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Abstract: Myostatin, a secreted growth factor belonging to the transforming growth factor β (TGF-β)
family, performs a role in hindering muscle growth by inhibiting protein kinase B (Akt) phosphoryla-
tion and the associated activation of hypertrophy pathways (e.g., IGF-1/PI3K/Akt/mTOR pathway).
In addition to pharmacological agents, some supplements and nutraceutical agents have demon-
strated modulatory effects on myostatin levels; however, the clinical magnitude must be appraised
with skepticism before translating the mechanistic effects into muscle hypertrophy outcomes. Here,
we review the effects of dietary supplements, nutraceutical agents, and physical exercise on myo-
statin levels, addressing the promise and pitfalls of relevant randomized clinical trials (RCTs) to draw
clinical conclusions. RCTs involving both clinical and sports populations were considered, along with
wasting muscle disorders (e.g., sarcopenia) and resistance training-induced muscle hypertrophy, irre-
spective of disease status. Animal models were considered only to expand the mechanisms of action,
and observational data were consulted to elucidate potential cutoff values. Collectively, the effects of
dietary supplements, nutraceutical agents, and physical exercise on myostatin mRNA expression in
skeletal muscle and serum myostatin levels are not uniform, and there may be reductions, increases,
or neutral effects. Large amounts of research using resistance protocols shows that supplements or
functional foods do not clearly outperform placebo for modulating myostatin levels. Thus, despite
some biological hope in using supplements or certain functional foods to decrease myostatin levels,
caution must be exercised not to propagate the hope of the food supplement market, select health
professionals, and laypeople.
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1. Introduction

Myostatin, also known as growth differentiation factor 8, is a transforming growth
factor-β family member that negatively regulates skeletal muscle growth [1]. Myostatin
genetic blockade displays an intense and generalized accretion in skeletal muscle mass, as
shown in animal models [2–4]. In humans, myostatin is also involved in muscle homeostasis
as its expression is regulated during muscle atrophy, and hence myostatin has gained
interest in the management of muscle wasting disorders in adults [2].

Since myostatin was cloned in 1997 [5], many myostatin-blocking agents have gained
attention in agriculture applications and in the management of muscle diseases and disor-
ders [6], e.g., injuries, sarcopenia, wasting/cachexia, Duchenne type muscular dystrophy,
Becker muscular dystrophy, facioscapulohumeral muscular dystrophy, etc. [7,8]. In addi-
tion, experimental research has shed light on myostatin inhibition in muscle to improve in-
sulin resistance by enhancing glucose uptake [9–11]. Despite emerging myostatin-blocking
drugs, myostatin alone is apparently not classified by guidelines as a therapeutic target
for muscle diseases in the same manner as low-density lipoprotein-cholesterol for hyperc-
holesterolemia and related heart diseases, blood pressure for hypertension, fasting blood
glucose for diabetes, or blood total testosterone for male hypogonadism [12–18].
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To date, there are ongoing randomized clinical trials (RCTs) investigating the effects
of myostatin-blocking drugs [19–21]. Interestingly, many RCTs focusing on nutritional
supplementation have recently assessed myostatin levels as part of biochemistry screen-
ing [22–24], but a critical review is imperative to unify these findings and discuss the clinical
implications of changing myostatin levels through nutritional supplementation.

This review primarily discusses the effects of nutritional supplementation and nu-
traceutical agents on myostatin levels in humans. In addition, we discuss the mechanisms,
proposed laboratory ranges in different populations, and changes in myostatin levels in
response to physical exercise, particularly resistance training (RT), to expand the non-
pharmacological landscape. Pharmacological agents are briefly discussed to portray an
indirect comparison with non-pharmacological strategies.

2. Mechanisms

In addition to embryogenesis, myostatin is expressed and secreted by skeletal muscle
in adulthood and thus performs a role in suppressing muscle hypertrophy in different
populations [25]. Myostatin is a potent negative regulator of satellite cell activation and
self-renewal, and upregulates ubiquitin-associated genes such as atrogin-1, muscle RING-
finger protein-1 (MuRF-1), and 14-kDa ubiquitin-conjugating enzyme E2 [25,26]. Myostatin
is released into the circulation and acts systemically by binding to cell-surface receptors.
Concerning myostatin receptors, it has a high affinity for the activin type IIB receptor
and weak affinity for the activin receptor type IIA, inducing muscle wasting by acting on
multiple systems [25].

More specifically, myostatin leads to receptor-mediated phosphorylation of Smads
2 and 3, in which myostatin-mediated Smad signaling is activated by binding of the
mature myostatin peptide to plasma membrane-associated activin type IIB and type IIA
receptors [27]. Indeed, myostatin-mediated Smad signaling is a decisive pathway in
declining myofibrillar protein synthesis while increasing protein degradation, such as
Smads 2 and 3 inhibit the protein kinase B/mammalian target of rapamycin (Akt/mTOR)
signaling and trigger the expression of ubiquitin proteasome E3 ligases, atrogin-1, and
MuRF-1 [27,28]. This inhibition of Akt phosphorylation is associated with a negative
cascade of effects in hypertrophic pathways by decreasing the actions of insulin-like growth
factor-1 (IGF-1) and phosphatidylinositol 3-kinase/protein kinase B (PI3K), and increased
production of the transcription factor FoxO1, a key stimulator of atrogin-1 and other
atrophy-related genes (atrogenes) [29].

Accordingly, this mechanistic background establishes the interest in blocking myo-
statin (or the activin type IIB receptor) pharmacologically, and attempting to lower myo-
statin levels by nature-based intervention as a means of alleviating skeletal muscle loss.

3. Laboratory Levels

Serum myostatin levels must be discussed considering different countries, popula-
tions, age groups, and laboratory methods in order to portray a clinical rationale for their
alterations.

Seemingly, the largest investigation assessing myostatin levels was a prospective co-
hort study conducted in France [30]. Serum myostatin levels ranged from ~27 to ~33 ng/dL
among 1121 young and older males [30], in whom serum myostatin increased slightly with
age until 57 years (r = −0.07; 0.09 standard deviation per decade; p < 0.05), then declined. It
is imperative to note that the myostatin levels from this study were sharply higher than the
studies below [31–33]. Such a discrepancy could be happened because the researchers used
nonfasting serum collection (1300 h) or because of the method (ELISA, Immundiagnostik
AG, Bensheim, Germany).

The second largest study that examined myostatin levels included a Korean cohort
of a similar sample size to the above study (n = 1053 individuals ≥ 70 years; 519 men and
534 women). Serum myostatin levels were 3.7 ± 1.2 ng/mL for men and 3.2 ± 1.1 ng/mL
for women (p < 0.001 between groups), using a sandwich enzyme immunoassay kit
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(R&D Systems, Inc., Minneapolis, MN, USA) [31]. Although a certain decline in serum
myostatin levels can be expected for older subjects, seemingly due to physiological ac-
tions to partially counteract age-related muscle wasting [34], in this Korean study [31],
mean serum myostatin levels for men were approximately nine times lower than the re-
sult observed for men of the similar age group in the France cohort (28.4 ± 12.3 ng/mL
for >70 to 80 yr, n = 345) [30]. A smaller American study detected 8.0 ± 0.3 ng/mL and
7.0 ± 0.4 ng/mL serum myostatin levels, using a personalized ELISA method, for young
(18–35 years, n = 50) and older men (60–75 years, n = 58), respectively, in which myostatin
levels were significantly higher in young men (p = 0.03, between group) [32]. Mean serum
myostatin levels of both young and older men were approximately four times lower than
the results for subjects of a similar age group in the French cohort (30.5 ± 9.5 ng/mL for 20
to 30 years, n = 76; 28.4 ± 12.3 ng/mL for >70 to 80 years, n = 345) [30].

The American study did not observe significant differences between menstruating
women (n = 33; 7.0 ± 2.7 ng/dL) and naturally menopausal (n = 24; 6.7 ± 2.8 ng/mL) and
surgically menopausal women (n = 37; 6.7± 2.7 ng/mL) [32], and the values were clinically
close to those from a Polish study including Caucasian women who were perimenopause
or postmenopausal (n = 300), in which serum myostatin levels were 6.58 ± 3.59 ng/mL
(Human Myostatin ELISA Kit, SunRed Biotechnology Company) [33].

General Considerations

When considering appropriate reference values for healthy populations, we lend
greater weight to the values from studies that are most similar to each other [31–33], whereas
the high discrepancy between the French cohort values [30] and the other studies make its
integration into reference values challenging. Taken together, serum myostatin levels from
different populations are displayed in Table 1, not only for different age groups and sexes of
healthy individuals, but also for various ailments such as kidney, heart, lung, muscular and
skin diseases, diabetes, and metabolic syndrome [30–33,35–49]. However, further research
is crucial to propose specific reference ranges for circulating myostatin levels.

Table 1. Serum myostatin levels in different populations.

Population Serum Myostatin Levels Reference

Young and older male (n = 1121)

30.5 ± 9.5 ng/mL for 20 to 30 yr (n = 76)

[30]

26.7 ± 10.6 ng/mL for >30 to 40 yr (n = 69)
28.3 ± 10.1 ng/mL for >40 to 50 yr (n = 88)
32.7 ± 10.1 ng/mL for >50 to 60 yr (n = 91)
30.6 ± 11.9 ng/mL for >60 to 70 yr (n = 314)
28.4 ± 12.3 ng/mL for >70 to 80 yr (n = 345)

28.9 ± 10.4 ng/mL for >80 yr (n = 121)

Older individuals (n = 1053)
3.7 ± 1.2 ng/mL for men

[31]3.2 ± 1.1 ng/mL for women

Caucasian women (in perimenopause or
postmenopause) (n = 300) 6.58 ± 3.59 ng/mL [33]

Menstruating women (n = 33), Naturally menopausal
(n = 24), and Surgically menopausal women (n = 37)

7.0 ± 2.7 ng/dL for menstruating women
[32]6.7 ± 2.8 ng/mL for naturally menopausal

6.7 ± 2.7 surgically menopausal women

Kidney transplantation recipients (n = 84) 6.99 (5.82–8.32) ng/mL [35]

Heart failure (n = 41) 18.7 ± 7.4 ng/mL [36]

Metabolic syndrome (n = 204) 7.39 ± 3.46 ng/mL [37]

Type 2 diabetes (n = 246) 7.82 ± 3.85 ng/mL [37]

Dermatomyositis and polymyositis (n = 50) 16.9 ± 12.1 ng/mL [38]

Hemodialysis (n = 140) 40.18 ± 8.36 ng/mL [39]

Hemodialysis (n = 204) 2573 (1662; 3703) pg/mL [40]
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Table 1. Cont.

Population Serum Myostatin Levels Reference

Hemodialysis (n = 60) 25.7 ± 12.8 µg/mL [41]

Peritoneal dialysis (n = 69) 7.59 ± 3.37 ng/mL [42]

Liver cirrhosis (108 men and 90 women)
3419.6 pg/mL (578.4–12897.7 pg/mL) for men

[43]2662.4 pg/mL (710.4–8782.0 pg/mL) for women

Liver cirrhosis (n = 115) 1.14 (0.57–2.19) ng/mL [44]

Advanced chronic liver disease (198 men and
90 women)

1959.4 pg/mL (1082.8, 3914.8) for men and 1790.1
pg/mL (914.1, 3158.7) for women [45]

Alcoholic hepatitis (n = 131) 1.58 ng/mL (IQR 0.73, 3.17) for men
[46]0.84 ng/mL (IQR 0.56, 1.76) for women

Heavy drinkers (n = 124) 3.06 ng/mL (IQR 2.25, 4.08) for men
[46]2.01 ng/mL (IQR 1.66, 3.07) for women

Children with T1DM (n = 87) 23.60± 7.70 ng/mL [47]

Healthy children (n = 75) 16.74± 6.95 ng/mL [47]

Duchenne muscular dystrophy (n = 74) 1.1 ± 0.8 ng/mL [48]

Chronic obstructive pulmonary disease (n = 70) 11.85 ± 4.01 ng/mL [49]

4. Functional Foods and Supplements
4.1. Proteins, Amino Acids, and Derivatives

Adequate protein intake is fundamental to optimize muscle hypertrophy and mini-
mize muscle catabolism, in which essential amino acids, e.g., branched-chain amino acids
(BCAAs), increase mTOR phosphorylation, the sequential activation of 70-kD S6 protein
kinase, and the eukaryotic initiation factor 4E-binding protein 1 [50].

Interestingly, amino acids and proteins are the most studied nutrients in regard to the
possible modulation of myostatin [23,51–59], particularly through stimulating the produc-
tion of IGF-1, an anabolic hormone that suppresses myostatin signaling pathways [60,61].
In this subtopic, we discuss the effect of dietary proteins, protein supplements, and supple-
mentation of amino acids and their derivatives on myostatin levels.

4.1.1. Egg

Although both egg yolk and egg whites are rich in protein, the yolk comprises of a
plethora of nonprotein nutrients with putative anabolic properties (e.g., vitamins, minerals,
microRNAs, lipids, phosphatidic acid, and other phospholipids) [52,62,63].

In a 12-week RT intervention in young men (n = 30), consumption of whole eggs
(3 units) or isonitrogenous consumption of egg whites (6 units) reduced serum myostatin
levels (–0.1 ng/mL and –0.06 ng/mL for egg whites and whole eggs, respectively), with
no significant differences between groups. However, the variation is clinically negligible
despite statistical significance [52].

4.1.2. Milk

Cow milk contains a food matrix consisting of minerals, fats, lactose, water, and
proteins (80% casein and 20% whey protein), with the majority of these nutrients viewed as
favorable for muscle accretion [60].

In resistance-trained young males (n = 30; RT experience: 15 ± 2 months) who under-
went 6 weeks of linear periodized RT (4 times/week), high-protein milk (156 kcal; 30 g
of protein, 6 g whey, 24 g fat, and 10 g carbohydrate) ingested immediately postexercise
reduced serum myostatin levels compared to placebo (p < 0.05) [24]. However, despite
the isoenergetic drink in the placebo group, caloric intake was higher in the milk group
compared to the placebo group (2909.2 ± 109.2 and 2653.3 ± 109.1 kcal, respectively); addi-
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tionally, higher protein intake was also observed in the milk group compared to placebo
(2.3 vs. 1.4 g/kg body weight/d).

In an acute crossover study of healthy resistance-trained males (n = 7), myostatin
mRNA expression from vastus lateralis did not change 3 h after 90 min of power resistance
exercise with a postexercise meal rich in milk protein (600 mL chocolate milk and 85 g
muesli bar; 102 g carbohydrate, 34 g protein, and 22 g fat), power resistance exercise without
postexercise meal and rest (i.e., no exercise and postexercise meal) [64].

4.1.3. Whey Protein

Whey protein, one of the two major protein groups of cow milk, is one of the best
proteins for stimulating muscle protein synthesis rate and muscle growth thanks to its
high essential amino acid content [65,66]. However, to date, its influence on myostatin
expression has not been fully elucidated.

Hulmi et al. (2008) did not observe acute changes in myostatin mRNA from vastus
lateralis expression under whey protein isolate supplementation (15 g of whey protein
immediately after exercise) combined with an RT bout (leg press, 5 × 10 repetitions) in
trained middle-aged to older men (n = 9) [67]. However, myostatin mRNA levels statisti-
cally decreased at the 48 h assessment (p = 0.03) and demonstrated a trend (p = 0.06) for
reduction at 1 h postexercise for placebo (absolute levels were not reported).

In a later study including untrained young men ingesting double the dose of whey
protein isolate (15 g of whey protein both before and after exercise) as compared to the
previous study, Hulmi et al. (2009) observed neither acute (1 and 48 h after RT) nor
chronic (after 21 weeks post-RT) changes in myostatin mRNA expression from vastus
lateralis under whey protein isolate supplementation along with the leg press protocol
(5 × 10 repetitions) [68]. Similar to their previous study, myostatin mRNA expression
changed only in the placebo group, at 1 h post-exercise, in which there was a 31% drop
(p < 0.02).

Paoli et al. (2015) analyzed the effects of high protein intake (1.8 g protein/kg body
weight/d) provided by whey protein supplementation (15–20 g of protein during warm-up
and 1 h after RT) in addition to the habitual diet versus normal protein intake (0.85 g
protein/kg body weight/d) on plasma myostatin levels in active young men without RT
experience (n = 18), who underwent 8 weeks of RT [22]. Taking into account the plasma
myostatin measurements pre and post the last RT session, it increased in the high protein
group (pre-training session 3.66 ± 1.42 ng/mL, post-training session 12.0 ± 2.5 ng/mL;
p = 0.02), while no change was detectable in the normal protein group (pre-training session
4.23 ± 2.59 ng/mL, post-training session 3.64 ± 2.09 ng/mL; p > 0.05). As the authors state,
this response is paradoxical because a decline in myostatin levels would be expected in
the group with higher protein intake. However, values greater than triple the values of the
normal protein group were observed.

In a study of healthy older adults who underwent five days of immobilization of
one knee with a full-leg cast, both a whey protein nutritional supplement (n = 11; 20.7 g
protein, 9.3 g carbohydrate, and 3.0 g fat) twice daily or control (n = 12; no supplementation)
increased the relative myostatin mRNA expression from vastus lateralis (p < 0.05; absolute
values were not reported) with no differences between groups [58]. Furthermore, atrophy
and decreased leg strength occurred in both groups, despite protein consumption being 45%
higher in the supplementation group than in the control group (125± 6 g/d vs. 86 ± 4 g/d,
which represents ~1.6 and ~1.1 g/kg/body weight, respectively).

In a crossover study of untrained college-aged men (n = 10) submitted to supplemen-
tation with whey protein isolate (25 g), maltodextrin (25 g), or placebo before to RT sessions
(3× 10 at 80% 1 RM for bilateral hack squat, leg press, and leg extension), myostatin mRNA
expression from vastus lateralis 6 h following exercise was significantly reduced in all
conditions (−29.4% in placebo, −24.7% in protein, and −3.4% in carbohydrate) [69].

Whey protein supplementation mixed with carbohydrate after RT (knee extension
3 times/week for 8 weeks) appears to have an acute effect on myostatin expression in
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patients with chronic obstructive pulmonary disease, but, chronically, the levels return to
the baseline status. In one investigation, patients were divided into two groups: whey
protein concentrate supplementation mixed with glucose polymer carbohydrate (19 g
protein, 49 g carbohydrates; n = 27) or placebo (non-caloric beverage; n = 32); a healthy
control group (n = 21) also received placebo, and all groups underwent RT. Myostatin
mRNA expression from vastus lateralis was significantly reduced at 24 h (p < 0.05; absolute
values are not shown) in all groups, but was restored to the baseline status at 4 and 8 weeks
in all groups [59].

Recently, a study of hospitalized older patients (n = 41) showed that supplementation
of leucine-enriched whey protein (20 g of whey + 3 g of post-workout leucine) and placebo,
in conjunction with 12 weeks of RT, did not alter serum myostatin levels [23].

4.1.4. Amino Acids

In a study consisting of young men (n = 41) performing a single RT session (four sets of
10 repetitions of leg press and leg extension at 80% 1 RM) with peri-exercise supplementation
of carbohydrates (1.5 g/kg), carbohydrates plus BCAA (120 mg/kg BCAA), carbohydrates
plus leucine (120 mg/kg), or placebo, the mean myostatin expression in vastus lateralis
over 360 min postexercise was higher for those who supplemented with carbohydrates
(1.00 ± 0.09) and carbohydrates plus BCAA (1.05 ± 0.08) than carbohydrates plus leucine
(0.92 ± 0.07) or placebo (0.90± 0.05) [51]. This result is biologically intriguing, as a reduction
in myostatin would be expected with both BCAA and leucine supplementation.

In a study of postmenopausal women undergoing 8 weeks of RT (n = 20), both
9 g BCAA supplementation (half consumed 30 min before the training session and the
other half consumed within 30 min of the end of the session) and placebo reduced serum
myostatin concentrations (−0.7 ng/mL for BCAA and −0.4 ng/mL for placebo) with no
difference between groups [53].

In patients recovering from hip replacement (n = 20) and underdoing to an 8 week
rehabilitation program, amino acid supplementation (two sachets of 4 g daily: 1250 mg of
l-leucine, 650 mg of l-lysine; 625 mg of l-isoleucine, 625 mg of l-valine, 350 mg of l-threonine,
150 mg of l-cystine, 150 mg of l-histidine, 100 mg of l-phenylalanine, 50 mg of l-methionine,
30 mg of l-tyrosine, 20 mg of l-tryptophan; 0.15 mg of vitamin B6, and 0.15 mg of vitamin B1)
significantly reduced serum myostatin levels and for placebo (1.2± 0.2 vs. 0.9 ± 0.3 ng/mL;
p = 0.01; 1.3 ± 0.3 vs. 1.1 ± 0.4 ng/mL; p = 0.03 for amino acids and placebo, respectively),
with no differences between groups [70]. However, when considering only patients with
sarcopenia, only the supplemented group showed a significant decrease in myostatin levels
(1.3 ± 0.3 vs. 0.9 ± 0.5 ng/mL; p = 0.04), while the placebo group did not (1.2 ± 0.3 vs.
0.9 ± 0.5 vs. 1.0 ± 0.7 ng/mL; p = 0.12).

In a study that provided 15 g of BCAA (7.5 g of leucine, 3.75 of isoleucine, and 3.75
of valine) to stable patients with alcoholic cirrhosis (n = 6) and healthy controls (n = 8),
myostatin mRNA levels from vastus lateralis were higher at baseline for the patients with
alcoholic cirrhosis than the control group (p < 0.001; absolute values were not reported),
but none of the groups showed a significant change after 7 h of supplementation [56].

4.1.5. HMB

Beta-hydroxy-beta-methylbutyrate (HMB) is a leucine metabolite with anti-catabolic and
anabolic properties. Instead of leucine supplementation per se, HMB supplementation gained
attention because only 5% of leucine is metabolized into HMB, and it would be necessary to
ingest 60 g of leucine to obtain 3 g of HMB—the most common dosage used [71].

In patients with bronchiectasis (n = 28), HMB-enriched protein supplementation
(330 kcal, 18 g protein, 1.5 g HMB, and 1.7 g fructooligosaccharide, Ensure Plus Advance®)
along with 12 week pulmonary rehabilitation improved body composition and muscle
strength, whereas there was a trend (p = 0.06) for a reduction in plasma myostatin levels
similar to those who received placebo plus pulmonary rehabilitation (3 ± 1.5 to 2.42 and
2.55 ± 1 to 2.43 ± 0.75 ng/mL for supplementation and placebo, respectively) [57].
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4.1.6. Creatine

Creatine supplementation is a common nutritional strategy to augment increases in
muscle strength and lean body mass particularly due to intramuscular water retention [72,73].

In an acute study, young men (n = 9) were randomized to creatine supplementation
(21 g/d, 3 doses of 7 g) or placebo (maltodextrin) for 5 days, then followed one bout of RT
(10 × 10 repetitions of one-leg extension at 80% 1 repetition maximum). Myostatin mRNA
expression from vastus lateralis was reduced by 35% 24 h after the exercise regardless of
creatine supplementation, however, it returned to the baseline status result after 72 h [55].

In an 8 week RT intervention (upper and lower-limb exercises 3 x/week) in healthy
men (n = 24) who received creatine supplementation (0.3 g/kg/d body weight at week 1
and 0.05 g/kg/d body weight/d for the remainder of the intervention) or placebo, serum
myostatin levels decreased in both groups at weeks 4 and 8 (p < 0.05; absolute values were
not reported), but there was a more pronounced decrease in the group receiving creatine [54].

4.2. Non-Protein Supplements

In this subtopic, we discuss the effect of functional foods, herbal extracts, and supple-
mentation with vitamins and nonessential antioxidants. Although certain functional foods
contain some amount of protein (i.e., cocoa and spirulina), their protein and amino acid
content are less relevant as compared to the sources in the previous subtopic.

4.2.1. Brown Seaweed

Brown seaweed is rich in bioactive compounds, especially unique polyphenols
(e.g., phlorotannins) [74]. Seemingly, Willoughby et al. (2004) were the first researchers to
investigate the effects of a supplement on myostatin concentrations, who used a commercial
supplement based on brown algae (Cystoseira canariensis) [75]. The researchers subjected
22 men with no previous strength training experience to 12 weeks of RT, who received
1200 mg/d of brown seaweed or placebo, and serum myostatin concentrations increased
equivalently between the groups.

4.2.2. Spirulina

Spirulina is a commercially available cyanobacterial biomass extract and comprises
essential fats (e.g., gamma-linolenic oleic acids), vitamins (mainly B12), provitamin A
(i.e., β-carotenes), and minerals (mainly iron, calcium, and phosphorous), and is easily
digested due to the lack of cellulose cell walls [76–78]. In a study that analyzed 40 wrestlers
who underwent a 12 day gradual weight loss protocol, and were divided into two groups:
spirulina (3 g/d) or placebo, there was a significant decrease in serum myostatin levels only
in the SP group (−0.1 ng/mL, p = 0.005); [79]; however, despite the statistical significance,
this magnitude of decrease is of doubtful clinical importance.

4.2.3. Cocoa

Cocoa powder is a source of macronutrients (fats, carbohydrates, and proteins), dietary
fiber, magnesium, potassium and caffeine, but the polyphenols, particularly those of the
flavonoid class, are its main functional nutrient [80]. In trained endurance athletes (n = 44)
undergoing a 10 week endurance training intervention, neither daily supplementation with
5 g of flavonoid-rich cocoa powder (425 mg total) nor placebo (5 g of maltodextrin) changed
serum myostatin levels over time [81].

4.2.4. Epicatechins

Molecularly, epicatechins can favor the muscle structure, function, metabolism, and
growth due to their antioxidant and anti-inflammatory properties and stimulation of
mitochondrial biogenesis and signaling proteins [82].

Older patients with sarcopenia (n = 62) were randomized to RT, epicatechin (1 mg/kg/d),
RT plus epicatechin (1 mg/kg/d) or placebo for 8 weeks [83]. Older patients with sarcopenia
(n = 62) were randomized to RT, epicatechin (1 mg/kg/d), RT plus epicatechin (1 mg/kg/d),
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or placebo for 8 weeks. Plasma myostatin levels were significantly reduced only for the RT
groups. There was an ~49% greater reduction in the RT plus epicatechin group than in the
RT group, but there was no statistically significant difference between the groups, likely due
to the high variability observed in the RT plus epicatechin group. In this investigation, the
absolute plasma myostatin levels (assessed using ELISA, R&D Systems, Minneapolis, MN,
USA) did not appear to be consistent with observational research assessing myostatin levels
in different populations; for example, the baseline level of ~1300 ng/mL was much higher
than the reference ranges discussed in Topic 3.

4.2.5. Vitamin D

Although vitamin D is recognized as the main hormone of bone metabolism, its
active form (i.e., calcitriol) along with the vitamin D receptor modulate skeletal muscle
function by genomic and hormonal effects [84,85], indicating potential effects of vitamin
D supplementation on skeletal muscle strength and growth, the clinical magnitude of
which is modest but deserves attention, especially for individuals at high risk for vitamin
D deficiency [84,86]. Research evaluating the effect of vitamin D on myostatin are limited.
In a study that investigated the effects of 20 µg/d (n = 25) of oral calcifediol or 30 µg/day
(n = 25) for 180 days in postmenopausal women, serum myostatin levels did not change
significantly in either group [87].

4.3. General Considerations

Although a drop in myostatin levels, based on mechanistic aspects, would be expected
when supplementing with protein, amino acids and derivatives, compelling clinical studies
show similar effects compared to placebo, with some exceptions favoring intervention or
placebo. Therefore, there is no evidence that supplementing with protein, amino acids, and
derivatives perform important actions in modulating myostatin levels.

There are only a handful of studies regarding non-protein supplements (functional
foods, herbal extracts, and supplementation with micronutrients and antioxidants), which
support neutral effects on myostatin levels.

Taken together, the effects of supplements and functional foods on myostatin levels
(skeletal muscle mRNA, serum, or plasma) are summarized in Table 2.

Table 2. Effects of supplements and functional foods on myostatin levels (skeletal muscle mRNA,
serum, or plasma) based on RCTs.

Reference Participants Duration Dietary Intervention Myostatin Levels

Proteins, amino acids, and derivatives

Hulmi et al.
(2008) [67]

18 trained
middle-aged to

older men

Acute and
chronic

(21 week)

15 g of whey protein both
before and after exercise

↓myostatin mRNA levels at 48 h
assessment postexercise for

placebo

Hulmi et al.
(2009) [68]

31 untrained young
men

Acute and
chronic

(21 week)

15 g of whey protein both
before and after exercise

↓31% myostatin mRNA expression
only in the placebo group at 1 h

post-exercise

Dalbo et al.
(2013) [69]

10 untrained
college-aged men

(crossover)
Acute

Whey protein isolate (25 g),
maltodextrin (25 g), or placebo

30 min prior to RT

↓myostatin mRNA expression
reduced in all conditions (−29.4%
for placebo, −24.7% for protein,
and −3.4% for carbohydrate) 6 h

after RT
Amasene et al.

(2022) [23]
41 hospitalized

older individuals 12 week Whey protein (20 g) + leucine
(3 g) ↔

Dirks et al.
(2014) [58]

23 older individuals
on immobilization

of one knee
5 d Whey protein (20.7 g protein) ↔
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Table 2. Cont.

Reference Participants Duration Dietary Intervention Myostatin Levels

Constantin et al.
(2013) [59]

59 patients with
COPD and 21

healthy controls
8 week

Whey protein concentrate +
glucose polymer carbohydrate

(19 g protein, 49 g
carbohydrates)

↔

Pourabbas et al.
(2021) [24]

30
resistance-trained

young men
6 week

High-protein milk (30 g of
protein, 6 g from whey and 24

g from casein)

↓serum myostatin levels
compared to placebo

Wette et al.
(2021) [64]

7 men on RT
(crossover) Acute

Postexercise meal milk protein
(600 mL chocolate milk and 85

g muesli bar, 102 g
carbohydrate, 34 g protein, and

22 g fat)

↔

Li et al. (2015)
[51] 41 young men Acute

Peri-exercise supplementation
of carbohydrates (1.5 g/kg),
carbohydrates + BCAA (120

mg/kg BCAA), or
carbohydrates + leucine (120

mg/kg)

myostatin mRNA expression over
360 min postexercise was higher

for those who supplemented with
carbohydrates (1.00 ± 0.09) and

carbohydrates + BCAA
(1.05 ± 0.08) than carbohydrates +

leucine (0.92 ± 0.07) or placebo
(0.90 ± 0.05)

Bagheri et al.
(2021b) [53]

20 postmenopausal
women on RT 8 week BCAA (9 g/d) ↔

Tsien et al.
(2015) [56]

6 men with
cirrhosis and 8

healthy controls
Acute

BCAA (7.5 g of leucine, 3.75 g
of isoleucine, and 3.75 g of

valine)
↔

Olveira et al.
(2016) [57]

28 patients with
bronchiectasis 12 week

HMB-enriched protein
supplementation (18 g protein,

1.5 g HMB)
↔

Saremi et al.
(2010) [54] 24 men 8 week

Creatine (0.3 g/kg/d BW at
week 1 and 0.05 g/kg BW/d

for the rest)

↓plasma myostatin levels in
creatine and placebo groups

Deldicque et al.
(2008) [55] 9 young men on RT

Acute
(measures after
5 d of creatine

loading)

Creatine
(21 g/d; 7 g 3 x/d) ↔

Sire et al. (2019)
[70]

20 patients
submitted to hip

replacement
8 week Amino acids (4 g 2 x/d)

↓serum myostatin levels for amino
acid (from 1.2 ± 0.2 to

0.9 ± 0.3 ng/mL) and placebo
(from 1.3 ± 0.3 to 1.1 ± 0.4 ng/mL)

groups

Paoli et al.
(2015) [22]

18 active young
men without

experience with RT
8 week

High-protein diet (1.8 g
protein/kg BW/d) vs.

normal-protein diet (0.85 g
protein/kg BW/d)

↑plasma myostatin levels after RT
session (pretraining and
posttraining levels: from

3.66 ± 1.42 to 12.0 ± 2.5 ng/mL)
in the high-protein group

Bagheri et al.
(2020) [52] 30 young men 12 week Whole eggs (3 units) vs. egg

whites (6 units) ↔

Non-protein supplements

Willoughby
(2004) [75]

22 untrained health
men 12 week Cystoseira canariensis (1200

mg/d) ↔

García-
Merino et al.
(2020) [81]

44 training
endurance athletes

(men)
10 week

Cocoa
(5 g cocoa powder, 425 mg

flavonoids)
↔

Mafi et al. (2018)
[83] 62 older individuals 8 week Epicatechin

(1 mg/kg BW/d

↓49% in plasma myostatin levels
in the RT plus epicatechin group

than in the RT group
Gonnelli et al.

(2021) [87]
50 postmenopausal

women 180 d Calcifediol
(20 or 30 µg/d) ↔
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Table 2. Cont.

Reference Participants Duration Dietary Intervention Myostatin Levels

Bagheri et al.
(2021a) [79] 40 male wrestlers 12 d Spirulina

(3 g/d)
↓serum myostatin levels by 0.1

ng/mL

Notes: BCAA—branched-chain amino acids; BW— body weight; COPD—chronic obstructive pulmonary disease;
HMB—beta-hydroxy-beta-methylbutyrate; RT—resistance training.

5. Physical Exercise
5.1. Resistance Training

In humans, introducing RT can downregulate muscle myostatin mRNA in untrained
young and older adults [88–90] for both men and women. In a study including untrained
young and older men (n = 7) and women (n = 8), 9 week RT of unilateral knee extension
decreased myostatin mRNA expression from vastus lateralis by 37% in all subjects [90].
In addition, even a single bout of RT can exert this effect [89], so much so that in a study
composed of heathy untrained older (15 women, 14 men) and younger (16 women, 21 men)
adults, 24-h acute response to the first RT loading bout decreased myostatin mRNA ex-
pression by 44%, maintaining a 52% suppression relative to baseline after 16 weeks of RT
primarily focused on knee extensor training [91].

The detraining process, in turn, can markedly increase myostatin expression. Following
90 days of RT in young untrained males, myostatin mRNA expression significantly increased
by 56%, 79%, 107%, and 76% after 10, 30, 60, and 90 days in the detraining period [92].

5.2. Concurrent Training

Concurrent training can reduce myostatin levels irrespective of the order. In older men
with sarcopenia (n = 30) randomized to endurance training followed by RT or RT followed
by endurance training, serum myostatin levels reduced by 308 pg/mL and 294 pg/mL, re-
spectively, while those randomized to control group maintained their myostatin levels [93].

5.3. Clinical Populations

Interestingly, another study did not find changes in myostatin expression in healthy
volunteers using two weeks of limb immobilization, but one day following the removal of
the limb cast and the first bout of exercise training, myostatin expression was significantly
down-regulated by 48% compared to with post-immobilization [94]. In this study, how-
ever, continuation of rehabilitation training for 6 weeks did not further reduce myostatin
expression, but at least maintained expression lower than post-immobilization phase.

Intriguingly, total myostatin levels did not differ statistically between tetraplegic pa-
tients and bodybuilders (~26 vs. ~33 ng/mL for tetraplegic and bodybuilders, respectively;
p>0.05) [95]. Such data are of pivotal importance because they compare the myostatin status
in a population that suffers muscle atrophy with another that encompasses muscularity
performance at the athletic level. However, it must be noted that the bodybuilders group
had higher myostatin propeptide levels compared to healthy untrained young men controls
(~81 vs. ~35 pg/mL) and the tetraplegic patients (~81 vs. ~31 pg/mL), whose biomarker is
a potent myostatin inhibitor [95].

At last, a 10 week RCT consisting of men with chronic obstructive pulmonary disease
submitted to weekly testosterone injection alone, weekly testosterone injection plus RT,
weekly placebo injection, or weekly placebo injection plus RT, myostatin mRNA expression
was unchanged between groups [96].

5.4. General Considerations

Although certain downregulation of muscle myostatin mRNA along with decreased
circulating myostatin levels can be expected in interventions with RT, there are no uniform
changes in myostatin status upon exercise programs and neutral effects can be expected in
some instances.
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Adherence to RT programs is the cornerstone of muscle hypertrophy regardless of
putative myostatin-mediated modulation. Currently, personalized high-volume techniques
are the most variable in RT programs for maximizing muscle gains [97,98].

6. Pharmacological Agents
6.1. Specific Myostatin-Blocking Drugs

The approaches to blocking myostatin activity show promise for clinical application.
Several myostatin-blocking drugs have evoked promising clinical approaches, such as
myostatin propeptide derivatives (e.g., wild-type myostatin propeptide, recombinant
AAV8 vector, and plasmid-mediated deliveries), and other myostatin inhibitors, such
as follistatin, follistatin-related gene, and G protein-coupled receptor-associated sorting
protein 1; however, most of the scientific background remains restricted to animal models
(laboratory mice and livestock) [99,100].

6.2. Testosterone

Myostatin status in those receiving hormone replacement therapy, particularly with
anabolic hormones, is relevant as a means of understanding myostatin’s variation in
the hormone-deficient state and after the hormone correction. Testosterone replacement
therapy can perhaps be considered the most common androgen hormone treatment in
males [101,102], whose anabolic profile merits discussion in the field of myostatin.

In men treated with graded doses of testosterone (25, 50, 125, 300, or 600 mg testos-
terone enanthate intramuscularly injected weekly), serum myostatin levels were signifi-
cantly higher at day 56 than baseline in young and older men, but the effect was transient
and returned to a similar baseline state at day 140 of treatment [32]. Thus, myostatin can
be a counter-regulatory hormone upon testosterone administration, in which increasing
circulating myostatin levels may be a key factor in restraining unlimited skeletal muscle
growth. However, it is important to note that the individuals had normal testosterone
levels and the graded doses encompass low to supraphysiological doses of testosterone,
hence, limiting a direct translation into the male hypogonadism treatment.

A study involving men with hypogonadotropic hypogonadism, in turn, found myo-
statin muscle expression decreased by 29 ± 12% after 22 weeks of traditional testosterone
replacement therapy (250 mg testosterone every 2 weeks), but serum myostatin did not
change [103]. Interestingly, this study observed that men with hypogonadotropic hy-
pogonadism had approximately half the serum myostatin concentrations compared with
eugonadal men (2.23 ± 0.23 vs 4.0 ± 0.5 ng/mL).

In addition, testosterone suppression does not necessarily affect myostatin levels. In
a clinical trial consisting of 22 young men randomized to an anti-androgen drug (3.6 mg
monthly GnRH analogue goserelin) or placebo for 12 weeks, accompanied by 8 weeks of
RT starting at week 4, myostatin mRNA expression from vastus lateralis decreased in both
groups after the RT period without between-group differences [104].

6.3. Growth Hormone

Although growth hormone (GH) use is commonly targeted at bone metabolism
(e.g., formation and resorption) [105], the GH and IGF-1 axis can stimulate skeletal muscle
hypertrophy signaling pathways while suppressing atrophy related genes [60,106,107].

Skeletal muscle myostatin mRNA expression and plasma myostatin levels are 3 and
1.5-fold higher in GH-deficient participants than in healthy individuals (3.2 ± 2.7 µg/L
versus 2.1 ± 1.9 µg/L for plasma levels) [108]. In adult patients with GH-deficient hy-
popituitary, myostatin mRNA expression was significantly reduced by 31 ± 9% after a
6 month GH replacement (Saizen; 5 µg/kg·night injected subcutaneously), whose levels
were maintained after 12 and 18 months of GH treatment [109].

To the best of our knowledge, the use of GH and its effects on myostatin levels are
geared towards GH-deficient participants, and, therefore, little is known about the effect of
supraphysiological use in this regard.
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6.4. General Considerations

Notwithstanding the development of myostatin-blocking drugs and results based on
phase I and II RCTs for muscle wasting disorders and diseases [34,110], it is warranted to
wait for the consolidation of phase III RCTs and medical scoring guidelines to draw better
clinical conclusions.

In addition, thus far, the benefits of hormone replacement therapy with anabolic
potentials, such as treatment with testosterone and GH injections, should not be based on
putative inhibition of myostatin levels.

7. Take-Home Messages

The effects of dietary supplements, nutraceutical agents, and physical exercise on
myostatin mRNA expression in skeletal muscle and serum myostatin levels are not uniform,
and there may be reductions, increases, or neutral effects. The large amount of research
using RT protocols shows that supplements or functional foods do not clearly outperform
placebo for modulating myostatin levels. In some cases, laboratory changes occurred only
in the intervention group or only in the placebo group, but all changes are of dubious
clinical magnitude for the outcome of muscle mass accretion.

Thus, despite some biological hope in using supplements or certain functional foods
to decrease myostatin levels, caution must be exercised not to propagate the hype of the
food supplement market, select health professionals, and laypeople. Importantly, putative
changes in myostatin levels represent only one factor influencing the complex processes
of muscle accretion and atrophy and are not necessarily the key factor to consider for the
primary aims of muscle growth and strength development.

Whereas proponents of some supplements and other nature-based interventions tout
the ability to modulate myostatin levels, based on limited evidence or anecdote, the main
clinical recommendations for muscle growth and strength remains an appropriate RT
program along with a personalized dietary plan, particularly including 1.6–2.0 g/kg/d
total daily protein regardless of source [111–113], individually appropriate energy and
nutrient intake, and sleep habits [114,115].
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