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Abstract: This study aimed to validate and reanalyze urinary biomarkers for detecting colorectal can-
cers (CRCs). We previously conducted urinary metabolomic analyses using capillary electrophoresis-
mass spectrometry and found a significant difference in various metabolites, especially polyamines,
between patients with CRC and healthy controls (HC). We analyzed additional samples and con-
firmed consistency between the newly and previously analyzed data. In total, we included 36 HC,
34 adenoma (AD), and 214 CRC samples, which were used for subsequent analyses. Among the
132 quantified metabolites, 16 exhibited consistent differences in both datasets, which included
polyamines, etc. Pathway analyses of the integrated data revealed significant differences in many
metabolites, such as glutamine, and metabolites of the TCA (tricarboxylic acid cycle) and urea cy-
cles. The discrimination ability of the combination of multiple metabolites among the three groups
was evaluated, which yielded higher sensitivity than tumor markers. The Mann–Whitney test was
employed to evaluate the prognosis predictivity of the assessed metabolites and the difference be-
tween the patients with or without recurrence, which yielded 16 significantly different metabolites.
Among these 16 metabolites, 11 presented significant prognosis predictivity. These data indicated the
potential of metabolite-based discrimination of patients with CRC and AD from HC and prognosis
predictivity of the monitored metabolites.

Keywords: colorectal cancer; adenoma; capillary electrophoresis-mass spectrometry; metabolome

1. Introduction

Colorectal cancer (CRC) has been reported to have the third-highest cancer-related
mortality rate in Japan in 2019 [1]. This may be because the screening rate in Japan is still low
compared with that in the United States [2], and by the time patients are diagnosed, cancer
progresses to the advanced stage. Most CRC occurs owing to malignant transformation of
benign polyps—the so-called adenoma (AD)–carcinoma sequence [3]. AD can be cured by
endoscopic resection, and approximately 95% of the early-stage CRC cases can be treated.
However, early detection is still difficult owing to the lack of symptoms [4]. Moreover, a
large number of patients present recurrence after curative resection in stages II and III of
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CRC. There are no effective noninvasive approaches that can successfully provide diagnosis,
prognosis, survival, and recurrence of CRC in the clinic. Thus, the development of novel
screening methods with high sensitivity and specificity at the early stages of CRC and AD
and prognosis predictivity is thus essential.

The fecal occult blood test (FOBT) is a screening method commonly used in Japan,
and it has contributed to increased chances of early detection of CRC. However, only
approximately 3% and 50% of FOBT-positive subjects are diagnosed with CRC and polyps,
respectively [5]. The sensitivity of 2-day immunological FOBTs is 60–70% for early-stage
and 86% for advanced CRC. Conversely, 36.3% of the CRCs are false negatives, including
25% of advanced CRCs [6]. Therefore, FOBT alone is not a sufficient screening tool.

A colonoscopy is a screening test that allows direct observation of the inside of the
colon. The sensitivity of colonoscopy to detect colorectal tumors is as high as 79–100% for
CRC and AD with a diameter of ≥10 mm [7]. However, for AD with a diameter of <10 mm,
the sensitivity is only 75–85% [8]. Thus, the sensitivity of endoscopy after a positive FOBT
is not high despite its invasiveness. Tumor antigens, such as the carcinoembryonic antigen
(CEA), a protein marker in the blood, increase the sensitivity and specificity to 18% in
stage I, 35% in stage II, and approximately 50% in stage III as a general CRC screening test.
However, these sensitivities are not sufficient [9].

Recently, K-RAS has attracted attention as a new genetic marker for CRC [10,11]. It
is useful for advanced cancer and for detecting the effects of chemotherapy; however, its
effectiveness in early diagnosis remains low. Therefore, the development of a screening
tool that is minimally invasive and has higher sensitivity and specificity is necessary.

The recurrence rate after curative resection of colorectal cancer in Japan in 2007 was
15.0% for stage II and 31.8% for stage III [12]. This is clearly a relatively low value, and the
prediction of the prognosis before resection and plan treatment is essential. The role of the
systemic inflammatory response, as indicated by the neutrophil-to-lymphocyte ratio (NLR),
in cancer recurrence and death has been increasingly recognized [13]. The development
of a screening tool that is minimally invasive and has higher sensitivity and specificity is
thus necessary. Therefore, we analyzed the prognosis predictability using the detected
metabolites and compared it with that of NLR.

Recently, not only sputum and blood but also urine is attracting attention as a body
fluid that reflects various pieces of information in the body and could be a source of molec-
ular markers. Compared with other body fluids, urine samples contain various metabolites,
are not heavily affected by sample collection conditions, including diurnal fluctuations,
lifestyle, environmental factors, effects of oral conditions, and sample handling and data
analysis methods, and are noninvasive and easy to collect. By identifying metabolites with
high sensitivity and specificity to CRC and AD, urine screening tests could replace FOBT
in the future. Udo et al. [14] identified and quantified metabolites from urine samples of
subjects with CRC at stages 0 to IV or polyps and healthy controls (HC). They found several
metabolites in stage IV cancer, identified their metabolic pathways, and demonstrated that
further studies are needed for early diagnosis. Therefore, to develop a screening tool that is
minimally invasive and has higher sensitivity and specificity, we collected urine samples
from subjects with CRC or AD as well as HC. We then conducted a metabolomic analysis
to verify our previous results and identify new findings.

2. Results

We included 214 patients with CRC (117 men, 97 women) (Table 1), 34 with AD
(26 men, 8 women), and 36 with HC (28 men, 8 women).
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Table 1. Subjects’ characteristics.

Group Age Gender

n Mean SD Male Female

HC 36 49.1 12.2 28 8
AD 34 65.9 14.0 26 8

CRC 214 68.8 11.8 117 97

Among the quantified urinary metabolite concentrations, 132 metabolites were ob-
served in >50% of samples from the previous (data 1) and newly analyzed (data 2) data.
The clustered metabolites were visualized as a heatmap (Figure 1). The heatmap shows
consistent changes between the two datasets, e.g., the metabolites in cluster C1 and cluster
C2 exhibited higher concentrations in CRC and HC, respectively, in both datasets. In
the comparison between HC and AD + CRC, 54 and 30 metabolites showed significant
differences (p < 0.05, Mann–Whitney U test) in data 1 and data 2, respectively, and of these,
16 metabolites were consistently elevated in both data 1 and data 2 (Figure 2). Except for
γ-guanidinobutyrate, the concentrations of all the other metabolites were higher in CRC
than in HC and AD (Figures 2A and S1).
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Figure 1. Heatmap of urinary metabolomic profiles. Clustering was performed by combining data
1 and data 2. Fold changes (FC) were calculated by dividing each metabolite concentration by the
average of all patients in each dataset. Average FC was calculated for each group, and log2 of FC was
used to determine the colors that represent higher (red) or lower (blue) concentrations compared with
the average (white). Pearson’s correlation was used to cluster metabolites, and prominent clusters
are labeled (C1), (C2), and (C3). The metabolites showing p < 0.05 (Mann–Whitney U test of healthy
controls (HC) vs. adenoma (AD) + colorectal cancer (CRC) cases) are presented in black boxes.
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Figure 2. Metabolites showing consistent changes between data 1 and data 2. (A) Venn diagram of
metabolites with a significant difference (p < 0.05, Mann–Whitney U test in HC vs. AD + CRC) in both
datasets. (B) Box plots of data 2 of each metabolite. The Y-axis is the concentration (µM). Horizontal
bars indicate 90%, 75%, 50%, 25%, and 10%, and data on the outside are plotted. * p < 0.05, ** p < 0.01,
and *** p < 0.001 (Dunn’s multiple comparison test following the Kruskal–Wallis test).

To evaluate the discrimination ability of the overall metabolomic profile, partial least-
squares discriminant analysis (PLS-DA) was conducted (Figure 3). The HC groups were
separated from the other groups; however, AD and CRC exhibited considerable overlap,
indicating that the overall metabolomic profile of HC had the largest distinction from the
other two groups. We also evaluated pathway-level differences in the metabolomic profiles
between the two groups (Figure 4). Comparison between HC and AD (Figure 4A), AD and
CRC (Figure 4B), and HC and AD + CRC (Figure 4C) revealed more significantly different
pathways. Histidine metabolites were significantly different when comparison was made
between HC and AD (Figure 4A) as well as between HC and AD + CRC (Figure 4C). Two
pathways, namely (1) alanine, aspartate, and glutamate metabolism and (2) the citrate cycle
(TCA cycle), are connected, and the metabolite concentrations of the TCA cycle, urea cycle,
glutamine pathway, histidine metabolism, and polyamine pathways are depicted in the
comparison between HC and AD + CRC (Figure 5). The other comparisons are presented
in Figures S2 and S3.
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Table 2. MLR model to discriminate AD from HC.

HC vs. AD Parameter 95% CI Odds Ratio 95% CI p

N8-Acetylspermidine 3.94 × 103 −1.53 × 103 2.32 × 103 2.03 0.0650 63.2 0.69
N1,N8-Diacetylspermidine 3.94 × 103 −9.57 × 103 1.74 × 104 2.68 0.0910 79.2 0.57

2-Oxoglutarate 29.1 −29.9 88.0 3.51 0.275 44.7 0.33
(Intercept) −1.10 −2.59 0.401 - - - 0.15
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Table 3. MLR model to discriminate CRC from AD.

AD vs. CRC Parameter 95% CI Odds Ratio 95% CI p

N8-Acetylspermidine 1.24 × 102 −1.09 × 103 1.45 × 103 1.67 0.0110 4.12 × 102 0.85
N1,N8-Diacetylspermidine 5.01 × 103 −4006.923 1.43 × 104 1.25 × 102 0.0210 9.98 × 105 0.28

Citrate 5.19 2.30 8.59 6.18 × 103 47.9 1.87 × 106 0.0010
Citrulline 1.11 × 103 2.37 × 102 2.22 × 104 2.04 × 105 13.6 4.16 × 1010 0.030
(Intercept) −0.780 −2.26 0.575 - - - 0.28

Table 4. MLR model to discriminate CRC + AD from HC.

HC vs. AD + CRC Parameter 95% CI Odds Ratio 95% CI p

N8-Acetylspermidine 1.27 × 103 −1.49 × 102 2.81 × 103 1.94 × 102 0.540 1.15 × 105 0.090
N1,N8-Diacetylspermidine 8.20 × 103 −1.86 × 103 1.87 × 104 2.73 × 103 0.167 6.85 × 107 0.12

Citrate 7.88 4.56 11.7 5.69 × 105 2135.038 3.68 × 108 <0.0001
(Intercept) −1.58 −3.11 −0.183 - - - 0.030

CI: confidence interval; GC: gastric cancer.
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Figure 5. Receiver operating characteristic (ROC) curves of multiple logistic regression (MLR) models
using integrated datasets (data 1 and data 2). (A) HC vs. AD, (B) AD vs. CRC, and (C) HC vs.
AD + CRC. The metabolites and parameters of the MLR models are listed in Tables 2–4.

The ability of the combination of multiple metabolites to discriminate between af-
fected cases and HC was also evaluated. Multiple logistic regression (MLR) models were
developed to discriminate AD from HC (AUC = 0.673), CRC from AD (AUC = 0.746),
and AD + CRC from HC (AUC = 0.806) (Figure 6). The metabolites used for these models
are listed in Tables 2–4. Using the MLR model to discriminate AD + CRC from HC, the
sensitivity was compared with those of CEA and CA19-9 (Table 5). The sensitivities of
CEA, CA19-9, and MLR were 69.0%, 82.2%, and 85.2%, respectively. When comparing HC
and AD + CRC, N1,N8-diacetylspermidine, 2-oxoglutarate, and citrate showed significant
differences (p < 0.05, Mann–Whitney U test) (Tables S1–S4).



Metabolites 2022, 12, 59 7 of 13

Metabolites 2022, 12, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 5. Receiver operating characteristic (ROC) curves of multiple logistic regression (MLR) 
models using integrated datasets (data 1 and data 2). (A) HC vs. AD, (B) AD vs. CRC, and (C) HC 
vs. AD + CRC. The metabolites and parameters of the MLR models are listed in Tables 2–4.  

The ability of the combination of multiple metabolites to discriminate between af-
fected cases and HC was also evaluated. Multiple logistic regression (MLR) models were 
developed to discriminate AD from HC (AUC = 0.673), CRC from AD (AUC = 0.746), and 
AD + CRC from HC (AUC = 0.806) (Figure 6). The metabolites used for these models are 
listed in Tables 2–4. Using the MLR model to discriminate AD + CRC from HC, the sensi-
tivity was compared with those of CEA and CA19-9 (Table 5). The sensitivities of CEA, 
CA19-9, and MLR were 69.0%, 82.2%, and 85.2%, respectively. When comparing HC and 
AD + CRC, N1,N8-diacetylspermidine, 2-oxoglutarate, and citrate showed significant dif-
ferences (p < 0.05, Mann–Whitney U test) (Tables S1–S4). 

 
Figure 6. Comparison of metabolite concentrations between HC vs. AD + CRC in the TCA cycle, 
glutamine pathway, urea cycle, and polyamine pathways. The datasets include both data 1 and data 
2. ** p < 0.01, *** p < 0.001, and **** p < 0.0001 (Mann–Whitney U test). ”ND” is “No Data”. 

  

Figure 6. Comparison of metabolite concentrations between HC vs. AD + CRC in the TCA cycle,
glutamine pathway, urea cycle, and polyamine pathways. The datasets include both data 1 and data 2.
** p < 0.01, *** p < 0.001, and **** p < 0.0001 (Mann–Whitney U test). ”ND” is “No Data”.

Table 5. Comparison of the positive rate between tumor markers and multiple logistic regression
(MLR) model.

Positive Negative Total

(n) (%) (n) (%) (n)

CEA 147 69 66 31 213
CA19-9 175 82.2 38 17.8 213

MLR (HC vs. AD + CRC) 242 85.2 42 14.8 284

To evaluate the prognosis predictivity of the profiled metabolites, the Mann–Whitney
test was used for evaluating the difference between the patients with or without re-
currence, which resulted in 16 significantly different metabolites (p < 0.05). Among
these metabolites, 11 metabolites presented significantly high prognosis predictivity
(p < 0.05; rank-log test) (Table 6). γ-guanidinobutyrate presented the highest predictive
ability (p-value = 0.0016) in these patients. Asn, 3-Methylhistidine, 1-Metyladenosine,
3-Hydroxybutyrate, N-Acetylglutamate, Hippurate, Met, 7,8-Dihydrobiopterin, and Se-
bacate also presented significantly high prognosis predictivity (p < 0.05; rank-log test).
Kaplan–Meier curves of disease-free survival demonstrated that disease-free survival
increases when the -Guanidinobutyrate level is lower (p = 0.0016) or lymphocyte count is
higher (p-value = 0.0284) (Figure 7).
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Table 6. p-values of DFS predictive factors.

Item Log-Rank Test Wilcoxon Test

Metabolites
γ-Guanidinobutyrate 0.0016 ** 0.0028 **
Asn 0.0315 * 0.0400 *
3-Methylhistidine 0.0365 * 0.0731
1-Metyladenosine 0.0348 * 0.0404 *
3-Hydroxybutyrate 0.0297 * 0.0390 *
N-Acetylglutamate 0.0046 ** 0.0132 *
Hippurate 0.0162 * 0.0277 *
Met 0.0437 * 0.0599
7,8-Dihydrobiopterin 0.0434 * 0.0831
GABA 0.0525 ** 0.0235 *
Sebacate 0.0063 ** 0.0025 **
Other clinical parameters
NLR 0.1183 0.1369
WBC 0.2164 0.2886
Neutrophils 0.0754 0.0585
Lymphocytes 0.0284 * 0.0193 *

p-Value was calculated using the Log-rank test. p < 0.05 *, p < 0.01 **.

1 
 

 
Figure 7. Kaplan–Meier curves of disease-free survival. (A) Lymphocytes and (B) γ-
Guanidinobutyrate. NLR ≥ 3 and median value of γ-Guanidinobutyrate were used as thresholds
to categorize the patients into high and low groups. p-value was calculated using the Log-rank test.
p < 0.05 *, p < 0.01 **.

3. Discussion

In this study, citrate, 2-oxoglutarate, and succinate in the TCA cycle; glutamate leading
to the pyrimidine pathway and the purine pathway; amino sugar and nucleotide sugar
metabolism; and citrulline, arginine, and ornithine in the urea cycle leading to spermi-
dine were significantly identified in the HC group compared with the AD + CRC group.
N8-Acetylspermidine and N1,N8-diacetylspermidine metabolized from spermidine were
also significantly detected. Thus, in CRC, there may be changes in the TCA cycle and
energy production using the glutamate-mediated pyrimidine as well as the nucleic acid
synthesis and urea cycle-mediated spermidine pathways. The only substance that was
significantly different between the AD and HC groups was 2-oxoglutarate, which was
significantly elevated in patients with cancer; thus, no metabolites specific to AD were iden-
tified. In MLR (HC vs. AD + CRC), which included a combination of N8-acetylspermidine,
N1,N8-diacetylspermidine, and 2-oxoglutarate, the positive rate was higher and the nega-
tive rate was lower than that of CEA and CA19-9 (Table 5). To distinguish the AD + CRC
group from the HC group as well as the CRC group from the AD group, combining sev-
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eral metabolites instead of using a single substance as a marker may yield better results.
Metabolomics comprehensively measures small molecules called metabolites, allows the
analysis of cellular functions that change these metabolites owing to several factors such as
the environment and diseases, and enables the development of diagnostic applications for
diseases. Nuclear magnetic resonance (NMR) [15] and mass spectrometry (MS) [16] are the
main measurement instruments in this field. However, because NMR has low sensitivity
and the number of substances that can be measured simultaneously is limited, the use of
MS for comprehensive measurement is common. Because it is not possible to individually
quantify substances with the same m/z when MS is used alone, a combined use of MS and
separation techniques, such as gas chromatography, liquid chromatography, and capillary
electrophoresis, is common [17–19]. Each method is best at analyzing different types of
targets, and it is not possible to detect all metabolite measurements using a single method.

Therefore, the appropriate selection is required according to the targeted metabolites.
Soga et al. used capillary electrophoresis–time-of-flight MS (CE–TOFMS) to measure
comprehensive metabolic profiles in colorectal and gastric cancer tissues [20]. CE–TOFMS
specializes in the measurement of ionic substances, which represent the majority of the
major metabolites involved in energy metabolisms, such as glycolysis, pentose phosphate
pathway, central carbon metabolism, and nucleic acid synthesis represented by the TCA
cycle, and metabolites involved in amino acid biosynthesis/degradation. Therefore, it is the
best method for studying cancers in which metabolic disorders involving these pathways
are common and for identifying biomarkers at the metabolic level. Thus, this method was
also used in this study.

Metabolic profiles are easier to determine than transcriptomes and proteomes and
are more quantitative and reproducible, so they have great advantages when considering
clinical applications. However, because metabolic profiles are susceptible to fluctuations
due to environmental factors, searching for marker candidates by minimizing the effects of
factors other than diseases or by analyzing metabolites while considering factors such as
lifestyle is important. Therefore, in this study, we studied markers and metabolic pathways
for AD/CRC by conducting metabolomic analysis using urine, which is less susceptible to
confounding effects and can be collected in a minimally invasive manner. Compared with
other body fluids, saliva and urine have major advantages, such as low invasiveness of
collection, low cost, and safe sample collection. However, the reproducibility is low unless
sample collection conditions, including diurnal fluctuations, lifestyle, environmental factors,
effects of oral conditions, sample handling, and data analysis methods, are standardized
and well established. Moreover, urine metabolites can be inaccurate in cases of renal
dysfunction, dehydration, and urinary tract infections. However, a previous study reported
that urinary metabolites were more stable than saliva metabolites and were not affected by
diurnal variation. Thus, we used urinary metabolites for this metabolomic analysis.

The Warburg effect has been reported in cancer cells, in which ATP is produced more
through glycolysis than through oxidative phosphorylation of mitochondria in aerobic
and anaerobic environments [21,22]. Hypoxia-inducible factor-1 (HIF-1) is activated when
tumor cells become hypoxic as the tumor grows. HIF-1 promotes lactate production by
enhancing the expression of pyruvate kinase. It also suppresses pyruvate dehydrogenase,
inhibits the production of acetyl-CoA from pyruvate, and reduces energy production
in the mitochondria [23]. Thus, energy may be produced using a pathway other than
oxidative phosphorylation, such as through glycolysis, which has very low ATP production
efficiency compared with oxidative phosphorylation but has a high ATP production rate
and does not require oxygen. Therefore, it is an effective method for energy production
in the hypoxic environment of malignant tumors. Furthermore, under hyperglycemic
conditions, the pentose phosphate pathway, which is parallel to glycolysis, is enhanced,
and nucleic acid/protein/fatty acid synthesis is increased to produce energy [24]. In
malignant tumors, energy is produced using glycolysis and nucleic acid/protein/fatty acid
synthesis in addition to the TCA cycle.
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The APC gene, a Myc suppressor gene, has been reported to be mutated in 20–50%
of patients with cancer and in approximately 30% of AD in non-polyposis patients [3,25].
Moreover, a significant upregulation of the c-Myc protein is observed in 70% of CRC [26–28].
Thus, degeneration of the c-Myc protein due to APC mutations in the progression from
AD to cancer in the AD–carcinoma sequence is supported by the metabolomic findings of
this study.

Soga et al. demonstrated that (1) CRC metabolism changes from the benign tumor
stage but does not depend on the stage; (2) the Myc protein, an oncogene product, alters the
metabolism of CRC through 215 metabolic reactions; (3) suppression of Myc and metabolic
enzymes controlled by Myc inhibits the growth of CRC cells; and (4) Myc-controlled
pyrimidine metabolic pathways are promising targets for CRC treatment [29]. In the AD–
carcinoma sequence, AD and cancer have the same metabolic pathway, and there is a
possibility that metabolism is promoted by the Myc expression. We previously reported
that the results were similar from early-stage cancer to advanced cancer without distant
metastasis and that the expression level and type of metabolites were completely different
in advanced cancer with distant metastasis [14]. Thus, it was inferred that completely
different metabolites are expressed from primary cancer or distant metastases. This may
also be valid in cases of postoperative recurrence and distant metastases.

The intracellular nucleic acid synthesis produces energy by synthesizing nucleotides
from the phosphorylation of pyrimidine and purine bases, which is important not only
for screening but also for clinical considerations. Degraded nucleic acids are recycled into
nucleotides again through the salvage synthesis system. 5-fluorouracil inhibits the salvage
synthesis system in CRC. Our study provides indirect evidence for this mechanism. Energy
is produced during this stage of the benign tumor using various metabolic pathways in
CRC. Thus, the identification of metabolites involved in energy metabolism pathways may
be useful for screening markers for AD and cancer, elucidating pathological conditions,
and developing therapeutic methods for metabolic inhibition.

In this study, urinary metabolites in the CRC, AD, and HC groups were identified.
These polyp lesions have different carcinogenic processes, and the described subtypes
can be distinguished using the metabolomic approach presented in this study. We dis-
covered that cancers and polyps potentially use the same metabolic pathways, and it is
possible to distinguish among HC, AD, and CRC by combining some of the metabolites
identified in this study. Furthermore, the sensitivity was not inferior to that of tumor
markers. γ-Guanidinobutyrate is an amino acid in the urea cycle and presented the highest
predictive ability. It was discovered that it could be possible to detect molecules with a
higher prognosis than NLR. It was revealed that metabolomic analysis of colorectal cancer
might enable a more accurate prognosis prediction. However, a single marker that distin-
guishes the HC group from the AD and CRC groups has not been identified. Moreover,
finding specific metabolites is difficult owing to the stage of AD–cancer development.
When CRC progression was distinguished by stages in this study, there was no significant
difference between HC and AD subjects. Comparison among HC, AD, and CRC without
distinguishing the AD subtypes (tubular, villous, and serrated) is the limitation of this
study. In conclusion, metabolomic analysis is a developing field and is expected to aid
in the advancement of screening of markers and prognosis prediction for AD and cancer,
elucidation of the mechanisms underlying pathological conditions, and development of
novel therapeutic agents.

4. Materials and Methods
4.1. Study Subjects

In this study, we collected urinary samples from patients with CRC (n = 5), AD
(n = 18), and HC (n = 14). The characteristics of the subjects are summarized in Table 1.
This study was conducted according to the guidelines of the Declaration of Helsinki.
The study protocol was approved by the Ethics Committee at Tokyo Medical University



Metabolites 2022, 12, 59 11 of 13

(study approval #2346). Written informed consent was obtained from each subject before
study participation.

4.2. Metabolomic Analysis and Data Analysis

We conducted a CE–TOFMS-based metabolomic analysis of the urine samples. The
protocols for sample collection, processing, and measurement instruments with their
parameters were as per a previous study [14]. Briefly, the 154 metabolites observed in the
previous study [14] were analyzed. The absolute concentration divided by the creatinine
concentration of each sample was calculated.

The differences among the CRC, AD, and HC groups were analyzed using the Kruskal–
Wallis test together with Dunn’s multiple comparison test. For two-group comparisons,
e.g., HC vs. CRC + AD, the Mann–Whitney U test was employed. To evaluate the overall
metabolic profile clustering, PLS-DA and pathway analyses were conducted. The ability
to discriminate between the case groups and controls was assessed using the area under
the receiver operating characteristic (ROC) curves (AUC). To evaluate the discrimination
abilities of combinations of multiple metabolites, MLR models were developed. Two
polyamines, namely N1,N8-diacetylspermidine and N8-acetylspermidine, which were
reported as markers in our previous study [30], were used as independent variables.
Forward stepwise feature selection (criterion: p = 0.05) was used to select additional
metabolites as independent variables. The optimal cutoff values of the MLR models were
determined using the ROC curves. The sensitivities of the MLR model and tumor markers,
including serum CEA and CA19-9, were compared.

Among clinical parameters, NLR, WBC, and neutrophils did not show any signifi-
cant predictivity, whereas lymphocytes showed significant predictivity (p = 0.00284). As
a prognostic factor, relapse-free survival was analyzed using the CRC data. To assess
prognosis-relevant metabolites, the Mann–Whitney test was used to determine the can-
didate metabolites with high prognosis predictivity. Based on the median value of each
candidate metabolite, the data were classified into higher and lower risk groups. The
prognosis predictivity of disease-free survival (DFS) was evaluated using the Kaplan–Meier
curve and log-rank test. Data for recurrence, relapse, and metastasis were collected. Other
clinical parameters, NLR, WBC, neutrophils, and lymphocytes, were also evaluated. High
and low groups were divided based on NLR of ≥3 and median values of other parameters.
Patients with missing values were eliminated depending on the parameters to be evaluated,
and the patients at the median value were grouped as a high group when the patient
number was odd.

For data analyses, MeV TM4 (ver. 4.9.0, http://mev.tm4.org/, accessed on 6 September
2021), GraphPad Prism (v.9.2.0, GraphPad Software Inc., San Diego, CA, USA), JMP Pro
(v. 14.1.0, SAS Institute Inc., Cary, NC, USA), and MetaboAnalyst (v. 5.0, https://www.
metaboanalyst.ca/, accessed on 6 September 2021) were used.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo12010059/s1, Figure S1. Metabolites showing consistent changes between data 1 and
data 2. Box plots of data 1 of each metabolite, Figure S2. Comparison of metabolite concentrations
between HC vs. AD, Figure S3. Comparison of metabolite concentrations between HC vs. AD + CRC,
Table S1. AUC value of N8-acetylspermidine, Table S2. AUC value of N1,N8-diacetylspermidine,
Table S3. AUC value of 2-oxoglutarate, Table S4. AUC value of citrate.
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