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Abstract: Forsythia suspensa (Thunb.) has been widely used in traditional medicines in Asia. Ac-
cording to the 2020 edition of Chinese Pharmacopoeia, phillyrin is the main active ingredient in
F. suspensa, which is effective in clearing heat, reducing swelling, and dispersing nodules. F. suspensa
leaf is a non-toxic substance and it can be used to make a health tea. Here, we combine elicitors and
transcriptomics to investigate the inducible biosynthesis of the phillyrin from the F. suspensa. After
the fruits and leaves of F. suspensa were treated with different concentrations of methyl jasmonate
(MeJA), the content of phillyrin in the fruits reached a peak at 200 µM MeJA for 12 h, but which
was decreased in leaves. To analyze the differences in key enzyme genes involved in the phillyrin
biosynthesis, we sequenced the transcriptome of F. suspensa leaves and fruits treated with 200 µM
MeJA for 12 h. We hypothesized that nine genes related to coniferin synthesis including: F. suspensa
UDP-glycosyltransferase (FsUGT); F. suspensa 4-coumarate coenzyme CoA ligase (Fs4CL); and F. suspensa
Caffeoyl-CoA O-methyltransferase (FsCCoAOMT) etc. The qRT-PCR analysis of genes related to phillyrin
biosynthesis was consistent with RNA-seq analysis. We also investigated the dynamic changes of
genes in F. suspensa leaves and fruits at different time points after 200 µM MeJA treatment, which
laid the foundation for further study of the molecular mechanisms regulating the biosynthesis of
phillyrin.

Keywords: Forsythia suspensa; comparative transcriptome; MeJA treatment; phillyrin; phillyrin biosyn-
thesis

1. Introduction

Forsythia suspensa (Thunb.) is utilized as a common traditional medicine in China,
Japan, Korea, and many European countries. It is called ‘Lianqiao’ in China [1]. Based on
the different harvest time, F. suspensa fruits can be classified into ‘Qingqiao’ and ‘Laoqiao’
forms. In folk medicine, the extract of the dried fruit has long been used to treat a variety
of diseases, such as inflammation, pyrexia, gonorrhea, tonsillitis, and ulcers [2]. F. suspensa
fruit is also the main active ingredient in many widely used classic Chinese patent medicine
prescriptions, such as Shuanghuanglian injections [3] and Lianhua Qingwen granules [4].
Lianhua Qingwen is also recommended for the treatment of COVID-19 [5]. The dried
ripe fruit of F. suspensa has also been prescribed for the treatment of diabetes in China [6].
In addition to the medicinal value of F. suspensa fruit, it has also been reported in recent
years that the extract of F. suspensa leaves has antibacterial and other pharmacological
effects [7]. In folk medicine, F. suspensa leaves are also used as tea [8]. Therefore, it is of
great significance to study the secondary metabolites and their synthetic pathways in F.
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suspensa. In recent years, many active ingredients have been identified in F. suspensa, such
as phenylethanoid glycosides, lignans, flavonoids, terpenes, and volatile oils [9]. Lignan
and phenylethanol glycoside are the two main representative characteristic components
in F. suspensa; more than 30 lignans and lignan glycosides, including (+)-forsythin, have
been isolated from F. suspensa alone [10]. Phillyrin (also named forsythin), a kind of
lignan substance, mitigates apoptosis and oxidative stress [11], has anti-viral and anti-
inflammatory activity [12], and improves insulin resistance [13]. The biosynthesis of lignan
(including phillyrin) consists of three stages: coniferyl alcohol, the precursor of lignan, is
synthesized through the phenylpropanoid pathway; then, structurally diverse lignans are
synthesized from coniferyl alcohol; and finally, lignans are modified by glycosylation to
form lignan glycosides, which are accumulated and stored in plant cells and tissues [14].

The phenylpropane biosynthesis pathway shares some intermediates with the lig-
nan biosynthesis pathways [15]. Based on previous study, phenylalanine ammonia-lyase
enzyme (PAL), coumarate 3-hydroxylase (C3H), 4-coumarate CoA ligase (4CL), caffeoyl
o-methyltransferase (COMT), caffeoyl-CoA o-methyltransferase (CCoAOMT), cinnamoyl-
CoA reductase (CCR), cinnamyl alcohol dehydrogenase (CAD), dirigent protein (DIR),
o-methyltransferase (OMT), and udp-glycosyltransferase (UGT), are key enzymes of the
phillyrin-related secondary metabolism in plants. PAL is the enzyme that catalyzes the first
step reaction of phenylpropanoid metabolism, connects the biological primary metabolism,
and is the key and rate-limiting enzyme of phenylpropanoid metabolism [16]. C3H cat-
alyzes the formation of caffeic acid from coumaric acid, which is methylated to form ferulic
acid [17]. The enzyme 4CL activates cinnamic acid and its hydroxylated derivatives by
forming the corresponding CoA thioesters, and it is one of the key enzymes in lignan
biosynthesis [18]. Both COMT and CCoAOMT are substrate methylation enzymes, and
lignan monomer synthesis requires a two-step methylation reaction at the 3′ and 5′ posi-
tions of the two-step methylation reaction; COMT and CCoAOMT are two methylation
enzymes at different substrate levels that are associated with the specific synthesis of lignan
monomers [19,20]. As an enzyme that catalyzes the first reaction of the lignan synthesis
pathway, CCR is considered to be a potential control point for regulating the flow of carbon
to lignans [21]. CAD catalyzes the formation of coniferyl dehyde to coniferyl alcohol, which
is one of the key enzymes in lignan synthesis [14]. Although a coniferyl alcohol has yet
to be identified, a dirigent protein (DIR) was shown to participate in the stereo-specific
dimerization of E-coniferyl alcohol [22]. In the biological pathway for the formation of
phillyrin from coniferyl alcohol, after the formation of (+)-epipinoresinol, phillygenin can
be produced by oxygen methylation, possibly mediated by a specifc O-methylase [23].
Most lignans exist in plants in the form of glycosylation, which is catalyzed by UGT to
generate lignan glycosides [24]. Methyl jasmonate (MeJA), a well-known exogenous in-
ducing factor, participates in many plant processes, ranging from plant defense to growth
and development [25]. As an abiotic inducer, MeJA can rapidly and selectively induce
the expression of specific gene associated with specific biological process during plant
secondary metabolism, thereby regulating the synthesis of secondary metabolites in plant
cells [26,27]. MeJA-induced transcriptome changes have been analyzed in many different
plant species including wheat and sweet basil [28,29]. In addition, genomic and transcrip-
tomic information of F. suspensa is scarce in public databases. To identify the genes involved
in the biosynthesis of phillyrin, the fruits and leaves of F. suspensa plants after 12 h of MeJA
treatment were explored by transcriptional sequencing, based on the Illumina Novaseq
6000 sequencing platform, and the relevant genes in the phillyrin synthesis pathway were
analyzed using Quantitative Real-Time PCR (qRT-PCR). This study provides a theoretical
basis for further exploring the molecular regulation mechanism of secondary metabolites
in F. suspensa and reveals the mechanism of the formation of phillyrin in F. suspensa.
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2. Materials and Methods
2.1. Plant Materials and Treatment

F. suspensa used in this study was grown in 2021 at the F. suspensa medicine source
base in Yiyang, Luoyang, China. In this study, fruit, and leaf tissues of F. suspensa plants,
were treated with 50, 200, and 400 µM of MeJA. Preparation of MeJA (Sigma-Aldrich, 95%,
Sigma, St. Louis, MO, USA) stock solution: 218 µL MeJA stock solution was dissolved
in 2 mL absolute ethanol, then diluted with ddH2O to make the 10 mM MeJA solution.
The high (400 µM), medium (200 µM), and low (50 µM) concentrations of MeJA treatment
solution were obtained by diluting the 10 mM MeJA solution, respectively. During the
experiment, final concentrations of MeJA solutions (50, 200, and 400 µM) were sprayed
on the fruit and leaf surfaces of F. suspensa plants until the solution covered the leaf and
fruit surfaces just dripping down. Control plants were sprayed with an equal volume of
ethanol in ddH2O. For each treatment, each replicate was considered and three plants were
collected. Leaves and fruits from treatments 0 h (as control), 7 h, 12 h, 24 h, 48 h were
collected, frozen in liquid nitrogen, and stored at −80 ◦C. The F. suspensa fruit treated with
50 µM MeJA, 200 µM MeJA, and 400 µM MeJA were represented as M1F, M2F and M3F,
respectively. The F. suspensa leaf treated with 50 µM MeJA, 200 µM MeJA, and 400 µM
MeJA, were represented as M1L, M2L, and M3L, respectively.

2.2. Determination of Phillyrin Content in F. suspensa Fruits and Leaves

High performance liquid chromatography (HPLC, Agilent 1260 Infinity, Agilent Tech-
nologies Co. Ltd., Palo Alto, CA, USA) was used to determine the content of phillyrin in
F. suspensa fruit and leaf. The MeJA-treated F. suspensa fruits and leaves were lyophilized
and homogenized in a sterilized mortar. The extract was sonicated with 15 mL of methanol
(70% v/v) for 30 min for a total of 0.5 g. The extract was cooled to room temperature and
centrifuged at 4000 rpm for 10 min. The filtrate was then filtered through a 0.22 µm organic
microporous membrane and stored under seal.

HPLC conditions: the mobile phase consisted of acetonitrile (A)-water (B) with gradi-
ent elution (0–40 min, 25% A) was at flow rate 1.0 mL min−1, column temperature 30 ◦C, the
column was manufactured by Thermo Fisher Scientific (Waltham, MA, USA) Co., Ltd., with
a diameter of 4.6 mm, a length of 250 mm, and a particle size of 5 µm. Detection wavelength
277 nm. The injection volume of the HPLC method was 10 µL. For the quantification of
phillyrin, standards were used. The results were described in grams per kilogram of fresh
weight. All experiments were repeated in triplicate.

2.3. RNA Extraction, cDNA Library Construction and Illumina Sequencing

We analyzed the content of phillyrin at different time periods after different concen-
trations of MeJA treatment by HPLC, and selected F. suspensa fruits (M2F)/leaves (M2L)
treated with 200 µM MeJA for 12 h and F. suspensa fruits (CKF)/leaves (CKL) treated
with control solution for 0 h for transcriptome sequencing including 12 samples with
three replicates for each material. Total RNA was extracted from the tissue using TRIzol®

Reagent (Invitrogen, Carlsbad, CA, USA) (Plant RNA Purification Reagent for plant tissue)
according the manufacturer’s instructions (Invitrogen) and genomic DNA was removed
using DNase I (TaKara, Japan). RNA degradation and contamination was monitored on 1%
agarose gels. Then, the integrity and purity of the total RNA quality was determined by
2100 Bioanalyser (Agilent Technologies Co. Ltd., Palo Alto, CA, USA) and quantified using
the ND-2000 (NanoDrop Technologies, Wilmington, DE, USA). Only high-quality RNA
sample (OD260/280 = 1.8~2.2, OD260/230 = 1.8~2.2, RIN = 8.8~10.0, 28S:18S = 1.4~1.8)
was used to construct sequencing library. RNA purification, reverse transcription, library
construction and sequencing were performed at Shanghai Majorbio Bio-pharm Biotech-
nology Co., Ltd. (Shanghai, China) according to the manufacturer’s instructions (Illumina,
San Diego, CA, USA). Paired-end RNA-seq sequencing library was sequenced with the
Illumina NovaSeq 6000 sequencer (Illumina, San Diego, CA, USA) (2 × 150 bp read length).
Each sample contained three biological replicates.
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2.4. Transcriptome Assembly and Annotation

The high-quality clean reads were obtained after removing reads containing adapters
and low-quality reads. Transcriptome de novo assembly was performed using the Trinity
program [30]. Functional annotation of the unigenes was carried out using BLASTx pro-
gram with an E-value threshold of 1 × 10−5 against the NCBI non-redundant protein (Nr)
datbase [31], Swiss-Prot protein database, COG database [32], and Kyoto Encyclopedia of
Genes and Genomes (KEGG) database [33]. GO annotation was analyzed by Blast2GO
software (Version 2.2.31+) [34]. Transcription factors (TFs) were identified using PlantTFDB
database with default parameters [35].

2.5. Differentially Expressed Genes (DEGs) Analysis

The high-quality RNA reads were counted against bowtie’s paired results [36] by
RSEM (http://deweylab.biostat.wisc.edu/rsem/). Differential expression analyses among
the two treatments (CKL-vs.-M2L and CKF-vs.-M2F with three biological replicates per
treatment) were conducted using edgeR software (Version 3.24.3) [37]. Genes with a fold
change ≥ 2 and a false discovery rate (FDR) < 0.05 in a comparison were defined as
significant DEGs. DEGs were then subjected to enrichment analysis of GO functions and
KEGG pathways. Heatmaps of DEGs were analyzed using HemI [38].

2.6. Quantitative Real-Time PCR (qRT-PCR)

The RNA samples (1 µg) with A260/A230 ratios between 1.8 and 2.2 were used to
synthesize the first strand of cDNA with the First Strand cDNA Synthesis Kit (CISTRO,
Guangzhou, China) in a 20 µL reaction mixture according to the manufacturer’s protocol.
The cDNA samples were diluted 10-fold with distilled water prior to the qRT-PCR analysis.
The qRT-PCR analysis was performed using ChamQ Universal SYBR qPCR Master Mix
(Vazyme, Nanjing, China) and Roche Light Cycle96 Real-Time PCR system with the fol-
lowing reaction conditions: initial denaturation at 95 ◦C for 30 s, followed by a two-step
program of 95 ◦C for 10 s and 60 ◦C for 30 s for 40 cycles, with a melting curve analysis at
95 ◦C for 15 s, then from 60 ◦C to 95 ◦C at a rate of 0.2 ◦C/s. Candidate genes related to
phillyrin were identified from F. suspensa transcriptome data, the longest CDS sequence was
selected, and the specific primers for the target genes were designed using Oligo 7.0, and
are listed in Table S1. The UKN1 + SDH + G6PD genes were used as reference gene group
and the relative expression levels were determined according the 2−∆∆Ct method [39,40].
The specificity of the primer pair was verified by the presence of a single peak in the melt
curve analysis during the qRT-PCR process (Figure S1). All biological replicates were
performed in triplicate.

2.7. Statistical Analyses

Data were analyzed with one-way ANOVA by using SPSS 17.0, and means were
contrasted with Duncan’s multiple scope test at p < 0.05. All the experiments were carried
out in triplicate.

3. Results
3.1. Effect of MeJA Induction on the Content of Phillyrin

The effect of MeJA treatment on the content of phillyrin in the leaves and fruits of
F. suspensa was shown in Figure 1. After 50 µM MeJA treatment, the phillyrin content in
F. suspensa fruits was slightly increased compared with the control. Meanwhile, the content
of phillyrin was gradually increased and then decreased after 200 µM MeJA treatment,
peaking at 12 h with 1.63-fold compared with control. After 400 µM MeJA treatment,
the content of phillyrin was obviously increased at 7 h and 24 h with 1.60 and 1.51-fold
compared with control, respectively (Figure 1a). After 50 µM MeJA treatment of F. suspensa
leaves, the content of phillyrin decreased compared to the control. After 200 µM MeJA
treatment, the content of phillyrin decreased, then increased, and finally decreased with
time. 400 µM MeJA treatment of F. suspensa leaves showed a decrease in phillyrin content at

http://deweylab.biostat.wisc.edu/rsem/
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12 h compared with the control (Figure 1b). This indicates that different parts of F. suspensa
responded differently to the induction of different MeJA concentrations. The exogenous
MeJA treatment of F. suspensa led to the induction of phillyrin in response to MeJA, but the
induction effect varied among time and tissue parts. Due to F. suspensa leaves having been
used to make health-care tea in folk tradition [8], we also treated them with 200 µM MeJA
for 12 h to investigate the different mechanisms of phillyrin synthesis in F. suspensa leaves
and fruits, under the same conditions of treatment.
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Figure 1. Phillyrin content of F. suspensa fruits and leaves treated with different MeJA. (a) Phillyrin
content of F. suspensa fruits treated with different MeJA. (b) Phillyrin content of F. suspensa leaves
treated with different MeJA. M1F: F. suspensa fruit treated with 50 µM MeJA; M2F: F. suspensa fruit
treated with 200 µM MeJA; M3F: F. suspensa fruit treated with 400 µM MeJA. M1L: F. suspensa leaf
treated with 50 µM MeJA; M2L: F. suspensa leaf treated with 200 µM MeJA; M3L: F. suspensa leaf
treated with 400 µM MeJA. Data were analyzed by SPSS, followed by Duncan’s honestly significant
difference test at p < 0.05. All Statistical analyses of data had three biological repeats. All data are
displayed as means ± SD.

3.2. Illumina Sequencing and De Novo Assembly

To further understand the molecular mechanism underlying the response of phillyrin
to MeJA, an RNA-seq analysis was performed. We established 12 cDNA libraries for
transcriptome sequencing. Illumina Hiseq 6000 platform generated 98.21 Gb clean reads
with an average Q30 value of 94.55% and an average GC content of 44%, Q20 > 98%,
and Q30 > 94% (Table 1). The max length, min length, and N50 length, for the assembled
unigenes were 15,856, 201, and 1851 bp, respectively. With regards to the length distribution
of the unigenes, the total number of sequences of all unigene lengths of 200–500 bp in the
transcriptome data of F. suspensa is much higher than the total number of sequences of
other respective lengths (Figure S2).

Table 1. Summary of sequencing and assembly for F. suspensa.

Type Unigene

Total number 87,564
Total base 87,582,604

Largest length (bp) 15,856
Smallest length (bp) 201
Average length (bp) 1000.21

GC percent (%) 44
N50 average length (bp) 1851

Q30 (%) 94.55
Q20 (%) 98

All of the sequencing data were deposited in the National Center for Biotechnology
Information (NCBI). The sequence read archive (SRA) accession number is SRP392325. The
resulting fastq files were deposited on SRR21066404, SRR21066405, SRR21066406, SRR21066407,
SRR21066412, SRR21066413 (leaf) and SRR21066408, SRR21066409, SRR21066410, SRR21066411,
SRR21066414, SRR21066415 (fruit).
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3.3. Functional Annotation of Unigenes

A total of 37,297, 25,361, 15,161, 30,017, 29,688, and 24,539 unigenes had significant hits
(E-value ≤ 10−5) in the Nr (non-redundant protein) database, Swissprot, Kyoto Encyclope-
dia of Genes and Genomes (KEGG), the COG database and the Pfam database, respectively
(Figure S3). A total of 60,093 CDS unigenes produced by the Illumina Hiseq 2500 platform,
and most CDSs, were less than 1800 bp (Figure S4).

For GO annotation, 79,094 unigenes were allocated into three categories (“biological
process”, “cellular component”, and “molecular function”). Among the biological processes,
the unigenes were mainly involved in metabolic processes (8180, GO: 0008152), cellular
processes (9058, GO: 0009987), and biological regulation (2432, GO: 0065007). Among the
cellular components category, the unigenes were primarily associated with cellular fraction
(7846, GO: 0044464), membrane fraction (7269, GO: 0044425), and organelles (4424, GO:
0043226). Among the molecular function categories, unigenes with catalytic activity (10,376,
GO: 0003824), binding (12,606, GO: 0005488), and transporter protein activity (1323, GO:
0005215), accounted for a larger proportion (Figure 2a).
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classification of assembled unigenes. (b) Homologous species distribution of F. suspensa annotated in
the NR database. (c) Clusters of Orthologous Groups (COG) functional classifification of assembled
unigenes. (d) Functional classifification and pathway assignment of assembled unigenes by Kyoto
Encyclopedia of Genes and Genomes (KEGG).

Unigene sequences were searched against the NR database for annotation and revealed
23,505 unigenes (62.76%) matched to Olea europaea and 1801 unigenes (4.81%) matched to
Sesamum indicum (Figure 2b).

To further evaluate the completeness of the transcriptome library and the validity of
the annotation, the COG classification of unigenes was performed. Among the 23 COG
categories, “L: Replication, recombination and repair” was the largest group, followed by
“O: Posttranslational modification, protein turnover, chaperones and ion, protein turnover,
chaperones” and “T: Signal transduction mechanisms”. The smallest group was “Y: Nuclear
structure” with only two unigenes annotated to this category (Figure 2c).

The KEGG database was used to identify the biochemical pathways assigned to uni-
gene sequences. In our results, a total of 10,325 unigenes were annotated to six metabolic
pathways: metabolism, genetic information processing, environmental information pro-
cessing, cellular processes, organismal systems, and human diseases. Metabolism had the
largest number of pathways and human diseases had the smallest number of pathways.
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There were 356 unigenes matching to the biosynthesis of other secondary metabolism, and
224 unigenes of phenylpropanoid biosynthesis pathway (Figure 2d).

3.4. Analysis of Differentially Expressed Unigenes (DEGs)

To obtain a comprehensive view of the gene expression profile associated with the
response of phillyrin to MeJA, we used edgeR to identify the DEGs. A total of 4211 (2348 up-
regulated and 1863 down-regulated) DEGs and 8433 (4134 up-regulated and 4299 down-
regulated) DEGs were identified in fruits and leaves of F. suspensa treated 12 h with MeJA,
respectively (Figure 3); this finding indicated that there were more upregulated than
downregulated unigenes in F. suspensa fruits and more downregulated than upregulated
unigenes in F. suspensa leaves under MeJA treatment. Furthermore, we used principal
component analysis (PCA) to display the overall relationships between the transcriptome
from the different samples (Figure S5), indicating the leaves and fruits of F. suspensa before
and after MeJA treatment showed mutual aggregation within the group. Meanwhile, two
different transcriptional variation tendencies were observed before and after the MeJA
treatment of F. suspensa fruits, and F. suspensa leaves also showed the same trend.
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CKL: F. suspensa leaf treated with control solution for 0 h; M2L: F. suspensa leaf treated with 200 µM
MeJA; CKF: F. suspensa fruit treated with control solution for 0 h; M2F: F. suspensa fruit treated with
200 µM MeJA.

Functional enrichment analysis revealed that 3754 and 1822 DEGs were associated
with GO terms in F. suspensa leaves and fruits, respectively (Figure 4). DEGs were mainly
enriched in oxidoreductase activity (GO: 0016682), and phenylpropanoid metabolic process
(GO: 0009698) (Figure 4a,b). The KEGG pathways analysis indicated DEGs were mainly
involved in the metabolism of phenylpropanoid biosynthesis, plant-pathogen interaction,
MAPK signaling pathway-plant, phenylalanine metabolism, and plant hormone signal
transduction (Figure 4c,d).

Previous study showed that phillyrin as a kind of lignan was tightly related to phenyl-
propanoid biosynthesis [41]. In the phillyrin biosynthesis pathway, three FsCCR, four
FsCAD, six FsDIR, five FsOMT, one FsPAL, and thirteen FsUGT genes were significant
different after MeJA treatment in F. suspensa leaves, respectively (Figures 3 and 5). Mean-
while, two Fs4CL, two FsCAD, one FsCCR, four FsDIR, three FsOMT, two FsPAL, and
twelve FsUGT were significant different in F. suspensa fruits. Furthermore, one FsUGT, three
FsOMT, two FsDIR, one FsPAL, and one FsCCR were significant different both in F. sus-
pensa leaves and fruits (Figures 3 and 5). These results suggest that MeJA may induce the
accumulation of phillyrin by regulating the expression of genes associated with phillyrin
biosynthesis in F. suspensa.
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Figure 4. Enrichment analysis of differentially expressed genes in the GO and KEGG pathways.
(a) GO pathway enrichment analysis in CKF-vs.-M2F. (b) GO pathway enrichment analysis in CKL-
vs.-M2L. (c) KEGG pathway enrichment analysis in CKF-vs.-M2F. (d) KEGG pathway enrichment
analysis in CKL-vs.-M2L. CKL: F. suspensa leaf treated with control solution for 0 h; M2L: F. suspensa
leaf treated with 200 µM MeJA; CKF: F. suspensa fruit treated with control solution for 0 h; M2F:
F. suspensa fruit treated with 200 µM MeJA.
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Figure 5. Putative pathway for phillyrin synthesis in F. suspensa. PAL, phenylalanine ammonia-
lyase; C3H, Coumarate 3-hydroxylase; 4CL, 4-coumarate CoA ligase; CCoAOMT, caffeoyl-CoA
O-methyltransferase; CCR, cinnamoyl-CoA reductase; CAD, cinnamyl alcohol dehydrogenase; DIR,
dirgent protein; OMT, O-methyltransferase; UGT, UDP-glycosyltransferase. CKL: F. suspensa leaf
treated with control solution for 0 h; M2L: F. suspensa leaf treated with 200 µM MeJA; CKF: F. suspensa
fruit treated with control solution for 0 h; M2F: F. suspensa fruit treated with 200 µM MeJA.
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3.5. Analysis of DEGs Related to Phillyrin Biosynthetic Pathway

To verify the expression level of genes related to phillyrin biosynthesis exhibited by
the identified DEGs in response to MeJA, the expression levels of nine genes (FsUGT,
Fs4CL, FsCCoAOMT, FsOMT, FsPAL, FsDIR, FsCAD, FsCCR, and FsC3H) were detected
by qRT-PCR. The expression profiles were generally consistent with the RNA-seq results
(Figure 6a). Correlation analysis based on the qRT-PCR and transcriptome data also showed
a significant correlation with a Spearman correlation coefficient of 0.819, which reflects the
accuracy of transcriptome data (Figure 6b). To analyze the dynamic expression profiles of
genes putatively related to phillyrin synthesis under MeJA treatment, genes expression
level (FsUGT, Fs4CL, FsCCoAOMT, FsOMT, FsPAL, FsDIR, FsCAD, FsCCR, and FsC3H) in
F. suspensa fruits and leaves after MeJA treatment in different time (0 h, 7 h, 12 h, and 24 h)
were studied. The results revealed that MeJA activated or suppressed the expression of
genes to variant degrees at different time points and in different tissues.
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Figure 6. Expression patterns of genes related to phillyrin biosynthesis. (a). Transcriptional profiles of
DEGs related to phillyrin biosynthetic pathway. (b). Scatter plot and linear regression based on qRT-
PCR and RNA-seq. The correlation coefficient was calculated using the Spearman correlation method.
FsPAL, phenylalanine ammonia-lyase gene; FsC3H, Coumarate 3-hydroxylase gene; Fs4CL, 4-coumarate CoA
ligase gene; FsCCoAOMT, caffeoyl-CoA O-methyltransferase gene; FsCCR, cinnamoyl-CoA reductase gene;
FsCAD, cinnamyl alcohol dehydrogenase gene; FsDIR, dirgent protein gene; FsOMT, O-methyltransferase
gene; FsUGT, UDP-glycosyltransferase gene. CKL: F. suspensa leaf treated with control solution for 0 h;
M2L: F. suspensa leaf treated with 200 µM MeJA; CKF: F. suspensa fruit treated with control solution
for 0 h; M2F: F. suspensa fruit treated with 200 µM MeJA.

The expression of FsDIR, FsUGT, and FsOMT genes were up-regulated at all time
points in 200 µM MeJA-treated F. suspensa fruit. In the presence of MeJA, the expression
levels of Fs4CL, FsPAL, FsCCR, and FsCAD genes, were inhibited at the earlier time points
and activated at the later time points. The expression level of FsCCoAOMT gene reached
a maximum at 12 h, and then its expression decreased compared with the 0 h control.
The expression levels of FsC3H gene reached a maximum at 7 h and were repressed
thereafter compared with the 0 h control (Figure 7a). In F. suspensa leaves, Fs4CL, FsPAL,
and FsCCoAOMT genes expression levels were down-regulated at all time points, and
FsOMT and FsUGT genes expression were up-regulated within 24 h of MeJA treatment
compared with the 0 h control. FsCCR, FsC3H, and FsCAD genes expression were repressed
at early time points, afterwards, expression gradually increased (Figure 7b).
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Figure 7. Analysis of the expression profiles of nine genes related to phillyrin synthesis after 200 µM
MeJA treatment for 0, 7, 12, and 24 h. (a). Relative expression levels of phillyrin biosynthesis genes
in F. suspensa fruits are detected by qRT-PCR (0 h as 1). (b). Relative expression levels of phillyrin
biosynthesis genes in F. suspensa leaves are detected by qRT-PCR (0 h as 1). The UKN1 + SDH +
G6PD genes are used as the reference gene group to standardize the RNA samples for each reaction.
All Statistical analyses of data had three biological repeats. Data are analyzed by SPSS, followed
by Duncan’s honestly significant difference test at p < 0.05. All Statistical analyses of data had
three biological repeats. FsPAL, phenylalanine ammonia-lyase gene; FsC3H, Coumarate 3-hydroxylase
gene; Fs4CL, 4-coumarate CoA ligase gene; FsCCoAOMT, caffeoyl-CoA O-methyltransferase gene; FsCCR,
cinnamoyl-CoA reductase gene; FsCAD, cinnamyl alcohol dehydrogenase gene; FsDIR, dirgent protein gene;
FsOMT, O-methyltransferase gene; FsUGT, UDP-glycosyltransferase gene.

4. Discussion

The content of phillyrin is an important index for evaluating the quality of F. suspensa.
Phillyrin are effective in clearing heat and detoxifying, reducing swelling, and dispersing
nodules [42]. It is important to further understand the phillyrin biosynthesis pathway
and provide robust candidate genes for further functional investigations aimed at the
improvement of phillyrin content and quality.

MeJA is a cyclopentanone derivative-like signaling substance commonly found in
the plant kingdom that regulates plant growth and development, triggers cells to initiate
protective mechanisms, and stimulates the expression of key enzymes of metabolic path-
ways [43]. Plant defense systems are initiated upon injury or by signals from exogenous
plant hormones, such as MeJA. Moreover, lignans, at least in part, are believed to be in-
volved in host defense systems [44–46]. In combination, the hormone is expected to enhance
lignan biosynthesis [45,47]. We also found that MeJA could induce the accumulation of
phillyrin in F. suspensa fruit (Figure 1a), but a certain concentration of MeJA could inhibit
the synthesis of phillyrin in F. suspensa leaves (Figure 1b). The content of phillyrin in leaves
without MeJA treatment was higher than that in fruits without MeJA treatment, which
was consistent with the results of previous studies [48]. The efficacy of F. suspensa leaves
recorded in traditional Chinese medicine classics is very similar to that of F. suspensa fruits,
and the chemical composition is also similar [49]. According to the theory of traditional
Chinese medicine, the effects of different parts of F. suspensa should be completely different,
therefore, we performed RNA-seq detection on F. suspensa fruits and leaves to compare
the molecular mechanism of phillyrin biosynthesis in F. suspensa fruits and leaves, laying a
foundation for the comprehensive development and utilization of F. suspensa resources.

GO and KEGG results showed DEGs were mainly enriched in phenylpropanoid
metabolic process in F. suspensa after MeJA treatment (Figure 4), the phenylpropanoid
pathway, a common pathway of phillyrin biosynthesis pathway, can produce coniferyl
alcohol, which are precursors of phillyrin [50], including Fs4CL, FsCCR, FsCAD, FsC3H,
FsCCoAOMT, and FsPAL genes, which were significantly different in F. suspensa after
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MeJA treatment compared with control (Figures 3 and 5). Research shows that during
phillyrin biosynthesis, two coniferyl alcohol molecules are coupled to produce compounds
of different configurations, and then converted to (+)-epipinoresinol. Furthermore, the
(+)-epipinoresinol is converted to phillygenin, eventually forming phillyrin [23], including
the FsDIR, FsOMT, and FsUGT gene, which were noticeably different in F. suspensa after
MeJA treatment compared with control. When F. suspensa fruits were treated with different
concentrations of MeJA, the content of phillyrin in the fruits increased, and most of the
genes in its synthesis pathway showed an increasing trend; the expression of Fs4CL, FsCCR,
FsCAD, FsC3H, FsCCoAOMT, and FsPAL in MeJA-treated F. suspensa leaves was suppressed
for a certain period of time, while the expression of FsOMT and FsUGT increased, and
phillyrin was also decreased (Figures 1 and 7). Different parts of F. suspensa have different
responses to MeJA induction, which has been reported in other plants [51]. This may
indicate that genes, during the synthesis of the lignan precursor substance coniferyl alcohol,
also have an important influence on the synthesis of the end product phillyrin; and that
there are complex regulatory mechanisms involved in the transcription of genes to transla-
tion into proteins, from the processing and modification of proteins into active enzymes to
secondary metabolites and accumulation.

The fruit of F. suspensa is the main part of the medicine; our study showed that MeJA
treatment could effectively increase the content of phillyrin in F. suspensa fruits (Figure 1).
The expression of FsOMT and FsUGT was up-regulated in both the fruits and leaves
of F. suspensa after MeJA treatment. Previous study showed that Lycoris aurea LaOMT1
transcripts were significantly increased after MeJA treatment [52]; Bupleurum chinense DC.
glycosyltransferase genes BcUGT1, BcUGT3, and BcUGT6 could be induced by MeJA with
different degrees of up-regulation of expression [53]. The expression of FsCAD, FsCCR, and
FsC3H did not correspond to the phillyrin content in F. suspensa fruit, and the expression of
FsOMT and FsUGT did not correspond to the phillyrin content in F. suspensa leaves. The
result was not a surprise because the formation of end products is collaborative with all
genes in the synthesis pathway. The present study cannot adequately account for the role
of these individual genes in phillyrin biosynthesis. Therefore, it is crucial to establish a
transgenic system for F. suspensa in order to further confirm the function of genes in the
phillyrin synthesis pathway. Recently, our team has been making a concerted effort to
establish a system for transgenic F. suspensa with an emphasis on hairy roots and callus. In
this transgenic system, a deeper understanding of the molecular mechanisms of phillyrin
will be gained, and the biotechnological improvement of F. suspensa.

5. Conclusions

In this study, using de novo sequencing, a F. suspensa dataset containing 87,564 uni-
genes was constructed to molecular mechanism underlying the response of phillyrin to
MeJA in F. suspensa leaves and fruits. A total of 4211 and 8433 DEGs were identified in the
fruits and leaves of F. suspensa treated with MeJA for 12 h, respectively. GO and KEGG anal-
yses indicated that DEGs were mainly enriched in phenylpropanoid metabolic process in
F. suspensa, which was tightly associated with phillyrin biosynthesis. The qRT-PCR results
showed that FsUGT, Fs4CL, FsCCoAOMT, FsOMT, FsPAL, and FsDIR were significantly
up-regulated in F. suspensa fruits after MeJA treatment; the corresponding F. suspensa fruit
also increased the content of phillyrin. While FsCAD Fs4CL, FsCCoAOMT, FsCCR, FsPAL,
FsC3H, and FsDIR were significantly down-regulated in F. suspensa leaves, the content of
phillyrin in F. suspensa leaves with the same treatment was reduced compared with that
of the control. These qRT-PCR data were consistent with RNA-seq data. Taken together,
the analysis of transcriptome results of F. suspensa leaves and fruits lay a foundation for
the comprehensive development and utilization of F. suspensa resources. These results
provide a robust theoretical basis for accelerating the study of the regulatory mechanism of
MeJA-induced phillyrin biosynthesis in F. suspensa.
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of assembled unigenes. Figure S3: Gene function annotations in six databases (GO, KEGG, COG,
NR, Swiss-Prot, Pfam) of F. suspensa. Figure S4: Length distribution of CDS in unigenes. Figure S5:
Principal component analysis of expressed gene. CKL: F. suspensa leaf treated with control solution
for 0 h; M2L: F. suspensa leaf treated with 200 µM MeJA; CKF: F. suspensa fruit treated with control
solution for 0 h; M2F: F. suspensa fruit treated with 200 µM MeJA.
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