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Abstract: Since the introduction of the online open-source GNPS, molecular networking has quickly
become a widely applied tool in the field of natural products chemistry, with applications from
dereplication, genome mining, metabolomics, and visualization of chemical space. Studies have
shown that data dependent acquisition (DDA) parameters affect molecular network topology but
are limited in the number of parameters studied. With an aim to optimize LC-MS2 parameters for
integrating GNPS-based molecular networking into our marine natural products workflow, a design
of experiment (DOE) was used to screen the significance of the effect that eleven parameters have
on both Classical Molecular Networking workflow (CLMN) and the new Feature-Based Molecular
Networking workflow (FBMN). Our results indicate that four parameters (concentration, run dura-
tion, collision energy and number of precursors per cycle) are the most significant data acquisition
parameters affecting the network topology. While concentration and the LC duration were found to
be the two most important factors to optimize for CLMN, the number of precursors per cycle and
collision energy were also very important factors to optimize for FBMN.

Keywords: MZmine2; GNPS; optimization; data-dependent acquisition; feature-based molecular
networking

1. Introduction

Molecular networking is an informatics tool that allows visualization of non-targeted
tandem mass spectrometer data (MS2), to highlight structure similarities between metabo-
lites of a complex mixture and help in the annotation of the detected metabolites [1]. The
most common data acquisition technique for molecular networking uses data-dependent
acquisition (DDA) [2]. DDA is an autonomous data acquisition mode and works by first
taking an MS1 scan and collecting the m/z and relative abundance of analytes. This is
instantly followed by multiple MS2 scans, targeting the major analytes selected from the
MS1 scan. Molecular networking is now broadly used in the field of natural products
(NP) with the introduction of online molecular networking Global Natural Products Social
(GNPS) platform, developed by Wang et al. [3] in 2016. GNPS has been applied to a wide
range of applications including dereplication [4–7], metabolomics [8–11], and genome
mining [12,13].

GNPS uses an algorithm to compare the similarities of fragmentation spectra (MS2)
in each dataset, generating a cosine score for each pair of MS2 spectra. Working on the
principle that structurally similar molecules will produce MS2 spectra with fragment ions
in common [14], the cosine scores aim to measure spectral similarity. Using the MS-Cluster
algorithm [15], MS2 spectra with identical parent ion masses are combined to produce a
single consensus spectrum and are represented by a single node, characterized by its m/z
and MS2 fragment ion patterns. Nodes with similar MS2 spectra, and therefore high cosine
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scores (usually set at more than 0.7), are connected via edges to form a cluster. Clusters can
be considered “molecular families”, as the metabolites should share key chemical features.
When combined with automated searches of databases containing MS2 spectra, the known
compounds can quickly be annotated, turning molecular networking and GNPS into a
powerful dereplication tool [16]. A key feature of GNPS is the ability for users to generate
and share MS2 spectra for identified compounds, which can be uploaded to open-access
GNPS reference spectra libraries. Thus, the natural products community can contribute
to the rapid growth of reference spectra libraries, increasing the range of natural products
which can be annotated quickly.

GNPS contains two main workflows to create molecular networks: Classical Molec-
ular Networking (CLMN) and Feature-Based Molecular Networking (FBMN) [17]. Both
workflows use the same untargeted LC-MS2 data. CLMN was the first tool to be intro-
duced as a quick and effective way to visualize the chemical space of a sample, creating
networks using only MS2 spectra. The FBMN workflow advances on CLMN by using both
MS1 (e.g., isotopic pattern, retention time) and MS2 data to create more reproducible and
accurate molecular networks. In the FBMN workflow, LC-MS2 data are processed using
MZmine2 [18] or similar. This processing allows FBMN to be used for relative quantification
and increases reproducibility including the ability to resolve isomers [17]. Both molecular
networking workflows have been widely utilized in natural product related fields [3].

Recent works showed that molecular network topologies are affected by DDA param-
eters, including intensity threshold, collision energy, and exclusion after n scans [18–20].
Each of these studies employed a One Factor at a Time (OFAT) approach and investigated
a limited number of parameters. Our preliminary investigation did likewise indicate that
the four parameters tested (concentration, liquid chromatography duration, precursors
per cycle, and collision energy) had a significant impact on CLMN [21]. We recognized
that an OFAT approach, while simple to implement, was inefficient for testing a large
range of parameters. This approach also limits the ability to observe interactions between
parameters. We therefore used a fractional factorial design to evaluate the effect of multiple
LC-ESI-MS2 data acquisition parameters on the resulting molecular network. Two key
advantages of using the fractional factorial design are: (i) it allows for the statistical signifi-
cance of each parameter to be determined; (ii) it assesses the significance of interactions
between parameters. To cover the diverse range of families of marine natural products with
distinct physico-chemical properties, we analysed extracts of three widely differing marine
organisms present off the coasts of Ireland: the sea squirt Ascidia virginea, rich in small
phenolic derivatives currently under chemical investigation, the zoantharian Parazoanthus
axinellae known to contain a range of polar alkaloids, and the macroalga Halidrys siliquosa,
rich in meroterpenoids (Figure 1). To the best of our knowledge this is the first study
optimizing LC-MS2 data acquisition parameters for FBMN.
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Figure 1. Annotated molecular networks of the studied samples, Parazoanthus axinellae (yellow, left),
Ascidia virginea (pink, centre), and Halidrys siliquosa (green, right), showing the diverse range of
metabolites. Elements of molecular networking topology are labelled.

2. Results and Discussion
2.1. Response Models

Of the 36 response models generated using fractional factorial analysis, the major-
ity had high Predicted R2 (R2 Pred.) and p-values < 0.01 (Table S8) indicating a high
goodness-of-fit. Residual plots (Figures S4–S39) were also analyzed to evaluate the fit of the
models. Deviation in the quality of response models was seen between the two molecular
networking workflows and between the three samples. Key nomenclature for this study is
summarized in Figure 2.

Models with poor fit (p-value > 0.05 or R2 Pred. < 20) were not included in the response
analysis. Analysis of CLMN significant factors excluded response models for clustering
co-efficient, number of neighbors and two of three average cosine models, due to poor
model fit. Response models for FBMN produced better quality models. Parazoanthus
axinellae models were an outlier with response models for the number of nodes, neighbors
and average cosine being excluded from further analysis due to poor fit with data.

2.2. Significant Factors and Significant Factor Interactions

When averaged across response models and sample, only two factors, fragmentor
voltage and drying gas temperature did not have a significant effect on the measured
responses in the CLMN workflow. While the effect of all other factors was significant
(Figure 3), they varied in the size of their Standardized Effect (Std E.). Sample concentration
(Std E. 23.1) had the greatest effect, followed by LC duration (Std E. 5.8), precursor per
cycle (Std E. 5.5), collision energy (Std E. 5.0), sheath gas temperature (Std E. 4.7), skimmer
voltage (Std E. 4.4), nozzle voltage (Std E. 3.5), nebulizer pressure (Std E. 2.9), and capillary
voltage (Std E. 2.7).
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Figure 2. Nomenclature used for molecular networking (left) and DoE response modelling (right).

Figure 3. Significant effects of factors on CLMN (blue, left) and FBMN (orange, right), averaged
across response models and samples. For included models, refer to Figure S11. Standardized Effects
(Std E) of 2.27 or greater is considered significant (red dashed line).

In the FBMN workflow, all factors, except sheath gas temperature, had a significant
effect on the measured responses. Precursor per cycle (Std E. 33.4) had the greatest standard-
ized effect, followed by collision energy (Std E. 19.6), sample concentration (Std E. 16.4), LC
duration (Std E. 15.4), fragmentor voltage (Std E. 6.9), nozzle voltage (Std E. 4.5), nebulizer
pressure (Std E. 4.4), skimmer voltage (Std E. 4.3), drying gas temperature (Std E. 4.3), and
capillary voltage (Std E. 4.2).
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Four factors displayed a consistent statistically significant effect for both CLMN and
FBMN workflows with high mean standardized effects: Sample concentration, number of
Precursors per cycle, LC duration, and collision energy (Figure 1). These four factors are
explored in more detail in Sections 2.2.1–2.2.4. Although fragmentor voltage, sheath gas
temperature, skimmer voltage, and nozzle voltage were shown to have a significant effect
on molecular network topology, a lower mean standardized effect and inconsistent effect
across the three samples show the lesser importance of optimizing these factors.

Interactions occur when the effect of a factor on a response is dependent on the level of
another factor. For CLMN, there were nine significant interactions between factors effecting
molecular network responses. These were interactions between concentration and eight
other factors (collision energy, nebulizer pressure, skimmer voltage, nozzle voltage, drying
gas temperature, precursors per cycle, LC duration, and fragmentor voltage), and between
LC duration and precursors per cycle (Figure 4). That concentration was involved in eight
of the nine significant factor interactions, further highlights the importance of this factor.

1 
 

Figure 4. Number of significant factor interactions that affect responses for CLMN (blue, left) FBMN
(orange, right).

A broader range of interactions was seen in the FBMN workflow, with 12 significant
interactions. Nine of these significant interactions were seen between sample concentration
and other factors (capillary voltage, nozzle voltage, collision energy, precursors per cycle,
nebulizer pressure, skimmer voltage, LC duration, and sheath gas temperature). LC dura-
tion had further significant interactions with precursors per cycle, drying gas temperature,
and capillary voltage.

2.2.1. Precursor per Cycle

The number of precursors per cycle (PPC) had the third largest Standardized Effect in
CLMN and was a significant factor for the four responses we considered for this workflow
(Figure 3). Higher PPC (Figure 5) resulted in an increase in self-loop nodes (15.3%), number
of nodes (12.6%), number of edges (9.3%), and average cosine score (1.1%).

For FBMN, PPC had the highest Standardized Effect on molecular network topology
and significantly affected all responses. Higher PPC increased the number of self-loop
nodes (70.9%), number of nodes (63.5%), cosine score (52.4%), and number of edges (43.8%).
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Higher PPC also reduced the cluster co-efficient (−21.8%) and the average number of
neighbours (−16.9%).

PPC consistently affected the number of nodes, number of self-loop nodes, and number
of edges. More PPC results in more analytes being chosen for fragmentation per cycle,
reducing competition between parent ions. As more analytes are being selected for MS2

fragmentation, more nodes appear in the network. Increases in the number of edges with
more PPC may result from more minor metabolites being selected for MS2 fragmentation;
these would have been outcompeted with a lower number of PPC.

In FBMN, higher PPC caused a decline in the number of neighbours and clustering
co-efficient. As both values are calculated as an average for the whole network, this reflects
the increase in the number of self-loop nodes. The number of clusters with just two nodes
increases considerably at the higher level of PPC compared with the lower level. Since
two node clusters are awarded a clustering co-efficient of 0, this translates to a decline in
average clustering co-efficient for the network. This effect can be seen in the FBMN of
Ascidia virginea under the condition of T25 (3 precursors per cycle) and T17 (7 precursors
per cycle (Figure 6).

Figure 5. Radar graph of the number of precursors per cycle effect (3 precursors per cycle in orange;
7 precursors per cycle in blue) on the relative change of responses, averaged across the three samples.
Classical Molecular Networking (left) and Feature-Based Molecular Networking (right).

2.2.2. Collision Energy

In the CLMN workflow, collision energy (Figure 7) had the fourth largest mean
Standardized Effect. Increasing collision energy from 15 eV to 50 eV increased number of
self-loop nodes (3.7%), number of nodes (2.6%), average cosine score (0.4%), and number
of edges (0.14%).

In the FBMN workflow, collision energy had the second highest mean Standardized
Effect. Higher collision energy resulted in an increase in average cosine score (53.6%) and
number of self-loop nodes (+30%). Higher collision energy also resulted in a decrease
in cluster co-efficient (−41.6%), average number of neighbours (−39.3%), and number of
edges (−11.9%). Collison energy did not significantly affect the number of nodes in FBMN.
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Figure 6. An example of the effects of PPC on molecular networking responses, of a Feature-Based
Molecular Network for Ascidia virginea. MS spectra with ions selected form MS2 fragmentation
denoted with a red dot for precursor per cycle of 3 (top, purple, T25) and 7 (bottom, green, T17).
Molecular networks produced from these parameters are displayed on the right, with tables display-
ing molecular network statistics. Eight ascidiolides were annotated with T17 molecular network (7
precursors per cycle) and three ascidiolides were annotated in T25 molecular network (3 precursors
per cycle).

Figure 7. Radar graph of collision energy effect (15 eV in orange) (50 eV in blue) on the relative
change of responses. Classical Molecular Networking (left) and Feature-Based Molecular Network-
ing (right).

Increasing collision energy generates a higher number of fragments in MS2 spectra
for a given precursor ion. This provides more points of reference when comparing MS2
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spectra, leading to the increase in cosine score seen in both CLMN and FBMN. This increase
in cosine score, combined with the decrease in number of edges in FBMN, indicates that
while fewer similarities between metabolites are detected, the similarities (edges) are being
detected more accurately (with higher cosine score). The decrease in cluster co-efficient
and average number of neighbours appears to be a result of the combined effect of the
increase in self-loop nodes (+30%) and decrease in number of edges (−11.9%). As the edges
become more accurate due to more datapoints, matching between nodes is reduced, in turn
reducing number of edges, neighbours and cluster size.

An example of collision energy effect on molecular network topology can be seen when
comparing FBMN of Parazoanthus axinellae under parameters set for T6 (collision energy
of 15 eV) and T32 (collision energy of 50 eV). The MS2 spectra produced with a collision
energy of 50 eV resulted in a higher number of fragments produced from parazoanthine
E and a parazoanthine cluster with a lower number of edges and higher average cosine
scores when compared to the same MS2 spectra and cluster which used a collision energy
of 15 eV (Figure 8).

As the effect of collision energy on fragmentation pattern is dependent on the parent
ions chemical structure, the increase in the number of fragments observed for parazoanthine
E was not seen with the meroterpenoids of the Halidrys siliquosa, or the ascidiolides detected
in Ascidia virginea. This highlights the importance of optimizing the collision energy for the
particular type of chemistries within the samples.

2.2.3. Concentration

Concentration (Figure 9) had the highest Standardized Effect on CLMN responses.
The highest concentration of 2.0 mg/mL increased the number of nodes (83.3%), number of
self-loop node (81.2%) and the number of edges (73.2%), when compared with the lowest
concentration of 0.1 mg/mL. Average cosine score decreased (−2.1%) with the highest
concentration.

Figure 8. Fragmentation pattern and MS2 spectra of parazoanthine E using a collision energy of 15 eV
(top, blue, T6) and 50 eV (bottom, red, T32). Parazoanthine clusters with annotated nodes, resulting
from a collision energy of 15 eV (top, blue, T6) and 50 eV (bottom, red, T32). Edges are labeled with
cosine scores. Tables with cluster statistics under both conditions are displayed on the right.
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Figure 9. Radar graph of concentration (0.1 mg/mL in orange) (2.0 mg/mL in blue) on the rel-
ative change of responses. Classical Molecular Networking (left) and Feature-Based Molecular
Networking (right).

For FBMN, concentration had the third highest Standardized Effect on molecular
network responses. Increasing concentration (Figure 9) from 0.1 mg/mL to 2 mg/mL,
increased the number of self-loop nodes (21.9%), number of nodes (15.0%), number of
edges (13.3%), and cluster co-efficient (9.2%). The average number of neighbours decreased
(−11.1%) at the highest concentration.

As expected, these results indicate that more analytes are detected as concentration
increases. This result must be due to the detection of minor metabolites in the sample, which
at low concentration are undetected in molecular networking as they do not pass the ion
intensity threshold for MS2 fragmentation. Increasing the sample concentration increases
the ion intensity of these minor metabolites, allowing them to pass the threshold and be
represented in the network. Increase in cluster coefficient and average number of edges in
the FBMN workflow supports the hypothesis of more minor metabolites being detected
with higher concentrations. The increase in self-loop nodes, seen in both CLMN and
FBMN, may be a consequence of low intensity ions producing MS2 spectra with a higher
signal/noise ratio. These high noise spectra are difficult for the molecular networking
algorithms to process, and result in an increase in self-loop nodes, as fragment matching is
interrupted by increased noise. The variation in the effect of concentration on the number of
self-loop nodes in CLMN versus FBMN is likely due to the more advanced data processing
used in FBMN.

This hypothesis is supported when comparing the number of nodes in a low and high
concentration molecular network. Comparison of equivalent clusters from the FBMN of
the seaweed Halidrys siliquosa from run T5 (0.1 mg/mL) and run T17 (2.0 mg/mL), where
only concentration differs, shows that at the highest concentration clusters in the network
become more populated with low intensity metabolites being represented (Figure 10).

2.2.4. LC Duration

LC duration had the second highest mean Standardized Effect on CLMN responses
(Figure 3). Increased LC duration (Figure 11) resulted in an increase in the number of
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nodes (17.5%), number of self-loop nodes (17.4%), and number of neighbours (15.4%). LC
duration did not have a significant effect on average cosine score (0.05%) in CLMN.

1 
 

Figure 10. An example comparing the effect of low (0.1 mg/mL; left) and high (2.0 mg/mL; right)
concentrations on Feature-Based Molecular Networking responses of Halidrys siliquosa.

In the FBMN workflow, LC duration had the fourth highest mean Standardized Effect
(Std. E. 14.5), with the longer LC duration resulting in an increase of the number of nodes
(22.1%), number of self-loop nodes (18.6%), number of edges (17.6%), and average cosine
score (0.5%). Average number of neighbours (−9.21%) and cluster co-efficient (−5.7%)
decreased with the longer LC duration (Figure 11).

An increase in LC duration improves separation between analytes (Figure 12), which
reduces the number of analytes entering the mass spectrometer at any one time. As the
number of parent ions that can undergo MS2 fragmentation per MS scan is limited due
to factors including number of precursors per cycle and exclusion time, we hypothesize
that greater separation between analytes decreases the competition among parent ions
for MS2 fragmentation. This reduces competition, results in more analytes undergoing
MS2 fragmentation, corresponding to the increase observed in the number of nodes and
edges in CLMN and FBMN. As the FBMN workflow utilizes retention time of analytes
in the feature detection and alignment step, the increase in separation between analytes
may benefit the detection of isomers/stereoisomers. This may contribute to the increase in
number of nodes and edges.

2.2.5. Comparison of CLMN and FBMN

According to the results obtained, data acquisition parameters had a larger and more
consistent effect on FBMN than CLMN (Figure 3). For FBMN, the significant effects and
their Standardized Effect values were consistent across all three samples, whereas for
CLMN inconsistencies between the three samples were observed (Table S8). The higher rate
of error associated with MSCluster, such as chimeric spectra represented by one node, could
have translated into increased error with network statistics and therefore inaccuracies in
the fractional factorial analysis. The increased reproducibility of FBMN, due to processing
steps such as feature detection and alignment, resulted in more accurate measurements of
the effects of parameters. The inclusion of retention times and isotope grouping also allow
for more accurate networking, reducing error that would have been present in CLMN. This
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may be a contributing factor explaining why CLMN results are not as consistent as those
for FBMN.

Figure 11. Radar graph of the effect of liquid chromatography duration (10 min in orange) (14 min in
blue) on the relative change of responses of Classical Molecular Networking (left) and Feature-Based
Molecular Networking (right).

Figure 12. LC-MS2 trace of Halidrys siliquosa using a LC duration of 10 min (top; green) and 14 min
(bottom; red) with the retention times of the meroterpenoids under both conditions displayed. Cluster
statistics for the meroterpenoid clusters for both LC-MS2 runs are displayed on the right.

2.2.6. Optimization of Molecular Networking

Overall, the most important parameters to optimize for CLMN are sample concen-
tration and gradient. The use of high concentrations where possible, compatible with the
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sensitivity of the mass spectrometer used, is recommended. High concentration paired with
the longest practical LC duration had a desirable effect on the networks. A high collision
energy also appeared beneficial. A higher rate of fragmentation increased cosine scores
indicating more accurate edges, improving the analysis of molecular families. For CLMN,
the main goal is to visualize the whole chemical space, therefore a high PPC should be
used to obtain a high number of nodes representing all the metabolites in the sample. As
no in-depth statistical analysis is carried out with CLMN, lower quality data arising from
higher PPC do not have as great an impact as they would on FBMN.

Sample concentration and gradient are also significant factors effecting FBMN topology.
As the processing step in FBMN workflow can overcome problems associated with the
liquid chromatography part of the analysis (e.g., overlapping peaks), the need to fully
optimize these factors is reduced. The use of a higher concentration and longer gradient
is still recommended. Increased liquid chromatography separation can improve FBMN’s
ability to resolve isomers as the difference in retention times is increased, especially for
co-eluting isomers. Collision energy and precursor per cycle had the strongest effect on
molecular network topology, and these should be the focus of optimization efforts, in line
with the desired responses (e.g., high cosine score vs. low number of self-loop nodes). The
use of a response surface Design of Experiment (DoE) could be used to optimize these two
factors for the specific chemistry of the samples and aim of constructed molecular network.

As a result of using a screening DoE to generate our fractional factorial design, we
could not optimize responses, as only two levels (high/low) were included for each factor
(see methods). The ‘response optimizer’ method compares the generated worklist of
acquisition parameters to the responses arising from each run and generates optimal data
acquisition settings for a given set of responses. For a full optimization, a response surface
DoE should be used to optimize the four significant factors (Concentration, Gradient,
Collision Energy and Precursor per Cycle) chosen from the screening design.

3. Materials and Methods

The overall workflow of the main experiment is summarized in Figure 13.

3.1. Sample Selection and Preparation

Three samples were selected for the main experiment: a sea squirt Ascidia virginea,
which contained a range of terpene-derived quinone compounds; a zoantharian, Para-
zoanthus axinellae, containing a range of aromatic alkaloids, which were the most polar
metabolites of the three samples; and the macroalga, Halidrys siliquosa, containing meroter-
penoids, the least polar metabolites of the three samples (Figure 1).

For all three samples, 1.0 g of dried biomass was ground using a ball mill and extracted
with MeOH/CH2Cl2 (1:1) under ultrasonification. The extract was fractionated using a 6cc
RP-C18 Solid-phase extraction (SPE) cartridge into 4 fractions of decreasing polarity; 100%
H2O, 1:1 H2O: MeOH, 100% MeOH, 1:1 MeOH: DCM using 15 mL of each solvent mixture.
The fractions were dried and dissolved in DMSO at a concentration of 10 mg/mL. The 1:1
H2O:MeOH and MeOH fractions were combined (1 mL of each) and diluted to obtain the
concentrations used in the experimental design.

3.2. Experimental Design

Minitab® Statistical Software (Minitab, LLC, Sate College, PA, USA, (2019)) was used
to design a resolution IV Fractional Factorial screening experiment, using the Design of
Experiment (DoE) function. A single replicate was included, which is sufficient for a
screening design. A single replicate design allows the significant factors to be discerned
but does not allow for definitive conclusions on factor effects, or for those factors to be
optimized. However, since our aim was to discover which factors should be prioritized for
optimization, this fractional factorial design (screening DoE) was adequate.
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2 

Figure 13. Workflow for evaluating the effect of data acquisition parameters on molecular network
topology. Minitab fractional factorial design was used to design an experiment to determine whether
a given parameter (factor) significantly affects molecular network topology. Samples were extracted
with Methanol: Dichloromethane (1:1) and fractionated on a C18 SPE cartridge. A methanolic fraction
of each sample was analysed 34 times on a UHPLC-Agilent 6540 q-TOF using unique parameter
setting for each analysis. Each parameter had a high and low setting. Molecular networks were
generated from untargeted LC-MS2 data using both the Classical and Feature-Based workflows
offered by the GNPS online platform. Data pre-processing for the FBMN workflow was completed
using MZmine 2. Molecular networks from both workflows were vizualised in Cytoscape and
responses were analysed in Minitab fractional factorial analysis to determine the Standardised Effect
(Std. E.) of each parameter.

Eleven parameters (factors) were selected in the design: concentration, LC duration,
collision energy, precursor per cycle, gas temperature, nebulizer voltage, sheath gas temper-
ature, capillary voltage, nozzle voltage, fragmentor voltage and skimmer voltage, and were
each tested at two levels, one low, one high (Table S1). These factors, levels, and their center
points were determined based on mass spectrometry knowledge, literature review, GNPS
recommendations and Agilent recommendations. The design included two experimental
runs with all factors set at the centre point of the two levels, which increases the power of
the design. Centre points can be used to determine whether the response surface is linear or
curved. The final design had 34 runs per sample (see Table S1) for the settings of each run.

To evaluate the characteristics of the generated molecular networks, six responses
were chosen: number of nodes in the network, average number of neighbours, number of
self-loop nodes, number of edges, cluster coefficient, and average cosine score. The number
of nodes represents the number of metabolites represented by the network. Clustering
co-efficient, average number of neighbours and number of edges are indicators of how
molecular families are represented in the network. Average cosine scores are determined
by the similarity of matches made between nodes in clusters. An increase in self-loop
nodes is related to a decrease in clustering co-efficient and a decrease in number of edges,
resulting from acquisition parameters that are sub-optimal. Alternatively, lowest intensity
ions undergoing fragmentation produce spectra with higher noise ratios, and this noise can
be represented by self-loop nodes.



Metabolites 2022, 12, 245 14 of 17

3.3. Data Acquisition LC-MS2

High Resolution Electrospray Ionization Mass Spectrometry (HRESIMS) data were
obtained from a Q-ToF Agilent 6540 in ESI (+) coupled to an Agilent 1290 Infinity II ultra-
high performance liquid chromatography system (UHPLC), using a BEH C18 2.1 × 75 mm
1.7 µm column (Acquity, Waters, Milford, CT, USA). Mobile phases of H2O (A) + 0.1% FA
and CH3CN (B) + 0.1% FA were used with a flow set to 0.5 mL/min. An injection volume of
5 µL of sample was used for all LC-MS2 experiments. The following gradient was applied:
isocratic hold of B at 10% for 2 min followed by increase of B to 100% over a 10 or 14 min
(LC duration specified for that run), then an isocratic hold of B at 100% for 4 min and a final
decrease of B to 10% over 1 min. A 2-min post-run after each injection for equilibration.
Other parameters for a standard LC-MS2 experiment were set to low or high values as
specified in the fractional factorial experimental design (Table S1).

3.4. File Conversion

LC-MS2 data were converted from. d (Agilent data format) to. mgf using MS convert,
part of the ProteoWizard sofware package [22].

3.5. Classical Based Molecular Networking

Molecular networks were created using the online workflow on the GNPS website
(http://gnps.ucsd.edu, accessed on 22 February 2022). The data were filtered by removing
all MS2 fragment ions within +/− 17 Da of the precursor m/z. MS2 spectra were window
filtered by choosing only the top six fragment ions in the +/− 50 Da window throughout
the spectrum. The precursor ion mass tolerance was set to 2.0 Da and the MS2 fragment
ion tolerance to 0.5 Da. A network was then created where edges were filtered to have a
cosine score above 0.7 and more than six matched peaks. Further, edges between two nodes
were kept in the network only if each of the nodes appeared in each other’s respective top
10 most similar nodes. Finally, the maximum size of a molecular family was set to 100, and
the lowest scoring edges were removed from molecular families until the molecular family
size was below this threshold. The spectra in the network were then searched against GNPS
spectral libraries. The library spectra were filtered in the same manner as the input data.

3.6. Feature-Based Molecular Networking

LC-MS2 data was pre-processed using MzMine2 features including feature detection,
chromatogram builder, chromatogram deconvolution and isotopic peaks. Parameters used
for processing can be seen in the Supplementary Materials. The processed data were
uploaded to GNPS using the FBMN workflow, on the GNPS platform (https://gnps.ucsd.
edu, accessed on 22 February 2022).

3.7. Molecular Network Visualization and Network Analyses

Molecular networks were exported to Cytoscape software for visualization. The
number of nodes, number of self-loop nodes, clustering-co-efficient and average number
of neighbors were generating using the Network Analyser. Networks were treated as
undirected. Number of edges and average cosine scores were generated from edge tables.

3.8. Design of Experiment Response Analysis

Responses (number of nodes in the network, average number of neighbours, number
of self-loop nodes, number of edges, cluster coefficient, and average cosine score) were
returned to Minitab for each sample, resulting in 36 response models (6 responses × 3
samples × 2 workflows). Two terms, all main effects (factor effects on responses e.g.,
concentration effect on cosine score) and 2-way interactions (two factors interacting to
effect a response) were selected as model terms for analyzing the factorial design, with
no covariates. Two-sided confidence level for all intervals was set to 95%, to estimate
the higher and lower values of the mean response. DoE response analysis generated
Standardized Effects (Std. E.) for each factor and 2-way interaction effect on a response.

http://gnps.ucsd.edu
https://gnps.ucsd.edu
https://gnps.ucsd.edu
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Standardized effects incorporate standard deviations of observations and thus allow for
the evaluation/comparison of the size of various factor effects that have different units on
responses.

DoE response analysis in Minitab generates multiple outputs for analyzing the effect
of each factor/two-way interaction as well as the quality of each response model. Normal
plots and half normal plots of standardized effects, and Pareto charts were used to identify
and compare the relative magnitude of a factor’s effect on a given response, as well as the
statistical significance. A model summary was also generated for each response model,
containing S, predicted R2 (R2 Pred.) and p-values which were used to determine the quality
of the model. S is a measure, in terms of standard deviations, of how the data values differ
from the fitted values and indicates how well the model describes the response. Lower S
values indicate a model that better describes the response. Predicted R2 is a measure of
how well the model can predict a response; higher R2 Pred. indicates better predicative
ability. The p-value is the probability that the null hypothesis (i.e., factor has no effect on
responses) is true. Residual plots were generated to detect issues with regression. S values
in combination with residual plots were analyzed to identify and excluded any model with
poor fitting and/or biased data from response analysis. Models with poor fit (p-value > 0.05
or R2 pred. < 20) were not included in the response analysis.

3.9. Visualization of Molecular Networking

Results from DoE response analysis were exported to Microsoft Excel. Factor effect
on responses was averaged across the three samples for the CLMN and FBMN workflows.
Bar charts were generated to summarize the Standardized Effect of each factor for both
workflows. Four- and six-dimensional radar maps were used to illustrate PPC, collision
energy, concentration, and LC durations effect on CLMN and FBMN responses respectively.

4. Conclusions

When applied to natural products, molecular networking is an incredibly versatile tool,
that can be used to help answer a variety of questions. What makes a “good” molecular
network depends on the purpose of the molecular network, and the most appropriate work-
flow, FBMN or CLMN, depends on the question. For a quick analysis of chemodiversity and
dereplication, for example, to help prioritize samples for in-depth chemical analysis, CLMN
would be preferable, due to the time efficient analysis of the workflow. For in depth anal-
ysis, such as metabolomic analyses or samples with known isomers, FBMN is preferable
due to its ability to quantify metabolites, resolve isomers/stereoisomers and its increased
reproducibility. FBMN could also be preferable when matching data against databases for
dereplication as it holds more information allowing for more accurate comparison.

Once the appropriate workflow is selected, the next step is to determine the optimal
responses. To determine whether there are analogues of a known bioactive compound in
a sample, high number of nodes, edges, and cluster coefficient should be the responses
selected for optimization. If the aim were to compare samples, where statistical accuracy
and reproducibility are of high importance, a high cosine score and low number of self-loop
nodes should be optimized.

Preliminary studies were necessary to recognize the need for optimization of molecular
networking. The use of statistical tools and software, such as Minitab’s screening DoE
feature, is a time-saving and effective way to determine the significance of multiple factors
and their interactions.

Mass spectrometry data acquisition parameters have a significant effect on the network
topology and interpretation, with the most significant parameters shown to be concentra-
tion, LC duration, collision energy and number of precursors per cycle. When correctly
used and interpreted, molecular networking can substantially speed up the dereplication
of samples and provides a visual representation of sample components.
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