent Modeling Approaches

The acceleration of GEM reconstruction across several biological domains gave rise to
new questions that could previously not be answered by GEMs, such as dynamic functional
states and macromolecular expression. For example, dynamic metabolic models have been
successfully used to characterize growth dynamics, time-dependent cycles, and organelle
crosstalk [21]. On the other hand, the integration of additional biological layers to GEMs
allowed addressing macromolecular expression. This section reviews the resulting hybrid
models developed to address these questions, their implications, and principal findings.

14. Adding Macromolecular Resolution—Proteometrics

GEM-PRO models contain detailed annotation of protein structure without altering
either the metabolic network or the numerical strategy to find metabolic flux distributions
through Flux Balance Analysis (FBA). In a GEM-PRO model, structure annotations are
added as a new layer on top of the biochemical reaction network, which allows for a
systems-level analysis of protein structure trends within the network and the predicted
metabolic fluxes. The first GEM-PRO model was generated for Thermotoga maritima, which
included protein sequence and fold annotations [154]. These annotations helped address
the mechanism of pathway evolution by discovering that enzymes catalyzing similar
reactions have a significantly higher probability of exhibiting the same fold. This finding
reported that new biochemical reactions are likely attained by recruiting an enzyme from
an existing similar reaction.

The following GEM-PRO models were generated for Escherichia coli [155,156]. The first
included a protein-ligand interaction network with resolution of binding sites at residue
level. This study coupled protein structure with protein-ligand predictions using the SMAP
method to identify antibacterial targets and complexes with potential antibacterial proper-
ties. In another study, transcriptomics at 37 °C and 42 °C were analyzed for heat-induced
gene expression. The expression of these genes, deemed part of the heat-shock response,
were used to constrain the E. coli GEM at different temperatures [156]. This model was
employed to predict mutations and metabolite supplements that would induce thermotol-
erance in E. coli identifying growth-limiting proteins and their associated pathways.

A similar, but more detailed, GEM-PRO with a residue-level resolution of protein
structure was generated for a human GEM in Recon3D [133]. The model further includes
three-dimensional data on residue spatial position in the protein, which was successfully
employed to identify mutation sites that induce conformational changes. Interestingly,
Recon3D successfully captured those mutations within 10 A of the metal-binding site of
arylsulfatase A induce its homo-dimer state, which directly alters the stability of this protein
and is linked with a mild form of metachromatic leukodystrophy [157]. GEM-PRO models
have not only been used to improve the analysis of metabolic networks and fluxes, but
also to guide model reconstruction. For example, protein structures were used to identify
enzyme homologs for the GEM-PRO of Staphylococcus aureus [158].

15. Simulating Gene Expression of Cells

Another approach to include macromolecular information to GEMs was realized
with the introduction of models of metabolism and gene expression (ME-models). In this
case, the metabolic network itself is altered by adding reactions for enzyme synthesis and
assembly proportional to the flux of the catalyzed metabolic reaction. The coupling of
metabolic reactions with protein synthesis allows the calculation of a systems-level protein
synthesis profile, which directly informs about the proteome composition of the organism
with a particular metabolic phenotype [102]. Moreover, this coupling adds a biosynthetic
requirement to the metabolic fluxes, reducing the variability of fluxes [159] and eliminating
unbound fluxes with previously no biological relevance. The Toolbox COBRAme for
python was developed to create ME-models. COBRAme does not have functions to create
a GEM from scratch, however the code can be adjusted to different organisms.
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The coefficients of proportionality between coupled reactions are called coupling
coefficients derived from enzyme kinetics of catalysis and degradation, and their dilution
to newly produced biomass. The first ME-model was reconstructed for T. maritima [159],
which defined the necessary coupling constraints for complex usage, transcription, transla-
tion, and mRNA degradation. This model successfully reproduced amino acid consump-
tion, peptide translation, and transcription rates under different growth conditions.

The following ME-models were reconstructed for E. coli in four iterations, namely
Thiele et al. [160], iOL1650-ME [128], ]JL1678-ME [161], and {JL1678b-ME [102]. The model
by Thiele et al. [160] correctly captured experimental growth rates in different carbon
sources, their codon usage and increased the accuracy of gene essentiality predictions.
Next, iOL1650-ME successfully captured RNA-protein ratios at varying growth rates, as
well as glucose uptake rates and phosphotransferase enzymatic activities. The effect of
nitrogen, sulfur, phosphorus, and magnesium levels on growth rate was correctly captured
by iOL1650-ME. Further, the model identified three growth modes resulting from nutrient
availability: nutrient-limited, proteome-limited, and a transition between both. Third,
iJL1678-ME [161] accounted for protein translocation pathways, which allowed it to predict
proteome allocation in different compartments and the inner membrane occupation in
response to metabolic phenotypes.

The main limitation of these ME-models was their solution complexity and stability
due to them being nonlinear large optimization problems, with over 70,000 reactions.
The solveME package [162] was generated to increase accuracy and improve scaling in
the system by using the binary search algorithm and quad-precision in the calculations.
The most recent E. coli ME-model, iJL1678b-ME [102], drastically reduced the number of
reactions by reformulation the coupling coefficients, from 79,871 [128] and 70,751 [161]
reactions in previous iterations to just 12,655 reactions. The reformulation consisted mainly
of combining subreactions into a single reaction and effectively deriving new coupling
coefficients for each resulting reactant and product. JL1678b-ME proved to be as accurate
in its translation and transcription rate predictions as its predecessors and more so in the
gene essentiality predictions, in only a fraction of the solution time. The COBRAme toolbox
was used to reconstruct the ME-model of Clostridium ljungdahlii [163], which predicted
transcription rates highly correlated with experimental transcriptomics. Moreover, this
model accurately simulated the effect of trace metal concentrations, such as nickel, on
the growth rate.

Lately, additional biological and biochemical layers have been added to ME-models
to simulate the effect of stress conditions, e.g., temperature, pH, and oxidative stress.
FoldME [164] integrated folding and degradation kinetics to predict the effect of tempera-
ture on growth rate, effectively predicting low- and high-pH stress, as well as the optimal
pH range. AcidifyME [165] coupled folding and unfolding thermodynamics and kinetics
and was able to predict variation in lipid composition (characterized by a notable increase
in cyclopropane), periplasmic protein stability, and membrane protein activity. Finally,
OxidizeME [166] integrated kinetics of iron—sulfur cluster damage and repair, as well
as metalation and mismetalation, to predict differential expression under high levels of
reactive oxygen species.

16. Overcoming the Steady-State Assumption in Genome-Scale Metabolic Models

The steady-state assumption of FBA limits GEMs to capturing growth at a particular
time during culture, though critical biochemical phenomena may occur in a time-dependent
manner. Dynamic Flux Balance Analysis (dFBA) was the first approach to address non-
steady-state simulations using FBA and GEMs. Mahadevan et al. [31] first proposed two
formulations for dFBA: static and dynamic optimization approaches (SOA and DOA). The
SOA consists of a forward numerical method with a defined time-step, where uptake rates
are calculated using the steady-state assumption at each step and concentrations are updated.
The SOA was later expanded by Zhao et al. [167] using a nonlinear objective function.
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On the other hand, the DOA alters the definition of the optimization function, where
the new objective function is a concentration integrated over a timespan, e.g., the total
production of biomass. Further work on the DOA was performed by Zhou et al. [168] by
using an exterior penalty function to improve the accuracy of predictions. Thus, while the
DOA is more robust, the SOA is much less computationally intensive.

A third strategy to solve dFBA was proposed by Hoffner et al. [169] and is available in
the MATLAB package DFBAlab [170], where lexicographic optimization (called the Direct
Approach or DA) is employed instead of the traditional SOA and DOA. DA solves the
previously existing issue of flux non-uniqueness by sequentially optimizing the objective
function and the exchange rates. DFAlab was shown to capture growth dynamics in batch
fermentation with Saccharomyces cerevisiae and E. coli [170].

Even though dFBA can obtain stable and unique solutions of time-course concentrations,
especially during nutrient-replete conditions, it alone cannot capture sub-optimal growth under
stress or nutrient limitation. The underlying optimization problem of dFBA exchange fluxes
is constrained by either observed fluxes in vivo or unconstrained. Naturally, flux uptake and
secretion rate limitations must vary with time during the culture timespan. This led to the
hybrid dFBA systems constrained by kinetic models of uptake and secretion, called multiscale
models [171,172]. A dFBA approach was employed by Kuriya et al. [173], where models with
fitted parameters constrained glucose and biomass concentrations.

Multiscale models have been generated for the photosynthetic microalga Chlorella vulgaris
coupled with kinetic models to predict growth dynamics. Chien-Ting et al. [51] constrained the
growth rate of C. vulgaris GEM iCZ946 [113] with time-course growth rate data. This model
was employed to optimize nutrient supply to maximize growth and lipid productivity.

Nonetheless, multiscale models are not limited to the simulation of sub-optimal
growth, as any other model can be coupled with a GEM to capture the desired phe-
nomenon [172]. A multiscale model of yeast, GECKO [174], integrated enzyme kinetic
models to calculate enzyme abundances from metabolic fluxes, which were then con-
strained by experimental values. A similar approach was employed by Chen et al. [175] to
calculate enzyme-binding metal ions and assess metabolic responses to ion limitation.

GEMs can also be given dynamicity using the biomass objective function (BOF), espe-
cially in organisms with drastically changing biomass compositions, such as photosynthetic
microalgae [56]. In a study by Zuniga et al. [113], the biomass composition of C. vulgaris
was measured during batch culture and was integrated into the GEM iCZ946. The resulting
model accurately predicted growth rate under nitrogen-replete and nitrogen-deplete condi-
tions and discovered a nitrogen pool in the microalga. A similar strategy was employed
by Tibocha-Bonilla et al. [52] on five different eukaryotes (including two microalgae and
two yeasts) to predict time-course organelle and pathway activities. In another study,
time-course chlorophyll a absorption coefficients and abundances were used to constrain the
GEM of the diatom Phaeodactylum tricornutum, thus capturing circadian clock oscillations
and discovering mechanisms to release excess reducing power [176]. Moreover, van Tol
et al. [177] measured biomass compositions of Thalassiosira pseudonana under three light
levels and integrated them in its GEM, effectively predicting the effect of light intensity
on the growth rate. Furthermore, the model predicted the contributions of the cyclic and
non-cyclic electron flows to the total electron flow.

17. Challenges Associated with Reconstruction of GEM and Omics Data Integration

Network-based tools have shown to be a reliable tool for big data analysis and con-
textualization. Different methods for metabolic flux analysis such as FBA, 13C MFA, and
dFBA have some limitations. First, FBA assumes that the system is under steady-state [178].
Second, the FBA solution can contain loops limiting accuracy in predicting anaplerotic,
circular, and parallel reactions [179]. FBA cannot predict metabolite concentrations as it
does not employ kinetic parameters [30]. Moreover, it does not account for the regulation
of gene expression [30]. Also, FBA has to deal with the inherent issues of alternate optimal
solutions, where a different set of fluxes of reactions in the metabolic network can be used
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to get the same quantitative values of the objective function (e.g., cell growth) [180]. One
way of identifying the alternate optimal solutions is to identify the variability of fluxes to
understand the boundaries of entire solution space instead of relying on one solution and
then assessing which of those solutions are favorable for the model system. Flux Variability
Analysis (FVA) [180], Flux Coupling Analysis (FCA) [181], and Comprehensive Polyhedron
Enumeration FBA (CoPE-FBA) [182] are some of the approaches that can be utilized for
this purpose. Another approach can be to utilize random sampling to calculate different
flux distributions under varying constraints and experimental conditions [183].

Most of the constraint-based modeling methods can be seamlessly applied to prokary-
otes. However, eukaryotic models and other non-model organisms are quite complex to
reconstruct due to the lack of complete genome assemblies, diverse secondary metabolites
and their intracellular complexity organized by compartments/organelles, such as cyto-
plasm, chloroplast, mitochondria, nucleus, periplasm, peroxisome, and thylakoid [184].
Recent efforts in improving the sub-cellular localization of proteins have been continuously
enhancing the quality of metabolic contents in GEMs of eukaryotes [185]. The simulation
capabilities of automatically generated GEMs are usually limited. This may primarily
be due to a lack of good quality sequence and annotation data. Draft GEMs can have
inaccurate information of biomass reactions and GPR associations [29]. The quality of
GEMs can be enhanced using semi-automatic approaches that combine manual curation
and experimental evidence [132]. Moreover, for a high-quality GEM, it is imperative that
draft GEM reconstruction follow the Findability, Accessibility, Interoperability, and Reuse
(FAIR) guiding principles for scientific data management [186,187]. The network entities
(genes, metabolites, and reactions) should be findable using unique identifiers and mapped
to known databases. The model should be accessible for the users to make and retrieve
significant changes to draft reconstruction. The draft GEMs should be written in standard
SBML formats. Moreover, the steps involved at different stages of draft reconstruction
should be transparent to users so that the GEM is reusable and reproducible [188].

Parameter estimation and model fitting is another major challenge in effectively uti-
lizing GEMs. Constraint based GEMs which are based on linear programming do not
include any time dimensions and do not account of metabolite concentrations [189]. Dy-
namic/kinetic constraint-based GEMs apply enzyme kinetics to increase the scope of these
models. However, dynamic models include large numbers of enzyme kinetic parameters
that usually cannot be estimated directly. Moreover, depending upon the size of the models,
parameterization of kinetic models can be time consuming and computationally expen-
sive. Due to this, kinetic models are still not as accepted as constraint based GEMs [190].
However, there are some efforts to make kinetic models more acceptable to the modeling
community by creating sub-networks of a bigger model where kinetic parameters can be
fitted easily [189].

Another major challenge is the integration of omics data. As omics datasets repre-
sent different aspects of biological systems, there are challenges in developing a credible
knowledge base for integration in GEMs, such as non-uniform and missing data, inefficient
computation power to analyze omics data, signal-to-noise ratio in the data, inconsistent
annotations, or storage and distribution of data [191]. Moreover, it is difficult to integrate
omics data from different studies due to the variation in sample handling, sequencing
depth, and limited availability of metadata information [192]. Preprocessing of data, in-
cluding data normalization, bias removal, and quality checks can help overcome these
limitations [192]. Further, noise is diminished by using omics data from studies that use
similar omics technologies, materials, established standard operating procedures, and
references [193]. As GEM reconstruction usually depends on homology prediction, it can
fail in identifying characteristic metabolic features of organisms that are phylogenetically
or functionally different from the well-characterized model organisms [194].

Despite the challenges associated with omics data integration with GEMs, each in-
tegrated layer of omics data helps in minimizing metabolic gaps and providing realistic
predictions for organism specific cellular metabolism [194].
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It is well known that a model cannot predict and mirror the observations from ex-
perimental observations with 100% accuracy. Many models try to be more biologically
relevant by adding experimental data based on various growth environments. Moreover,
the models are updated as and when the biological information is available that provides
new insights into the metabolism of a particular organism. For example, iML1515 is the
most updated model of E. coli [127] with 2719 reactions and 1192 metabolites. Since E. coli
is a model organism, new biological information is constantly being reported that helps in
updating the model with a higher frequency. iML1515 contains 184 new genes and 196 new
reactions compared to the older version. This is now the benchmark model for E.coli and,
perhaps, can predict with higher accuracy comparable to experimental observations [127].
This effort can also guide other organism’s models towards improving the accuracy of their
predictive capabilities.

18. Conclusions and Perspectives

Big Data has enabled the fast development of systems biology tools. These advance-
ments have triggered the reconstruction of genome-scale metabolic models for a wide
range of organisms and applications. In this review, we have presented the current state of
metabolic modeling in the context of biological Big Data. We have provided a comprehen-
sive account of existing GEMs that utilize the vast repertoire of multi-omics data, available
tools to reconstruct those GEMs, and their applications in different fields of biological
research. GEMs are proven and robust platforms to understand the complex metabolic
processes of biological organisms. Although, there are certain challenges associated with
storing, analyzing, and interpreting Big Data to create a valuable knowledgebase, computa-
tional algorithms for data compression, distributed storage databases, and cloud computing
can aid in solving these challenges [195]. As the data grows, the complexity, scope, and scale
of the GEMs will continue expanding. Traditionally, the GEMs have all been assumed to be
working under steady-state conditions. New studies are now providing a dynamic state
to the GEMs to understand the metabolic pathways in a time-dependent manner. GEMs
have found their applications in essentially every aspect of biological research including
elucidating core metabolic pathways, gene essentiality, functional annotations, industrial
applications, drug discovery, and host-microbe interactions.

Since integration of biological Big Data provides several layers of biological knowl-
edgebase to the GEMs, such as protein, the applications of GEMs can go beyond just
understanding metabolic systems to include other host systems like the nervous systems
or the immune system. This will help in understanding diseases linked to microbial en-
vironments, impact of probiotics [196], and diet modulation on diseases like autism [197],
obesity [198], etc. Keeping in mind the technical challenges associated with Big Data and
GEM reconstruction, there is considerable evidence that GEMs will be applied in under-
standing an expanding range of complex interactions between different biological systems.
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