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Abstract: Acquired immunodeficiency syndrome (AIDS), one of the deadliest global diseases, is
caused by the Human Immunodeficiency Virus (HIV). To date, there are no known conventional drugs
that can cure HIV/AIDS, and this has prompted continuous scientific efforts in the search for novel
and potent anti-HIV therapies. In this study, molecular dynamics simulation (MDS) and computa-
tional techniques were employed to investigate the inhibitory potential of bioactive compounds from
selected South African indigenous plants against HIV-1 subtype C protease (HIVpro). Of the eight
compounds (CMG, MA, UA, CA, BA, UAA, OAA and OA) evaluated, only six (CMG (−9.9 kcal/mol),
MA (−9.3 kcal/mol), CA (−9.0 kcal/mol), BA (−8.3 kcal/mol), UAA (−8.5 kcal/mol), and OA
(−8.6 kcal/mol)) showed favourable activities against HIVpro and binding landscapes like the ref-
erence FDA-approved drugs, Lopinavir (LPV) and Darunavir (DRV), with CMG and MA having
the highest binding affinities. Using the structural analysis (root-mean-square deviation (RMSD),
fluctuation (RMSF), and radius of gyration (RoG) of the bound complexes with HIVpro after 350 ns,
structural evidence was observed, indicating that the six compounds are potential lead candidates
for inhibiting HIVpro. This finding was further corroborated by the structural analysis of the
enzyme–ligand complexe systems, where structural mechanisms of stability, flexibility, and compact-
ness of the study metabolites were established following binding with HIVpro. Furthermore, the
ligand interaction plots revealed that the metabolites interacted hydrophobically with the active site
amino residues, with identification of other key residues implicated in HIVpro inhibition for drug
design. Overall, this is the first computational report on the anti-HIV-1 activities of CMG and MA,
with efforts on their in vitro and in vivo evaluations underway. Judging by the binding affinity, the
degree of stability, and compactness of the lead metabolites (CMG, MA, CA, BA, OA, and UAA), they
could be concomitantly explored with conventional HIVpro inhibitors in enhancing their therapeutic
activities against the HIV-1 serotype.

Keywords: acquired immunodeficiency syndrome; human immunodeficiency virus; HIV-1 subtype
C protease; anti-HIV therapies; molecular dynamics simulation (MDS)

1. Introduction

Human immunodeficiency virus (HIV) is one of the most devastating global viral
pathogens and a causative agent of acquired immunodeficiency syndrome (AIDS) [1]. HIV
defeats the human immune system, making the human defense system susceptible to
other opportunistic diseases. According to the World Health Organization, 37.7 million
people were living with HIV worldwide in the year 2020 [2]. This figure continues to be
staggering because there is currently no permanent cure for this scourge. Nevertheless,
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recent studies have provided significant knowledge on the action mechanism of HIV, and
this has aided the development of drugs to inhibit or control its pathogenic cycle [3].
For instance, the highly active anti-retroviral drugs such as HIV protease inhibitors and
integrase inhibitors have aided significant improvement in prognosis outcomes for people
living with HIV/AIDS.

HIV protease enzyme (HIVpro) is involved in peptide bond hydrolysis in retroviruses,
specifically essential for the life cycle of the virus [4]. Its activity is germane to the replication
and eventual release of mature and viable virions [5], and this has made HIVpro a significant
target in the development of candidate inhibitors or drugs [6]. The inhibition of this enzyme
impedes the viral replication cycle in a manner that results in the release of immature
inactive virions [7].

Molecular dynamics simulation (MDS), a computational technique that gives an
indication of the nature of interactions and the associated affinity between compatible
systems, has been widely used to study interactions between macromolecules (structural
proteins) and small molecules such as drugs [8]. To date, drug design remains one of the
modern-day applications of MDS to screen, determine, and predict potential therapeutic
agents against known druggable targets of diseases [8].

Although many anti-retrovirals (ARVs) have been developed, continuous efforts are
needed in sourcing plant-derived, non-synthetic, and easily available inhibitors of drug-
gable targets of HIV such as HIVpro, especially in low-resource countries of the world
and, more importantly, due to the prevalence of HIV-1 in Africa. Therefore, considering
the foregoing, some selected bioactive nutraceuticals (Figure 1) derived from five under-
utilised South African-grown medicinal food plants, namely, Cajanus cajan [8], Syzygium
aromaticum [9], Melaleuca bracteata ‘Revolution Gold’ [10], Mimusops caffra [11], and Lep-
tospermum petersonii [12], were computationally explored as inhibitors of HIV-1 protease
through MDS. These phytochemicals (cyanidin-3-glucoside (Cy3G), maslinic acid (MA))
possess antiviral activities against viral infections such as HIV, Influenza A and B, and
rotavirus replication [13–18].

Furthermore, CA has been reported to decrease blood sugar levels, and exhibits
antihyperlipidemic, antiviral, and osteoblastic activities [15]. Pavlova et al. reported BA
to be active against the herpes simplex virus [16]. Another in vitro study by Tohme et al.
demonstrated that UA exhibited antiviral activity against rotavirus, suggesting that UA
could be used as a treatment for rotavirus [17]. Jiménez-Arellanes et al., in their study
against Mycobacterium tuberculosis, reported OA to be effective at displaying a minimum
inhibitory concentration (MIC) value of 25 µg/mL against M. tuberculosis [19], while UA
was reported against S. mutans and S. sobrinus, with an MIC50 of 2.0 µg/mL [20]. These
studies emphasised the therapeutic potentials of these triterpenoids. In addition, these
metabolites have been reported to have other useful biological properties [21–23] such as
anticancer, antidiabetes, antiobesity, anti-inflammatory, and antibacterial.
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2. Methods
2.1. HIV-1 Protease and Metabolite Acquisition and Preparation

The X-ray crystal structure of the HIV-1 protease (PDB code: 3U71) was obtained from
the RSCB Protein Data Bank [24] and prepared on the UCSF Chimera software package [25],
where the monomeric protein was converted to a dimeric structure. The 2D chemical
structures of the two FDA-approved drugs, Darunavir (DRV) and Lopinavir (LPV), used as
reference standards, as well as the eight metabolites (CMG, MA, CA, BA, UA, UAA, OA,
and OAA), were accessed from PubChem [26] and their 3-D structures prepared on the
Avogadro software package [27].

2.2. Molecular Docking (MD)

The molecular docking software utilised in this study was the Autodock Vina Plugin
available on Chimera [28,29], with default parameters. Prior to docking, Gasteiger charges
were added to the compounds and the non-polar hydrogen atoms were merged to carbon
atoms. The metabolites were then docked into the binding pocket of HIV-1 protease by
defining the grid box with a spacing of 1 Å and size of 24 × 22 × 22 pointing in x, y, and
z directions. The two FDA-approved drug systems, as well as the eight phytochemicals,
were then subjected to molecular dynamics simulations.

2.3. Molecular Dynamics Simulation (MDS)

MDS was performed using the graphical processing unit (GPU) version of the AMBER
18 software package, in which the FF18SB variant of the AMBER force field [30] was used
to describe the protein. ANTECHAMBER was used to generate atomic partial charges for
the ligands (phytocompounds) by utilising the Restrained Electrostatic Potential (RESP)
and the General Amber Force Field (GAFF) procedures. The Leap module of AMBER 18
enabled the addition of hydrogen atoms, as well as Na+ and Cl− counter ions, for the
neutralisation of all systems (the two standard drugs and the eight phytochemicals). The
amino acids were numbered as residues 1–198.

The 10 systems were then suspended implicitly within an orthorhombic box of TIP3P
water molecules, such that all atoms were within 8 Å of any box edge [29]. An initial min-
imisation of 2000 steps was carried out with an applied restraint potential of 500 kcal/mol
for both solutes (ligand/s and enzyme), and minimisations were performed for 1000 steps
using the steepest descent method, followed by 1000 steps of conjugate gradient. An
additional full minimisation of 1000 steps was further carried out by the conjugate gradient
algorithm without restraint.

A gradual heating MDS from 0 K to 300 K was executed for 50 ps, such that the
systems maintained a fixed number of atoms and volume. The solutes within the systems
were imposed with a potential harmonic restraint of 10 kcal/mol and collision frequency of
1.0 ps. After heating, an equilibration (500 ps for each system) was conducted; the operating
temperature was kept constant at 300 K. Additional features such as pressure were also
kept constant, mimicking an isobaric–isothermal ensemble (NPT). The system’s pressure
was maintained at 1 bar using the Berendsen Barostat.

The total time for the MDS conducted was 350 ns. In each simulation, the SHAKE
algorithm was employed to constrict the bonds of hydrogen atoms. The step size of each
simulation was 2 fs and an SPFP precision model was used [30].

2.4. Post-Dynamic Analysis

The coordinates of the 10 systems were then saved and the trajectories analysed every
1 ps using PTRAJ, followed by analysis of root-mean-square deviation (RMSD), root-mean-
square fluctuation (RMSF), surface area solvent accessibility (SASA), dynamic correlation,
and radius of gyration (ROG) using the CPPTRAJ module employed in the AMBER 18 suite.
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2.5. Binding Free Energy Calculations and Data Analysis

To estimate and compare the binding affinity of the systems, the binding free energy
was calculated using the Molecular Mechanics/Generalised Born Surface Area method
(MM/GBSA) [31]. The binding free energy was averaged over 100,000 snapshots extracted
from the 350 ns trajectory. The binding free energy (∆G) for each molecular species com-
puted by this method (complex, ligand, and receptor) is represented as follows:

∆Gbind = Gcomplex − Greceptor − Gligand (1)

∆Gbind = Egas + Gsol − TS (2)

Egas = Eint + Evdw + Eele (3)

Gsol = GGB + GSA (4)

GSA = γSASA (5)

The term Egas (Equation (3)) denotes the gas-phase energy, which consists of the
internal energy Eint, coulombic energy Eele, and the van der Waals energies Evdw. The
Egas was directly estimated from the FF14SB force field terms. Solvation free energy, Gsol
(Equation (4)), was estimated from the energy contribution from the polar states, GGB, and
non-polar states, GSA. The non-polar solvation energy, GSA, was determined from the
solvent accessible surface area (SASA), using a water probe radius of 1.4 Å, whereas the
polar solvation, GGB, contribution was estimated by solving the Gbind equation. S and T
denote the total entropy and temperature of the solute, respectively.

All raw data plots were generated using the Origin data analysis software [32].

3. Results and Discussion

The docking scores showed the fitness of the ligands into the active site of the enzyme
and the more negative the value, the better the fitness of the ligands [33]. As shown in
Table 1, the docking scores for the compounds ranged from −8.1 kcal/mol to −9.9 kcal/mol,
with five of the compounds (CMG, MA, CA, OA, UAA) having better scores and binding
affinity for the enzyme than the two FDA-approved drugs.

Table 1. Docking scores for the two FDA-approved HIV-1 protease inhibitors and selected bioactive
phytochemical compounds.

Compound Name Docking Score (kcal/mol)

FDA-Approved Drugs
LPV −8.4
DRV −8.1

Selected Bioactive Phytochemicals
CMG −9.9
MA −9.3
CA −9.0
BA −8.3
OA −8.6

OAA −8.2
UAA −8.5
UA −8.1

As molecular docking only measures the geometric fitness of ligands at the active site
of a protein, the metabolites were further subjected to MDS over a period of 350 ns to assess
the binding free energy of each system. The more negative the values of binding free energy,
the better the binding affinity and interactions between the enzyme and the ligands [34].
In drug design, binding free energy not only accurately predicts how strongly a potential
drug or whether a compound will bind to a protein target, but also measures the binding
affinity between the receptor (enzyme) and the ligand [35]. The binding free energies of
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LPV and DRV and the study metabolites are presented in Table 2. Binding energies of
−44.571 and −40.4943 kcal/mol were observed for LPV and DRV, respectively, relative to
between −40.165 to −57.890 kcal/mol obtained for the study compounds, with the highest
affinities observed with CMG (−57.890 kcal/mol), followed by MA (−48.134 kcal/mol).

Table 2. Thermodynamic energy components (kcal/mol) for the bioactive compounds and FDA-
approved drugs to HIVpro after 350 ns MDS.

Complex ∆Evdw ∆Eelec ∆Ggas ∆Gsolv ∆Gbind

FDA-Approved Drugs

LPV −51.973 ± 5.433 −27.534 ± 6.605 −79.507 ± 7.958 −38.291 ± 3.540 −44.571 ± 3.952
DRV −45.805 ± 6.108 −28.424 ± 8.120 −69.223 ± 10.871 −29.235 ± 4.206 −40.311 ± 4.943

Selected Bioactive Phytochemicals

CMG −37.080 ± 5.298 −41.112 ± 7.929 −78.176 ± 9.411 −20.285 ± 4.879 −57.890 ± 6.693
MA −47.442 ± 4.300 −28.057 ± 6.689 −73.166 ± 9.794 −25.032 ± 4.845 −48.134 ± 6.002
CA −45.738 ± 2.979 −19.633 ± 6.132 −67.884 ± 5.446 −23.306 ± 3.976 −43.900 ± 4.101
BA −45.850 ± 4.123 −44.778 ± 9.576 −71.628 ± 8.503 −10.954 ± 2.467 −43.740 ± 4.288
OA −39.596 ± 4.375 −5.091 ± 091 −56.095 ± 2.779 −8.940 ± 2.453 −42.010 ± 4.699

OAA −39.4454 ± 6.256 −6.039 ± 1.909 −49.311 ± 7.672 −9.912 ± 4.453 −37.393 ± 6.001
UAA −44.589 ± 4.054 −4.679 ± 10.634 −49.543 ± 4.265 −9.174 ± 3.586 −40.654 ± 2.705
UA −45.761 ± 3.787 −7.069 ± 2.355 −51.754 ± 6.212 −11.589 ± 3.854 −40.165 ± 4.554

3.1. Stability, Compactness, and Flexibility of HIV-1pro Apo and HIV-1pro Bound Systems

To understand the structural stability of a protein complex and the reliability of
the MDS, the RMSD, RMSF, and RoG of the backbone atoms of the study compounds’
complexes with HIV-1pro were evaluated. The RMSD gives an indication of the protein
stability upon ligand binding, with lower RMSD values indicative of more or better stability
of the protein–ligand complex [34,36,37]. In this study, the average RMSD values are within
the acceptable limit of <3 Å (Figure 2), thereby supporting the proficiency and reliability
of the MDS executed over the 350 ns evaluation period. More specifically, the average
RMSD values for the C-alpha atoms of the structures were HIVpro (1.349 Å), DRV (2.235 Å),
LPV (1.772 Å), CA (1.632 Å), OA (2.124 Å), OAA (2.783 Å), UA (1.673 Å), UAA (1.513 Å),
BA (1.503 Å), MA (1.521 Å), and CMG (1.205 Å). Notably, the lowest RMSD values were
observed with CMG, CA, MA, and UAA, denoting both greater stability of the resulting
complex with HIVpro in each case and stronger binding affinities. Conversely, while DRV
had the highest RMSD value, higher than the mean RMSD value (1.993 Å) for the study
compounds, LPV showed some degree of stability after 90 ns of MDS. Generally, compared
with the HIVpro apo system, the CMG, BA, UAA, and CA had the lowest RMSD values,
indicative of their proficient stability at the binding site of the enzyme (Figure 2). The
observations regarding RMSD values of the study ligands in this study are in agreement
with previous studies that a lower RMSD values depicts a more stable system [37,38].

The RoG is a measure of the structural compactness of a system and is usually em-
ployed to study the kinetics, thermodynamics of protein folding, and stability of biomolec-
ular structures [35] following ligand binding with a receptor. The lower the RoG values,
the more compacted and stable the receptor–ligand complex [39]. In this study, the mean
RoG values for each system are HIVpro (17.362 Å), DRV (17.753 Å), LPV (17.512 Å), CMG
(17.478 Å), CA (17.684 Å), OA (17.873 Å), OAA (18.456 Å), UA (17.687 Å), UAA (17.764 Å),
MA (17.656 Å), and BA (17.642 Å) (Figure 3). Similar to DRV and LPV complexes, the
CA-, MA-, and BA-bound systems were observed to have low RoG values, while the OAA-
bound system had the least stability and compactness, as indicated by its RoG, RMSD, and
binding free energy in comparison to other ligands. Furthermore, consistent with both
the binding free energy and RMSD values, CMG had the lowest RoG value, even lower
than DRV and LPV (Figure 3). This study is the first to report the CMG as suggestive of its
greater compactness relative to other investigated ligands.
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The RMSF measures the extent of the conformational flexibility of the ligand–receptor
system following an MDS evaluation [39]. In this study, compared with other ligands, LPV,
UA, and OAA exhibited greater protein flexibility at residues 40–60 and 140–160 (Figure 4).
Similar increases in protein flexibilities were observed for the other compounds, with the
HIVpro apo system having the lowest flexibility (Figure 4). However, it could be logically
inferred that ligand binding increases the protein flexibility, with fluctuations at residues
45–55 and 145–155 (Figure 4), and these could be identified as the mirror residues in dimeric
form of the HIVpro and may be substantive of the dimeric activity of the enzyme [34,35].
The fluctuation at residues 45–55 and 145–155 may also be suggestive of the opening
and closing of the protease for ligand binding and interactions, as reported earlier by
Kehinde et al. [34].

3.2. Solvent Accessible Surface Area (SASA)

The SASA is a key parameter in examining the impact of ligand binding on a receptor,
evaluated through the receptor’s exposure to solvent molecules [40]. In this study, the
binding of all the study compounds did not significantly change the SASA values of the
bound systems in each case, relative to the free HIVpro, with the values obtained ranging
from 8500 to 10,000 Å (Figure 5). This observation suggests that the structural integrity
of the HIVpro was never compromised throughout the simulation period and that all
the study metabolites conveniently bind and fit at the binding site of the enzyme. This
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may also justify why the binding energies of the metabolites fell in between those of the
FDA-approved drugs.
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3.3. HIVpro–Ligand Interaction

Figure 6 shows the ligand interaction plots for the best four study compounds and the
FDA-approved-drug-bound systems following the 350 ns trajectory. The types and number
of interactions between proteins and ligands determine the overall binding free energy.
Protein–ligand interaction has been widely used to examine the molecular interactions
between residues at the active sites of protein and bound ligands [30,31]. The binding effect
of different ligands on HIVpro was analysed, as well as the interaction between the key
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residues in the binding site in the presence of the two known inhibitors (DRV and LPV)
and the selected metabolites. The results show that CMG and MA had a similar type of
interaction with that of the FDA-approved drugs. This correlated with the high binding
energy recorded for the two compounds, indicating that the two compounds are promising
candidates for inhibiting HIVpro.
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Figure 5. Comparative SASA plots of residue-based average C-α fluctuations of free HIVpro and
that bound with LPV, DRV, and (A) CMG, (B) CA, (C) OA, (D) OAA, (E) MA, (F) UA, (G) UAA and
(H) BAA systems.
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Figure 6. 2D interaction plots of two reference drugs (DRV and LPV) and plant metabolites (BA, MA,
CA, and CMG) with the active site amino acid residues of HIVpro.

4. Conclusions

In this study, we investigated seven selected nutraceutical pentacyclic triterpenoids
and an anthocyanin as potential inhibitors of HIV-1 subtype C protease enzyme (HIVpro)
using MDS. The MMGBSA free energy calculations showed that the ∆Gbind of six lead
ligands (CMG, MA, CA, BA, OA, and UAA) fell within the range of the two ∆Gbind of the
reference FDA-approved drugs used in this study, with CMG and MA having a higher
∆Gbind than the conventional HIVpro inhibitors. Furthermore, the ligand interaction plots
revealed that the metabolites interacted hydrophobically with the active site amino acid
residues, with the identification of other key residues implicated in HIVpro inhibition for
novel drug design. This is the first computational report on the anti-HIV-1 activities of
CMG and MA, with efforts on their in vitro and in vivo evaluations underway. The study
significantly revealed that the lead metabolites (CMG, MA, CA, BA, OA, and UAA) could be
promising therapeutic agents against HIV-1. In addition, they could either be used alone or
concomitantly with conventional HIVpro inhibitors such as LPV, DRV, cabotegravir (CBV),
and rilpivarine (RPV) to improve their therapeutic activities against the HIV-1 serotype.
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