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Abstract: The metabolome is the underlying biochemical layer of the phenotype and offers a func-
tional readout of the cellular mechanisms involved in a biological system. Since metabolites are
considered end-products of regulatory processes at a cellular level, their levels are considered the
definitive response of the biological system to genetic or environmental variations. The metabolome
thus serves as a metabolic fingerprint of the biochemical events that occur in a biological sys-
tem under specific conditions. In this study, an untargeted metabolomics approach was applied
to elucidate biochemical processes implicated in oat plant responses to Pseudomonas syringae pv.
coronafaciens (Ps-c) infection, and to identify signatory markers related to defence responses and dis-
ease resistance against halo blight. Metabolic changes in two oat cultivars (“Dunnart” and “SWK001”)
responding to Ps-c, were examined at the three-leaf growth stage and metabolome changes moni-
tored over a four-day post-inoculation period. Hydromethanolic extracts were analysed using an
ultra-high-performance liquid chromatography (UHPLC) system coupled to a high-definition mass
spectrometer (MS) analytical platform. The acquired multi-dimensional data were processed using
multivariate statistical analysis and chemometric modelling. The validated chemometric models
indicated time- and cultivar-related metabolic changes, defining the host response to the bacterial
inoculation. Further multivariate analyses of the data were performed to profile differential signatory
markers, putatively associated with the type of launched defence response. These included amino
acids, phenolics, phenolic amides, fatty acids, flavonoids, alkaloids, terpenoids, lipids, saponins and
plant hormones. Based on the results, metabolic alterations involved in oat defence responses to
Ps-c were elucidated and key signatory metabolic markers defining the defence metabolome were
identified. The study thus contributes toward a more holistic understanding of the oat metabolism
under biotic stress.

Keywords: Avena sativa; LC–MS; metabolomics; multivariate data analysis; oat; Pseudomonas syringae
pv. coronafaciens; secondary metabolites

1. Introduction

Due to their sessile nature, plants have developed a range of defence mechanisms
against biotic and abiotic stresses. One such mechanism includes the initiation of adaptive
responses, such as stress recognition, signal transduction, activation of several stress-related
genes accompanied by the production and activation of secondary metabolites or spe-
cialised phytochemicals [1]. A range of metabolites act as constitutive defence compounds
prior to the pathogenic attack (phytoanticipins), i.e., these preformed compounds occur
in healthy plants. Other defence compounds are inducible and released upon pathogen
infection and are known as phytoalexins [2–4]. Disease resistance can be viewed as a
continuum of responses ranging from highly resistant (no disease symptoms) to tolerant
(some disease symptoms) to highly susceptible (significant disease symptoms). Changes in
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plant metabolism are key in understanding and analysing the result of attempted infections.
Metabolomic analyses of healthy and newly infected plants, could thus provide invaluable
information on changes in signalling or output pathways [5,6]. Plant metabolism involves
the regulation of different metabolic processes that enable plants to withstand environmental
threats. Identified primary metabolites (like carbohydrates, amino and organic acids) have
been greatly studied to elucidate to what extent plant metabolism is altered to adapt to an
ever-changing environment [7,8]. Secondary metabolites, on the other hand, also include
chemically diverse phytoalexin compounds, synthesised to counterattack various pathogenic
organisms, and key components in understanding plant response and defence mechanisms.
Important also, are phytohormones (e.g., auxins, cytokinins, gibberellins, jasmonates or jas-
monic acid (JA), abscisic acid (ABA) and salicylic acid (SA), central for plant signalling in
response to stimuli from the abiotic/biotic environment (Supplementary Figure S1) [9–11].

Oat (Avena sativa L.) crops rank among the top six most important cereals in the world,
important for human consumption, livestock feed, fodder, forage, hay and silage. Due
to its hardiness and ability to grow and resist change under adverse environmental con-
ditions, oat crops are also considered a superior cereal crop [12]. Many of these benefits
are due to the numerous bioactive phytochemicals present in oat plants, such as phenolic
acids, flavonoids, phytosterols and carotenoids, to name a few. Additionally, this cereal
also produces unique phytochemicals known as avenanthramides, avenacosides and ave-
nacins [13,14]. Like all plants, oat crops are often exposed to a range of pathogens that can
lead to severe disease and great crop losses. Pseudomonas syringae pv. coronafaciens (Ps-c) is
the common cause of halo blight disease in oat crops [15], resulting in yield- and economic
losses [16–19]. It has been known to cause a hypersensitive response (HR) on oat leaves
that leads to necrotic spots characterised by small, oval-shaped, water-soaked spots found
on leaves in early onset of the disease and soon change to reddish-brown, oval-shaped
lesions with a light centre and a characteristic yellow halo surrounding the lesions. In
severe cases of infection, young leaves become curved and chlorotic without the presence
of necrotic spots or broad yellow halos [20]. Environmental conditions can affect disease
severity, development and spread of halo blight disease as Ps-c favours moist conditions
and optimally spreads through rain, wind and insects [21,22].

The general fundamental concepts of plant innate immunity have been well established
and involve the recognition of pathogen-associated molecular pattern (PAMP) molecules
by cell surface located receptors as well as intracellular recognition of pathogen effector
proteins by resistance (R) proteins from the plant host [23]. This implies a strong genetic
basis for resistance or susceptibility against a specific disease, that is ultimately reflected in
the metabolomic phenotype [24]. Here an untargeted liquid chromatography coupled to
mass spectrometry LC–MS-based metabolomics approach was used to detect underlying
metabolic alterations and to identify potential metabolic markers that contribute to oat
defence in response to inoculation with Ps-c. While some oat cultivars exhibit a higher
level of disease resistance, the molecular mechanisms underlying these interactions are still
poorly understood [25]. By analysing the cellular and molecular responses between the
plant and pathogen, sustainable means of combating disease could be developed and be
particularly useful in breeding programs by identifying metabolic markers associated with
resistance or susceptibility [26].

2. Results
2.1. Disease Severity and Symptom Development of Halo Blight in Oat Cultivars

The disease severity and development of symptoms in the “Dunnart” and “SWK001”
(Figure 1A,B) show cultivar-related differential interactions with Ps-c. Halo blight disease
was evaluated by visual observation using a 0–8 scale, where 0 = no disease symptoms,
1–3 = slight disease symptoms, 3–6 = moderate disease symptoms and 6–8 = severe symp-
toms of yellowing and wilting (Supplementary Figure S2 and Figure 1A) [27]. “Dunnart”
showed typical halo blight symptoms such as the small water-soaked spots on the surfaces
of the leaves. As the symptoms developed a characteristic yellow halo appeared around the
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spots (Figure 1B). This halo is due to the action of a toxin produced by the bacteria and is a
diagnostic symptom of the disease [28]. In severe infections, symptoms commonly include
the leaves and upper parts of the plant turning yellow (chlorotic) and shrivelled [29] as can
be seen with the “SWK001” cultivar (Figure 1B).
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Figure 1. Disease severity rating and typical symptom development of oat cultivars responding
to Pseudomonas syringae pv. coronafaciens infection over a period of 4 days post-inoculation (d.p.i.).
(A) Disease severity scores for phenotypical symptom development in “Dunnart” (solid pink line)
and “SWK001” (dashed red line) cultivars ranging from 0 = leaves are free of any visual symptoms
to 8 = very severe wilting occurs (50% or more of leaves are yellow and wilted). (B) Following
inoculation, the development of lesions on the “Dunnart” leaves were observed over time. Lesions
started appearing from 1 d.p.i. and spread progressively over time. At 4 d.p.i. the lesions appear to
cover a larger section of the leaf surface. In the “SWK001” cultivar severe symptoms can be seen as
the leaves start yellowing from the tips at 2 d.p.i. and become more severe over time. At 4 d.p.i. the
leaves start dying and appear shrivelled.

The phenotypic symptoms and observations suggest that “Dunnart” exhibits a stronger
defence response compared to the “SWK001” cultivar, with HR-like lesions and yellow
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halo development around the affected tissue (Supplementary Figure S3 and Figure 1B). In
contrast, the “SWK001” cultivar showed minimal/no resistance against Ps-c as this cultivar
developed severe symptoms (Figure 1B). The development of halo blight and its severity
in oat plants differ depending on the interaction between the pathogen and plant, as well
as the environmental conditions [12]. It is also important to consider the specific variety
or cultivar, as significant variation may occur within cultivars from the same species with
regard to their susceptibility or resistance to specific diseases [30]. In this study, the two oat
cultivars [24] were infected under a controlled environment and symptomatic differences
thus illustrate only gene-directed, cultivar-related responses to the Ps-c inoculation. Plants
have developed sophisticated and inherently complex multi-layered surveillance—and
defence mechanisms as part of innate immunity to survive changing environments and
pathogenic threats [31]. Therefore, characterising the metabolic phenotypes associated with
oat defence response to Ps-c infection would allow for greater insight into the cellular and
metabolic pathways involved in the plant-pathogen interaction [32].

2.2. Liquid Chromatography-Mass Spectrometry-Based Analyses of Oat Response to Ps-c

Hydromethanolic leaf extracts of the infected, non-infected (vehicle control) and
negative control oat plants were analysed on a reversed-phase UHPLC–qTOF–MS sys-
tem (ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight
mass spectrometry). Based on initial optimisation experiments, electrospray ionisation
(ESI) in negative mode showed better ionisation efficiency. The acquired ESI(−) data
were thus further analysed and is illustrated throughout. To elucidate and identify as
many statistically significant metabolites as possible, an untargeted approach was used.
Chromatographic analysis, which separates components based on their polarity result-
ing in high-resolution separation and analysis of sample constituents, provided essential
information on the innate biochemical diversity of plants and the multi-dimensionality
of the extracted metabolomics data [33,34]. The coupling of chromatography to mass
spectrometry provided a highly sensitive analytical platform that permitted the simul-
taneous detection of a range of metabolites to provide a more holistic understanding of
the metabolic composition of the biological samples [8]. Figure 2 illustrates the base peak
intensity (BPI) chromatograms with distinct peak populations showing the differences and
similarities between the infected and non-treated control groups for both cultivars. The
examples illustrated by the chromatographic separation as changes between the infected
and non-treated control groups include the increasing abundance of avenanthramide A
and L in the infected “Dunnart” cultivar compared to the control group from 1–4 d.p.i.
(Figure 2A) and increasing abundance of avenanthramide L in the infected “SWK001”
cultivar from 1–4 d.p.i. compared to the control (Figure 2B). To gain deeper insights into
the underlying biochemical changes related to the oat response upon treatment with Ps-c,
the complex, multi-dimensional data sets were further analysed using chemometrics and
multivariate data analysis.



Metabolites 2022, 12, 248 5 of 26Metabolites 2022, 12, x FOR PEER REVIEW 5 of 27 
 

 

 

Figure 2. Ultra-high-performance liquid chromatography (UHPLC) coupled to mass spectrometric 

(MS) detection in negative electrospray ionisation (ESI) mode. The figure compares base peak in-

tensity (BPI) MS chromatograms of extracts at the seedling stage compared to the non-treated con-

trol (uninfected plants) for (A) “Dunnart” and (B) “SWK001”. These are reverse phase chromato-

graphic separations based on the polarity of the respective compounds. The dashed oval structures 

highlight certain unique variants that show how the phytochemical profiles of the infected cultivars 

changed over time. As illustrated, avenanthramide phytoalexins were shown to be absent in the 

control(s) and increase in abundance over time and, although only avenanthramide A and L are 

shown, four different avenanthramides (A, B, C and L) were detected. 

Figure 2. Ultra-high-performance liquid chromatography (UHPLC) coupled to mass spectrometric
(MS) detection in negative electrospray ionisation (ESI) mode. The figure compares base peak intensity
(BPI) MS chromatograms of extracts at the seedling stage compared to the non-treated control
(uninfected plants) for (A) “Dunnart” and (B) “SWK001”. These are reverse phase chromatographic
separations based on the polarity of the respective compounds. The dashed oval structures highlight
certain unique variants that show how the phytochemical profiles of the infected cultivars changed
over time. As illustrated, avenanthramide phytoalexins were shown to be absent in the control(s)
and increase in abundance over time and, although only avenanthramide A and L are shown, four
different avenanthramides (A, B, C and L) were detected.
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2.3. Chemometrics for the Analyses of Halo Blight-Induced Metabolic Changes in Oat Cultivars

Principal components analysis (PCA) is a multivariate technique that is used to ex-
plore complex datasets by reducing the multi-dimensionality of the data and thereby
revealing structures, trends or groupings that allows for biological interpretation of the
data [35]. Here, the principal components illustrated treatment- and cultivar-related group-
ings in the PCA models that revealed the underlying structures and properties of the data
(Figure 3A,C). The sample groupings indicate that the “Dunnart” and “SWK001” cultivars
had different metabolic responses when treated with Ps-c. The “Dunnart” cultivar clustered
separately from “SWK001” in both the infected and non-treated control groups, again reit-
erating treatment and cultivar-related differences (Figure 3A). The negative controls (refer
to Section 4.3) clustered with the vehicle controls (Supplementary Figure S4), meaning that
there were no significant differences between the two control groups, i.e., the underlying
metabolic profiles are similar compared to the infected groups. Therefore, only the non-
infected vehicle control groups are further presented throughout the study and referred
to only as control. Figure 3B illustrates the PCA model showing differential clustering
between the two treated groups (“Dunnart” and “SWK001”) over time (1–4 d.p.i.).
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Figure 3. Principal component analysis (PCA) of the two infected oat cultivars with the corresponding
hierarchical cluster analysis (HCA) dendrograms. PCA scores plots indicate the clustering and general
grouping among the infected and control groups for “Dunnart” (dark green/pink) vs. “SWK001”
(light green/red) analysed in ESI(–) mode. (A) PCA scores plots of all the samples showing the
infected and control groups as indicated. (C) PCA scores plot illustrating all infected samples from
1–4 d.p.i. for “Dunnart” (left) and “SWK001” (right). (B,D) HCA dendrograms (corresponding to
PCA plots (A) and (C), respectively) showing the hierarchical structure of the data, indicating that
the control and infected groups for “Dunnart” and “SWK001”, respectively, cluster together and
are grouped separately from one another. In (D) the infected groups for “Dunnart” are clustered
separately to the left and the infected groups of “SWK001” to the right. The unsupervised modelling
tools allowed a comprehensive overview of the data (PCA) and grouped the samples with regard
to their treatment-related differences from 1–4 d.p.i. and their natural clustering based on cultivar-
dependent variation (HCA).
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Hierarchical cluster analysis (HCA) graphically presents clusters of the high-dimensional
data in the form of a dendrogram based on dissimilarity and similarity between the sam-
ples [36]. In this study it was used to evaluate whether groupings emerge from the data
based on treatment and/or cultivar-related differences. The bottom-up model (Figure 3B,D)
employs an algorithm to cluster each observation based on their similarities/differences and
then iteratively combines the most comparable clusters at each step [37]. The computed HCA
models show distinct groupings corresponding to the control and infected samples among
the “Dunnart” and “SWK001” cultivars (Figure 3B). Treatment-related (control vs. treated)
and time-related groupings were additionally formed within each major cluster of the two
respective cultivars (Figure 3D). To better interpret the biochemical differences revealed
by PCA and HCA in oat responding to Ps-c infection, a supervised modelling method,
orthogonal partial least squares discriminant analysis (OPLS-DA) was used.

OPLS-DA was applied as a binary classifier that aids in extracting discriminatory
variables underlying differential groups [33,38]. The supervised method ensures separation
in the scores-space between different experimental groups, as illustrated (Figure 4A,C). The
infected and vehicle control groups were used for sample classification for the “Dunnart”
cultivar using OPLS-DA modelling (Figure 4A) and shows clear separation in the score
space, between the control and infected groups. Figure 4B also indicated clear group
separation between the “Dunnart” and “SWK001” infected groups. To confirm the validity
and reliability of the computed model, these supervised models were validated using a
variety of validation methods [39]. Cross-validation analysis of variance (CV-ANOVA)
was used to test the models’ reliability, with significant models having p-values of <0.05.
Furthermore, the OPLS-DA models’ performance was assessed using receiver operating
characteristic curve (ROC) models, with perfect classification represented by the ROC curve
passing through the top left corner, indicating perfect sensitivity and specificity (Figure 5C).
Finally, permutation tests revealed that the OPLS-DA models were statistically superior to
the generated permutation models, with the original OPLS-DA model having a higher R2

and Q2 value (Supplementary Figure S5).
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between the control and infected “Dunnart” groups at 4 d.p.i. based on their leaf-extracted metabolic
profiles obtained in ESI(–) MS mode (R2 = 0.999, Q2 = 0.995, CV-ANOVA p-value = 1.89349 × 10−15).
(B) OPLS-DA scores plot illustrating the relationship among the infected “SWK001” and “Dun-
nart” plants at 4 d.p.i. based on their leaf-extracted metabolic profiles obtained in ESI(−) MS mode
(R2 = 0.999, Q2 = 0.996, CV-ANOVA p-value = 1.06365 × 10−14). (C) The corresponding OPLS-
DA loadings S-plot of (A). The pink and green circles indicate the values situated far out [1]
(p > 0.05, <−0.05 and p(corr) >0.5, <−0.5) in the S-plot, representing statistically significant ions that
are possible discriminatory variables between the control and infected “Dunnart” groups. (D) The
corresponding OPLS-DA loadings S-plot of (B). The pink and red circles indicate the values situated
far out [1] (p > 0.05, <−0.05 and p(corr) >0.5, <−0.5) in the S-plot, indicating statistically significant
ions that are possible discriminatory variables between the infected “SWK001” and “Dunnart” plants.
The green circle indicates the selected variable (avenanthramide A) for which validation models are
shown in Figure 5.
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the selected variable, avenanthramide A, that displayed changes among the “Dunnart” and “SWK001”
infected groups at 4.d.p.i. This metabolite is illustrated in red on the VIP plot (D) and circled on
the S-plot (Figure 4D). (B) Dot plot illustrating strong discrimination between infected groups of
the “SWK001” and “Dunnart” cultivars for the selected variable (avenanthramide A) as there is no
overlap between the groups. (C) Receiver operator characteristic (ROC) plot separating the infected
groups at 4 d.p.i. for the OPLS-DA model (Figure 4B). The ROC graph is a representation of the
performance of the binary classifier. As the curves passes through the top left corner, a model with
perfect discrimination is confirmed as having 100% sensitivity and 100% specificity. (D) A variable
importance for the projection (VIP) plot of Figure 4B, illustrates each variable, its importance and
how it contributes to the discrimination of the two groups.

The OPLS-DA loadings S-plots (Figure 4C,D) were used to evaluate and select sta-
tistically discriminatory variables (ions) among the treatment and control groups of the
two cultivars, as well as between the treated (infected) groups of both cultivars. OPLS-DA
models along with their corresponding loadings S-plots were constructed for the control
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vs. treated groups, time points and infected “SWK001” vs. “Dunnart” (18 in total for each
cultivar—not shown). Variable trends (Figure 5A), dot plots (Figure 5B) and variable impor-
tance in projection (VIP) plots (Figure 5D), were used to assess the statistical significance
and discriminability of the potential markers acquired from the S-plots. The variable trend
plot illustrates how the potential markers discriminate between two groups. A dot plot
(Figure 5B) was used to evaluate each selected variable from the respective S-plots. It
computes each observation as a unit and subsequently sorts each into “bins” that indicate
sub-ranges. There was no overlap between the strong discriminating variables [40,41]
as illustrated in Figure 5B. The VIP plots illustrate scores in the form of a column chart,
thereby providing a means to assess the importance of the variables in explaining how the
X and Y variables correlate to one another [42]. S-plot variables with VIP scores >1.0 and no
overlap between groups (illustrated by the trends and dot plots) were selected for further
investigation (Table 1).

Table 1. List of key signatory metabolites extracted and putatively identified from leaves of oat plants
treated with Pseudomonas syringae pv. coronafaciens. These distinguishing metabolites were selected
using OPLS-DA S-plots, which were validated with rigorous statistical validation methods (explained
in text—Figure 5). The metabolites reported here had VIP scores >1.0. Increases and decreases are
indicated for each treatment where infected (I) and controls (C) were compared for the cultivars
“Dunnart”- Dun and “SWK001”-SWK.

Putative Identification Molecular
Formula m/z Rt

(min)
Metabolite

Class

Cultivar/Condition
Dun
(I)

Dun
(C)

SWK
(I)

SWK
(C)

Coumaric acid C9H8O3 163.038 3.41 Phenolic acid • # - -

Phenylalanine C9H10NO2 164.069 1.69 Amino acid - - • #

Tryptophan C11H12N2O2 203.081 2.66 Amino acid - - • #

Oxododecanoic acid C12H22O3 213.147 17.25 Fatty acid - - # •
Traumatic acid C12H20O4 227.126 16.93 Fatty acid • # • #

Naringenin C15H12O5 271.148 8.37 Flavonoid # • - -

Hydroxylinolenic acid C18H30O3 293.211 21.64 Fatty acid - - • #

Avenanthramide A ** C16H13NO5 298.069 14.04 Phenolic amide • # - -

Jasmonic acid-valine C17H27NO4 308.092 18.36 JA conjugate - - • #

Avenanthramide C ** C16H13NO6 314.065 13.06 Phenolic amide • # - -

Gentisic acid glucoside C13H16O9 315.069 1.71 Phenolic acid - - • #

Jasmonoyl-isoleucine C18H29NO4 322.202 20.45 JA conjugate - - • #

Avenanthramide L C18H15NO5 324.085 15.77 Phenolic amide • # • #

Trihydroxyoctadecadienoic acid C18H32O5 327.214 16.68 Fatty acid # • • #

Avenanthramide B ** C17H15NO6 328.082 14.51 Phenolic amide • # - -

Coumaroylquinic acid C16H18O8 337.090 3.42 Chlorogenic acid • # - -

Feruloylserotonin C20H20N2O4 351.127 6.74 Phenolic amide • # - -

Rutamarin C21H24O5 355.159 1.58 Coumarin - - • #

Sinapaldehyde glucoside C17H22O9 369.119 13.63 Phenolic # • - -

Dihydroferulic acid glucuronide C16H20O10 371.096 5.54 Phenolic - - # •
Syringin C17H24O9 371.135 16.02 Phenolic # • - -

Sinapic acid glucose C17H22O10 385.116 4.52 Phenolic # • - -

Auriculoside C22H26O10 393.175 12.22 Flavonoid - - # •
Quercetin dimethyl ether

methylbutyrate C22H22O8 413.121 16.7 Flavonoid - - • #

Sophoraflavanone G C25H28O6 423.186 11.83 Flavonoid # • - -
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Table 1. Cont.

Putative Identification Molecular
Formula m/z Rt

(min)
Metabolite

Class

Cultivar/Condition
Dun
(I)

Dun
(C)

SWK
(I)

SWK
(C)

Vitexin C21H20O10 431.095 10.98 Flavonoid # • - -

Clerodin C24H34O7 433.234 22.84 Terpenoid • # - -

Isovolubilin C23H24O9 443.133 16.91 Flavonoid - - • #

Tubulosine C29H37N3O3 474.261 21.13 Alkaloid • # - -

1-Acyl-sn-glycero-3-
phosphoglycerol C22H42O9P 481.254 22.79 Phospholipid • # - -

Isoamoritin C31H38O6 505.255 21.51 Flavonoid • # - -

Formononetin glucoside malonate C25H23O12 515.247 14.2 Flavonoid - - • #

Dirhamnosyl-linoleic acid C28H48O11 559.311 21.9 Fatty acid • # - -

Isovitexin 2′′-O-arabinoside C26H28O14 563.139 # 10.33 Flavonoid # • # •
Vitexin 2′′-O-rhamnoside C27H30O14 577.154 10.75 Flavonoid # • # •
Acacetin 7-O-rutinoside C28H32O14 593.149 # 11.39 Flavonoid # • # •
Kaempferol rhamnoside

galacturonide C27H28O16 607.132 9.32 Flavonoid # • - -

Linarin monoacetate C30H34O15 633.181 9.32 Flavonoid # • - -

Prenylkaempferol diglucoside C32H38O16 677.207 14.51 Flavonoid # • - -

Tricin ether glucopyranoside C33H36O16 689.193 # 13.21 Flavonoid # • # •

Palmitoleic-linoleic glucoside C33H36O16 723.382 21.85 Fatty acid
conjugate • # - -

26-Desglucoavenacoside A C45H72O18 945.481 18.45 Steroidal saponin • # - -

Avenacoside A ** C51H82O23 1063.539 # 16.58 Steroidal saponin # • # •
(#) Indicates m/z value in positive ESI mode. Closed circles (•) and open circles (#) indicate increases and decreases
respectively (positively/negatively correlated to the condition). (-) Indicates metabolites that did not present as
discriminatory ions in the respective treatments and cultivars. (**) Metabolite identity was confirmed with an
authentic analytical standard (level 1) according to the Metabolomics Standards Initiative (MSI).

2.4. Metabolic Profiling of Ps-c Induced Changes in Infected Oat Leaves

For biochemical interpretation of metabolic changes in the leaf tissue of the tolerant
vs. susceptible oat cultivars responding to infection by Ps-c, as graphically illustrated by
the chemometric models, the statistically selected discriminatory metabolites from the
loadings S-plots were annotated and putatively identified (Table 1) and interpreted for their
potential biological roles in oat defence against Ps-c. The metabolites were annotated as
described in Section 4.8 and classified into the following metabolite groups: amino acids,
phenolics, phenolic amides, fatty acids, flavonoids, alkaloids, terpenoids, lipids, saponins
and plant hormones. Induced changes across these metabolite classes in the two cultivars
were metabolically characterised and showed alterations involved in the plant response to
the bacterial pathogen.

With heatmap analysis (Figure 6), the amount and presence of the respective metabo-
lites in various treatment and control groups for the respective cultivars were visualised
using data visualisation tools. Heatmaps were created using statistical analysis tools avail-
able on MetaboAnalyst [43] by utilising the average integrated peak areas of the individual
metabolites. The infographic shows clear differences among the treated and non-treated
groups for the respective cultivars. For example, the discriminant features/chemical profiles
of the two cultivars becomes obvious and readily explains the observed tolerant (“Dunnart”)
vs. susceptible (“SWK0001”) phenotypes. These profiles could demonstrate to be useful in
providing information on the chemical basis of disease resistance in oat plants against Ps-c,
and identify metabolic markers associated with resistance or susceptibility traits.
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Figure 6. Heatmap analysis of individual peak intensities of the putatively identified discriminatory
metabolites from oat leaves treated with Ps-c. The map was constructed (using the Pearson distance
and Ward’s linkage rule) to illustrate infected and control groups of the two respective cultivars,
“Dunnart” and “SWK001”. After Pareto-scaling the data, the mean peak intensities of each annotated
metabolite are displayed. Higher than average values are shown in brown, while lower values are
shown in blue, with each row representing discriminant features and each column representing
cultivars and treatment groups, respectively.

Amongst the identified metabolites (Table 1), the differential metabolic profiles be-
tween the treated and control groups based on the discriminatory ions present in the
hydromethanolic extracts were as follows: infected “Dunnart” had 2 flavonoids, 2 phenols,
2 fatty acids, 4 phenolic amides, 2 alkaloids, 1 lipid and 1 saponin (26-desglucoavenacoside
A) compared to the “Dunnart” control that showed a metabolic profile containing
9 flavonoids, 2 phenols, 1 fatty acid and 1 saponin (avenacoside A) as potential signa-
tory biomarkers. Infected “SWK001” presented a metabolic profile containing 3 flavonoids,
2 phenols, 4 amino acids and 3 fatty acids as discriminatory ions. In comparison, the
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“SWK001” control showed a metabolic profile generating 5 flavonoids, 1 phenol, 1 fatty
acid and 1 saponin (avenacoside A) as potential signatory biomarkers. The Venn diagram
(Figure 7) was constructed based on the differential metabolic profiles and illustrates partial
overlap and clear distinctions across the cultivars and the treated and control groups.
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Figure 7. Venn diagram displaying the partial overlap and differences of the statistically significant
discriminatory metabolites selected from the OPLS-DA models. Extracts from the infected and control
groups of the respective cultivars (tolerant “Dunnart” and susceptible “SWK001”) are compared. The
numerical values in the diagram represents the discriminatory metabolites (Table 1) that are unique to
the respective cultivars or treatments and conversely, also shared between the cultivars or treatments.

When compared to the controls, the tolerant “Dunnart” cultivar had a number
of metabolites that were particularly discriminatory for the infected group (coumaric
acid, traumatic acid, avenanthramide A, B, C and L, coumaroylquinic acid, feruloylsero-
tonin, clerodin, tubulosine, 1-acyl-sn-glycero-3-phosphoglycerol (n-C16:1), isoamoritin,
dirhamnosyl-linoleic acid, palmitoleic-linoleic glucoside and 26-desglucoavenacoside A)
as illustrated in the heatmap (Figure 6). These metabolites are thus potential markers for
the defence response of this particular cultivar to Ps-c. By comparison, the infected suscep-
tible “SWK001” cultivar groups showed several discriminatory metabolites compared to
the controls (phenylalanine, tryptophan, traumatic acid, hydroxylinolenic acid, jasmonic
acid-valine, gentisic acid glucoside, jasmonoyl-isoleucine, avenanthramide L, trihydroxy-
octadecadienoic acid, rutamarin, quercetin dimethyl ether methylbutyrate, formononetin
glucoside malonate and isovolubilin), making these metabolites possible metabolic markers
for the response of this cultivar to Ps-c.

Coumaric acid, as an example, is shown as a discriminatory metabolite for the “Dun-
nart” infected group. It serves as an entry point into the phenylpropanoid metabolic path-
way of secondary metabolites (Figure 8) which is additionally confirmed by Figure 9A,D
(pie charts), displaying the pathways in which this metabolite is involved, as well as how it
is distributed between cultivars and treatments as shown in Figure 10 (radar charts). When
comparing the metabolites involved in the response to the bacteria, the increasing presence
and abundance of avenanthramides from 1–4 d.p.i. among the two cultivars were illus-
trated using colour coded PCA scores plots, where “Dunnart” contained avenanthramide
A-C and L at an increasing presence from 1–4 d.p.i. in comparison to “SWK001” that
contained only avenanthramide L (Supplementary Figure S6). Based on the distribution
and presence of these metabolites, it is clear that the adaptive immune responses of the two
cultivars towards Ps-c were differentially reflected at the metabolome level. Furthermore,
the metabolomics analyses allowed a rapid and sensitive means of detecting the presence
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of specific secondary metabolites among the different treated cultivars, making it useful for
biomarker discovery related to plant-pathogen interactions.
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Figure 8. Pathway analysis summary of all MetaboAnalyst-computed metabolic pathways displayed
according to their significance or pathway impact. The graphic illustration shows all the matched
pathways arranged by p-values (y-axis; pathway enrichment analysis) and the pathway impact
values (x-axis; pathway topology analysis). Each node’s colour corresponds to its associated p-value,
and node sizes are determined by their impact values. Pathways with high impact: linoleic acid
(C18:2, n-6) pathway and the general secondary metabolite biosynthesis pathway are illustrated, and
furthermore the pathways with high statistical significance were: phenylpropanoid and flavonoid
biosynthesis pathways.

Defence-related metabolites do not work in isolation but are rather interconnected
to each other in different metabolic pathways. Metabolic pathway mapping was used
to uncover the most relevant pathways involved in oat responses to Ps-c infection for
biochemical interpretation of the post-treatment metabolic perturbations in oat plants. To
further analyse the metabolomic reprogramming induced by Ps-c infection, metabolomics
pathway analysis (MetPA) was performed (MetaboAnalyst 4.0). This highly sensitive
web-based tool is useful in the analysis and visualisation of metabolomic data and can
detect subtle changes among different metabolites. As a result, biological pathways can
be generated based on these concentration changes, or alternatively from a compound
list with known KEGG (Kyoto Encylopedia for Genes and Genomes) or HMDB (Human
Metabolome Data Base) compound identifiers (IDs) [43,44]. The computed metabolic
pathways are presented conferring to pathway significance or impact as shown in Figure 8.
The most significant pathways (displayed on the y-axis) were the phenylpropanoid-and
flavonoid pathways, whereas the most impactful pathways (displayed on the x-axis) were
the linoleic acid-and (in general) the secondary metabolite biosynthesis pathway.
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Figure 9. Pathways flagged from metabolomics analysis using MetaboAnalyst software. Signatory
metabolites involved in each pathway are illustrated in the form of pie charts according to their
relative intensities and presence across the different cultivars and treated groups. (A) The phenyl-
propanoid pathway, (B) the flavonoid pathway overlapping with the phenylpropanoid pathway
(*), and (C) the linoleic acid pathway that showed the highest impact after pathway enrichment
analysis, along with (D), the general secondary metabolite biosynthesis pathway. Some limitations in
MetaboAnalyst prevented the mapping of all annotated metabolites (Table 1). The different colours
indicate “Dunnart” infected (pink), “Dunnart control” (dark green), “SWK001” infected (red) and
“SWK001” control (light green). The metabolites synthesised via the phenylpropanoid-and flavonoid
pathways are some of the most widely occurring secondary metabolites that are involved in plant
development and defence against abiotic and biotic stresses, such as phenolics, flavonoids, coumarins
and lignin [45,46]. Both pathways are initiated with the conversion of phenylalanine to p-coumaroyl-
CoA and have some overlap, as shown (*) in Figure 9B. The presence and distribution of the phenolic
compounds, from both the phenylpropanoid and flavonoid pathways, across the plant kingdom at a
cellular, tissue and organ level emphasises the vast biological and biochemical functions important to
the survival of plants [47,48]. Phenolics have been known to play important roles in plant-pathogen
interactions as either pre-formed (phytoanticipins) or induced anti-pathogenic molecules (phytoalex-
ins) [49]. Linoleic acids (C18:2) are unsaturated fatty acids that are prevalent in plant membranes,
hence making them important for plant structure and maintaining water permeability and, addition-
ally, are involved in the formation of jasmonate, which act as signalling molecules in response to
tissue damage caused by insects, pathogens, herbivores or mechanical stress [50].
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Figure 10. Radar charts illustrating relative intensities of selected biomarker metabolites across
the different treated and control groups of the oat cultivars. (A) “Dunnart” infected vs. control,
(B) “SWK001” infected vs. control and (C) “Dunnart” infected vs. “SWK001” infected. The relative
peak intensities were averaged and illustrated as log-transformed values. The Venn diagram displays
the partial overlap and differences of the statistically significant variables from the treated and control
groups of the two cultivars. The numerical values illustrate the metabolites that were unique to the
respective cultivars and treatments (Figure 7). The “Dunnart” infected group shows the presence of
several metabolite classes (phenols, fatty acids, flavonoids, phenolic amides, alkaloids, lipids and
saponins) with the three unique phenolic amides (avenanthramide A–C) and 26-desglucoavenacoside
A being among the metabolites involved in plant defence for this cultivar. Conversely, the “SWK001”
cultivar lacked these phenolic amides and the 26-desglucoavencoside A saponin as discriminant ions.
The only overlap illustrated between the defence responses of “SWK001” and “Dunnart” are the
presence of traumatic acid and avenanthramide L as discriminatory variables for both these cultivars.

In addition to the heatmaps (Figure 6), differences regarding the relative intensities of
identified discriminatory metabolites were also explored among the treated and control
groups using colour coded PCA scores plots (Supplementary Figure S6), pie charts (Figure 9)
and radar charts (Figure 10). Pie charts (Figure 9) depict the relative intensities of the
respective metabolites among the various pathways. The general secondary metabolite
biosynthesis pathway (Figure 9D) shows p-coumaric acid converted to p-coumaroyl-CoA
and caffeoyl-CoA converted to feruloyl-CoA, the two precursor metabolites involved
in the synthesis of avenanthramides. Avenanthramide biosynthesis is initialised by the
enzymatic synthesis of p-coumaric acid from phenylalanine by phenylalanine ammonia
lyase (PAL) and cinnamate 4 hydroxylase (C4′H) or directly from tyrosine by tyrosine
ammonia lyase (TAL). p-Coumaric acid is then transformed into its activated CoA thioester
by 4CL, to condense with 5-hydroxyanthranilic acid, catalysed by hydroxyanthranilate
N-hydroxycinnamoyl transferase (HHT), to form avenanthramide A. Conversely, the p-
coumaroyl-CoA is often first converted to p-coumaroyl shikimate or quinate, in which
case it becomes hydroxylated by p-coumaroyl CoA ester 3′-hydroxylase to form caffeoyl-
CoA. Subsequently, the caffeoyl-CoA is condensed with 5-hydroxyanthranilic acid in the
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presence of HHT to form avenanthramide C. Finally, avenanthramide C is methylated by
the caffeoyl-CoA O-methyltransferase (OMT) enzyme to form avenanthramide B [51–53].

VIP scores plots (Supplementary Figure S7), generated using MetaboAnalyst, indicates
the key discriminatory metabolites with a VIP score of >0.5 which are considered significant
in discriminating between the Ps-c treatment and controls among the two cultivars. Some
examples can be seen, as in the case with avenanthramide L (Figure S7), which presented as
a discriminatory feature in the “Dunnart” and “SWK001” treated groups, with “SWK001”
showing a greater abundance. As before, the averaged peak intensities of each metabo-
lite were combined to create radar charts/radial plots (Figure 10), this time comparing
metabolic alterations among the individual cultivars in response to bacterial infection of the
leaf tissue. A variety of metabolites are presented in the corresponding radar plots based
on their log-transformed averaged peak intensities. In Figure 10A,B clear differences and
correlations can be seen between “Dunnart” and “SWK001” treated and control groups as
well as between “Dunnart” and “SWK001” treated groups (Figure 10C). Avenanthramides
A, B and C, for example, are shown to be least abundant in “SWK001” and most abundant
in “Dunnart” (Figure 10C). These charts are therefore informative in differentiating among
the various cultivars and treatments based on the respective discriminatory metabolites.

3. Discussion

Immune surveillance by the host involves both extracellular-and intracellular recog-
nition (PAMP-triggered immunity or PTI, and effector-triggered immunity (ETI). In turn,
some pathogens are able to counter activated plant defences through the injection of sup-
pressors, resulting in Effector-triggered susceptibility (ETS) [23]. In general, the sum of PTI
and ETI, minus inhibitory effects due to ETS (taking timing and extent of responses into
account), would determine the phenotypic outcome as resistant, tolerant or susceptible.

Metabolomics investigations into plant-microbe interactions have opened avenues to
examine the intricate details of activation and re-direction of plant metabolism as an adap-
tive strategy upon initiation of defence in Sorghum bicolor against infection by Burkholderia
andropogonis [54] and Colletotrichum sublineolum [55]. In previous studies on tomato, Solanum
lycopersicum [56], metabolomics has been applied for comparative metabolic phenotyping
to identify metabolic signatures linked to varied response capacities predicted by pheno-
typic plasticity in cultivars with different resistance capabilities [57]. Similar to this study,
the phenylpropanoid-and associated pathways were revealed as the fundamental hub
of induced defences against Ralstonia solanacearum [56] and Phytophthora capsici [58]. In-
creased quantities and diversity of metabolites linked to defence suggested cultivar-specific
differences in the mode and speed of resource redistribution.

Changes in the composition of the oat leaf metabolome were found to indicate an
inducible phenotype in the host plant when inoculated with Ps-c. A comparison of the
differential metabolites that could be positively annotated in leaf extracts from inoculated
plants is presented, revealing discriminating metabolic signatures linked to tolerant (“Dun-
nart”) vs. susceptible (“SWK001”) metabolic phenotypes that underpin defence metabolism
and define the defensive capabilities of tolerant vs. susceptible oat cultivars.

Given the dynamic nature of the plant metabolism, qualitative and quantitative dif-
ferences in specific metabolites or classes within broader metabolomic profiles may have
an impact on the outcome of an infection response [58]. These metabolites (Table 1 and
explained below) were observed to accumulate in varied amounts and with different accu-
mulation patterns in the leaves of the two cultivars. These patterns suggest that differential
reprogramming has occurred over time. This can take the form of high or low accumulation
at specified time points, indicating early-, late or oscillatory responses. Infected plants
re-adjust their metabolomes toward inducible defence responses to limit pathogen entry
and multiplication, according to the time-dependent reprogramming [58].

Among the triggered alterations, plant hormones were identified namely jasmonates
(jasmonoyl-isoleucine, jasmonic acid-valine) and traumatic acid. Jasmonates are produced
as a signalling hormone in response to pathogen attack and causes the plant to reconfigure
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its metabolism to produce potent defensive secondary metabolites [59]. This process is
facilitated by the jasmonate signalling pathway that leads to the rapid accumulation of
jasmonic acid (JA) and its bioactive form jasmonoyl-isoleucine, which presented as a
discriminatory metabolite for treated “SWK001”, contrary to the treated “Dunnart” where
it did not present as discriminatory. This can possibly be ascribed to differences in the
defence responses active in the cultivars. The timing and extent of jasmonate responses
depend on the plant, tissue type, type of stress and the environmental conditions [60].
“Dunnart” could have therefore, had a lower abundance due to an earlier mobilisation of
the pathogen-triggered signals and subsequent conversion and deactivation of the bioactive
jasmonoyl-isoleucine into a non-active conjugate when it was no longer needed. These
signalling hormones cause transcriptomic and metabolic reconfigurations that aid in plant
defence responses [61,62]. Many different jasmonate precursors and derivatives have been
known to exhibit biological activity, including jasmonic-amino acid conjugates [63], of
which two were identified in this study in response to Ps-c infection. Traumatic acids are
organic compounds that are often referred to as plant growth and development regulators
that participate in the regulation of plant metabolism [64]. Traumatic acid is generally
classified as a wound hormone and has been found to accumulate in large quantities around
plant wounded areas [65]. It has, however, also been identified as an induced resistance
metabolite for barley against Fusarium head blight disease [66] and its detection in oats due
to Ps-c infection suggest an additional defensive role. Traumatic acid and JA biosynthesis
occurs from the octadecanoic pathway via either linoleic acid or linolenic acid [50,65,67].
These are both 18-carbon unsaturated fatty acids precursors that were also identified among
the discriminatory metabolites. The synthesis of these hormones initiates a physiological
response in plants to increase the production of defence related compounds like phenolics,
flavonoids, alkaloids and terpenes [68].

Phenolic acids are produced and accumulate in plant tissues in response to stress
and/or pathogen attack, where they act as protective agents against invading organisms
like insects, fungi, nematodes, and bacterial pathogens [69]. Phenolic acids are produced
by the phenylpropanoid pathway from phenylalanine through deamination, hydroxyla-
tion, and methylation [70]. A unique group of phenolic acid amides were identified as
discriminatory in the treated groups of both “Dunnart” and “SWK001” and were absent
in the respective controls. These phytoalexins, known as avenanthramides, are unique
to oat plants and consist of an anthranilic acid bound to a hydroxycinnamic acid via an
amide bond (Supplementary Figure S8). Over 40 different types of avenanthramides have
been identified and classified based on their structure in oat leaves and grains. The most
abundant avenanthramides are A, B and C [53,71], which were identified as discriminatory
ions/metabolites for the “Dunnart” treated groups. Avenanthramide L was also identified
in both the “Dunnart” and “SWK001” treated groups. The biosynthesis of these compounds
is initiated by the synthesis of p-coumaric acid from phenylalanine, both of which pre-
sented as discriminatory metabolites for the treated groups. Hydroxycinnamates (including
coumaric-, caffeic-, ferulic-and sinapic acids) are frequently upregulated upon pathogen
infection, reiterating their high biological role in plants as antibacterial and antifungal
metabolites [69,72]. The footprint of hydroxycinnamic acids is frequently seen in metabolite
profiles as the associated conjugates and derivatives [56,72]. Similarly, avenanthramides
are produced in response to pathogen infection or when oat leaves are treated with vari-
ous elicitors [73]. As phytoalexins, these inducible compounds function as both chemical
defence and as substrates for the reinforcement of cell walls in physical defence upon
exposure to pathogens [74]. The greater abundance and presence of these compounds in
“Dunnart”, could have contributed to the defence response and tolerance of the cultivar to
the bacteria, in contrast to the “SWK001” cultivar that only presented avenanthramide L as
a discriminatory metabolite and showed greater susceptibility in response to the treatment
and resulted in severe symptom development.

As nitrogen containing metabolites, alkaloids form part of important secondary
metabolites that play a crucial role in plant defence, especially as antimicrobial com-
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pounds [9]. Alkaloids are synthesised from amino acid precursors such as aspartate, lysine,
tyrosine, and tryptophan. These bioactive compounds have exceptional biological activi-
ties mostly attributed to the ability to form hydrogen bonds with proteins, enzymes and
receptors, due to the presence of a nitrogen atom (proton accepting) and amine hydrogen
group(s) (proton donating) [75,76]. Two alkaloids were identified as discriminatory in the
“Dunnart” treated groups that possibly contributed to the antimicrobial activity against
Ps-c. The first is tubulosine, an isoquinoline alkaloid derived from tyrosine and the second
feruloylserotonin (also a hydroxycinnamic acid amide) [77–79].

Another class of secondary metabolites that greatly contribute to plant defence is
the terpenoids. Terpenoids are a large group of phytochemicals that exhibit antimicro-
bial activity. The majority of terpenoids are antimicrobial due to their ability to inhibit
two crucial processes necessary for microbial survival, which includes oxidative phos-
phorylation and oxygen uptake [80,81]. Here, clerodin, a diterpenoid saponin, was found
as a discriminatory metabolite in leaf extracts from the infected “Dunnart” cultivar, but
not in the case of “SWK001”. Both cultivars had two saponin compounds that were
found to be discriminatory between the treated and control groups (avenacoside A and
26-desglucoavenacoside A). Avenacosides are phytoanticipins that are biologically inactive,
and in response to tissue damage or pathogen attack, are transformed into biologically
active 26-desglucoavenacosides by an enzyme called avenacosidase [82]. Here, avenacoside
A can be seen as showing a decrease in level from the control to the infected groups, with
26-desglucoavenacoside A increasing in the treated “Dunnart” cultivar. In the context of
plant defence, it is of interest that desglucoavenacoside A was not detected among the
discriminatory metabolites in “SWK001”. Thus, a clear response can be seen as the biologi-
cally inactive phytoanticipin was converted to its biologically active form upon treatment
with Ps-c. The ability of the compound to bind with sterols in the pathogen membrane
and disrupt its integrity is the primary mechanism of action against the pathogen. This
mechanism is considered to culminate in the creation of transmembrane pores as a result of
saponin aggregation with sterol groups, resulting in cell content leakage and, eventually,
cell death [82–85].

To summarise, distinct metabolic differences can be seen in the two investigated oat
cultivars in response to Ps-c infection. Based on the phenotypic and metabolic profiles,
the “Dunnart” cultivar showed a greater tolerance to Ps-c, which can be attributed to the
defence metabolites synthesised by this cultivar in an attempt to limit pathogen spread
and symptom development. “SWK001”, on the other hand, showed severe symptom
development that resulted in chlorotic wilted leaves, that could be attributed to the lack of
defence metabolites that are both adequate (present in high concentrations) and effective
(exhibiting anti-microbial activity), ultimately allowing the pathogen to overcome the
triggered plant defences and fully infect the leaves.

4. Materials and Methods
4.1. Oat Plant Cultivation

Seeds of the oat cultivars “Dunnart” (Agricol, Pretoria, South Africa) and “SWK001”
(ARC Small Grain Institute, Bethlehem, South Africa) were selected for infection through
an initial screening trial (Section 4.2). Seedlings were grown in 10 cm pots (15 seeds per
pot) containing germination mixture (Culterra, Muldersdrift, South Africa), and watered
twice a week. Greenhouse conditions were used to grow the cultivars which included: a
light/dark cycle of 12 h/12 h, with a light intensity of about 84 µmol/m2/s and temperature
between 25–28 ◦C. The study was planned to monitor the response of these cultivars to
bacterial infection over time, 1–4 days post-inoculation (d.p.i.). The seedlings were grown
in triplicate as biological replicates (one pot = one biological replicate) for every time point
and the corresponding control groups under the same environmental conditions. Once
the plants reached 3-week maturity (seedling stage or three-leaf stage), they were infected
(Section 4.3). Following optimisation, the entire experiment was repeated twice.



Metabolites 2022, 12, 248 19 of 26

4.2. Preparation of Pseudomonas syringae pv. coronafaciens

A culture/strain of Pseudomonas syringae, pathogenic on oat, was isolated by Dr. W. Kriel
(Starke Ayres Seeds, Bredell, South Africa) and its identity as P. syringae pv. coronafaciens
(including 16S rRNA sequencing-Supplementary Figure S9) was confirmed (Prof. T. Coutinho,
Centre for Microbial Ecology, University of Pretoria, South Africa) [15,19]. This Ps-c isolate was
then grown and maintained on nutrient agar. A colony was picked under sterile conditions in
a laminar flow cabinet and grown overnight at 28 ◦C in nutrient broth on an orbital shaking
incubator. The OD600 of the overnight culture was measured and diluted with 0.1% Tween
20 and phosphate buffered saline (PBS) to an OD600~0.3. The evaluation of the virulence of
the Ps-c strain on the oat cultivars was determined to be optimal at an OD600 of 0.3 based
on initial drop-inoculation tests [86] comparing OD600 = 0.1, 0.2 and 0.3. The tests were
done on inoculated leaf segments kept in a container with high humidity for 5 d. The
selection of “Dunnart” and “SWK0001” for further metabolomic investigation as cultivars
exhibiting a resistance response vs. a susceptible response, was based on initial visual
observation that showed “Dunnart” being able to tolerate the infection over the course of
5 d, and “SWK0001” showing symptoms and susceptible characteristics as soon as 2 d after
drop-inoculation, respectively (results not shown).

4.3. Inoculation of Oat Seedlings

At the three-leaf growth stage, oat leaves were inoculated by spraying with the Ps-c bac-
terial suspension (0.1% Tween 20 and phosphate-buffered saline, PBS), diluted to OD600~0.3.
The non-treated (vehicle) control plants were sprayed with a solution free of the bacteria
and the negative control groups were untreated (i.e., not sprayed with either solution) and
grown under normal growth conditions. The 50 mL of either the inoculum (containing
the bacteria) or the control (0.1% Tween 20 and PBS) solution was evenly sprayed onto the
leaves of the treated and non-treated control groups respectively. The plants were then
incubated in darkness in an incubator for 1 h to provide 100% relative humidity. Following
the 1 h incubation, the plants were removed and another 50 mL of either inoculum or
control solution was applied to the treated and non-treated control groups, respectively,
and further incubated for 6 h. After incubation the plants were again placed in the same
initial conditions as described (Section 4.1). Post-treatment harvesting of plants was done
for treated, non-treated and negative control groups at 1, 2, 3 and 4 d.p.i. by harvesting the
leaves and immediately snap freezing with liquid nitrogen to quench metabolic activity
associated with possible wounding and handling of the tissue. Leaves were kept at −80 ◦C
until metabolite extraction.

4.4. Metabolite Extraction and Sample Preparation

The leaf material was quenched in liquid nitrogen before being crushed into a powder
with a mortar and pestle. One gram of each sample was weighed out into 50 mL Falcon
tubes, followed by the addition of 10 mL 80% cold aqueous methanol (4 ◦C) (m/v ratio of
1:10). The methanol utilised in this experiment was of analytical grade (Rochelle Chemicals,
Johannesburg, South Africa). The mixture was then homogenised for 10 s per sample using
a probe sonicator (Bandelin Sonopuls, Berlin, Germany) set to 55% power. To avoid cross-
contamination, the equipment was cleaned between samples. In a benchtop centrifuge,
the homogenates were centrifuged at 5100× g for 20 min at 4 ◦C, next the supernatants
were retained and reduced by evaporating the methanol under vacuum to roughly 1 mL by
making use of a rotary evaporator set to 55 ◦C. The concentrated extracts were pipetted
into Eppendorf microcentrifuge tubes with a capacity of 2 mL and dried under vacuum in a
centrifugal evaporator. After that, 500 µL of 50% aqueous methanol (LC-grade, Romil Pure
Chemistry, Cambridge, UK) was added to the dried extracts to reconstitute and dissolve
the pellet. The extracts were then filtered (0.22 µm) using nylon syringe filters and injected
into 500 µL inserts fitted in chromatography vials, capped and stored at 4 ◦C until analysis.
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4.5. Sample Analyses Using Ultra-High-Performance Liquid Chromatography (UHPLC)

An Acquity UHPLC system (Waters Corporation, Manchester, UK) was used to analyse
2 µL of each sample, which separated into its constituents using a binary solvent on an HSS
T3 reverse-phase column (Waters Corporation, Billerica, MA, USA; 2.1× 150 mm× 1.7 µm),
thermostatted at 60 ◦C. MilliQ water and acetonitrile (Romil Chemistry, Cambridge, UK),
were used as solvents, with both containing 0.1% formic acid (Sigma, Munich, Germany)
and 2.5% isopropanol (IPA, Romil, Cambridge, UK). The run was set to 30 min per 2 µL
injection with an elution gradient performed using a binary solvent system consisting of
0.1% aqueous formic acid (solvent A) and 0.1% formic acid in acetonitrile (Romil Pure
Chemistry, Cambridge, UK; solvent B) at a flow rate of 0.4 mL/min. Initially the conditions
were set to 95% A and 5% B which was held for 1 min. At 25 min, a gradient was used to
change the chromatographic conditions to 10% A and 90% B, which was then modified to
5% A and 95% B at 25.10 min. Conditions were maintained for 2 min before being switched
back to the starting conditions at 28 min. Before the next injection, the analytical column was
allowed to equilibrate for 2 min. To monitor the state of the LC–MS equipment and assess
the the reliability and reproducibility of each analysis, pooled quality control (QC) samples
were included in each [87]. In addition, blank samples (50% MeOH) were added in the run
at random to measure the background noise. To account for analytical variability and have
the minimal number of required replicates for metabolomic investigations that involve
multivariate data analyses, each sample was analysed in triplicate (analytical/technical
replicates), which, when combined with three biological replicates, yielded n = 9.

4.6. Quadrupole Time-of-Flight Mass Spectrometry (q–TOF–MS)

To detect and capture metabolites data in both positive and negative electrospray
ionisation (ESI) modes, a high definition SYNAPT G1 Q-TOF mass spectrometer (Waters
Corpora-tion, Manchester, UK) was used in conjunction with the chromatography system.
MassLynx XSTM (Waters, Manchester, UK) was used as the controlling software for the
system. Leucine encephalin (554.2615 Da) was employed as the “lockmass” calibrant
(50 pg/mL, [M + H]+ = 556.2771 and [M − H]− = 554.2615), which was continuously
sampled every 15 s, yielding an average intensity of 350 counts per scan in centroid mode.
The mass accuracy window was 0.5 Da, while the typical mass accuracy ranged from 1 to
3 mDa. The capillary and sample cone voltages were set to 2.5 kV and 30 V, respectively. The
desolvation temperature was 450 ◦C, with a source temperature of 120 ◦C, a cone gas flow of
50 L/h, and a desolvation gas flow of 550 L/h. A scan time of 0.1 s was used with a m/z range
of 50–1200. At a flow rate of 700 L/h, high-purity nitrogen was employed for desolvation,
collision, and cone gas. Data was collected using five different mass spectrometry elevated
(MSE,) collision energies (a data-independent acquisition approach), ranging from 0 to
50 eV, to trigger fragmentation of the initial ions and capture as much structural information
as possible for later structural interpretation and metabolite identification [57,88].

4.7. Data Analysis

The MarkerLynx XSTM version 4.1 (Waters Corporation, Manchester, UK) application
manager was used to examine and process the data sets received. The software employed
the patented ApexTrack algorithm. The following processing parameters were used: re-
tention time (Rt) ranges from 2–23 min, while the m/z ranged from 50–1200 Da. The Rt
and mass windows were each set to 0.20 min and 0.05 Da, respectively. The intensity
threshold was set to 100 counts and the mass tolerance to 0.05 Da. For multivariate data
analysis (MVDA), the rectified data matrices were then exported to “soft independent
modelling of class analogy” (SIMCA-version 15) software (Umetrics, Umea, Sweden). To
reduce the dimensionality of the data sets and to study the underlying structures and
properties of the data, unsupervised models, such as principal component analysis (PCA)
and hierarchical clustering analysis (HCA) were utilised. To compare the two cultivars and
find discriminating ions, supervised orthogonal projection to latent structures discriminant
analysis (OPLS-DA) was utilised. Validation approaches were then applied to validate the
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OPLS-DA models and included cross-validated analysis of variance (CV-ANOVA) and
receiver operator characteristic (ROC) analysis [33,38,39].

4.8. Metabolite Annotation and Semi-Quantitative Comparison

The MarkerLynxTM software generated possible elemental compositions and accu-
rate masses that were used along with fragmentation patterns to identify the respective
metabolites. Each ostensibly recommended empirical formula was exported and searched
in a variety of databases, including MetaCyc [89], plant metabolic network (PMN) [90],
ChemSpider, mass bank of North America [91], Dictionary of Natural Products [92] and
KEGG (the Kyoto Encyclopaedia of Genes and Genomes) [93]. Unless otherwise stated,
metabolites were putatively identified as outlined by the Metabolomics Standards Initiative
(MSI) to level 2 [94].

The generated matrixes of the annotated metabolites were exported from MarkerLynx
XS™ as .csv files. MetaboAnalyst 4.0 is an online platform that can be used to analyse
metabolomics data statistically, functionally and integratively (www.metaboanalyst.ca,
accessed on 11 May 2021). In this study it was utilised for the visualisation of the MS files
which contained the m/z, Rt and peak intensities of metabolites separated by chromatogra-
phy and detected as ions by mass spectrometry. Data processing, integrity, missing values,
filtering, and normalisation were performed on MetaboAnalyst followed by Pareto-scaling
before statistical analyses to reduce variance within the features. Heatmap analyses employ-
ing a Pearson distance measure and the Ward clustering method (www.metaboanalyst.ca)
were utilised to compare the magnitude and occurrence of the detected metabolites among
the various cultivars and treatments [43,95]. Partial least square-discriminant analysis
(PLS-DA) was utilised to unravel the data in MetaboAnalyst as a means of comparing and
visualising the relative abundances of the identified metabolites across the various cultivar
treatments. The main discriminatory metabolites identified with VIP scores plots, had a
VIP score of >0.5 which are considered significant when comparing the Ps-c treatment and
controls among the two cultivars. Additionally, radar/radial plots were constructed based
on the means and relative intensities displayed as log-transformed values to better visualise
changes among the discriminating metabolites linked to the defence responses of the two
cultivars (Section 2.4).

5. Conclusions

A systems biology approach for understanding the biochemical and molecular mecha-
nisms underlying plant immune responses has become vital in the search for innovative
techniques to aid in plant defence against continually evolving pathogens. Oat plants
have been greatly underrated, with little research regarding the metabolic response of
this cereal to pathogenic threats. Therefore, this study reports on the metabolic markers
and mechanisms involved in oat response to pathogen attack. These markers indicate
gradations in cultivar-related defences and would thus provide insight into the tolerant
and/or susceptibility events that are involved under biotic stress.

Among the findings, some intriguing correlations can be drawn between the metabolic
profiles of the cultivars and their natural variance in comparison to their tolerant and
susceptible defence responses to Ps-c exposure. When comparing the “Dunnart” and
“SWK001” cultivars under normal conditions (controls), distinct metabolic profiles with
some overlap were observed. Avenacoside A, for example, was shown to be discrimina-
tory for both cultivars under healthy conditions, with the “Dunnart” cultivar having a
higher relative abundance as revealed via heatmap analysis. An increasing amount of
26-desglucoavencoside A, which is the biologically active counterpart, was detected after
exposure to Ps-c, and was identified as a discriminant metabolite for “Dunnart”. In the case
of the “SWK001” cultivar, however, no substantial convergence was seen, which could be
related to “Dunnart” having a higher abundance of avenacoside A in naïve plants. As a
result, prior to stress exposure, the metabolic profiles of the cultivars could potentially aid
in predicting the plant’s ability to react and produce a successful defensive capability.

www.metaboanalyst.ca
www.metaboanalyst.ca


Metabolites 2022, 12, 248 22 of 26

In this study, a LC–MS untargeted metabolomics method was applied to obtain a
detailed understanding of the defensive metabolism of oat plants in response to Ps-c. Multi-
variate data analysis identified signatory metabolites/discriminatory markers from diverse
metabolic classes, indicating a broad-based chemical defence response. Moreover, the
research showed possible metabolic pathways involved in metabolic alterations in response
to Ps-c, with phenylpropanoid and flavonoid biosynthesis being most significant, and
the most impactful pathways being linoleic-and secondary metabolite (avenanthramide)
biosynthesis pathways. The different biological actions of the secondary metabolite classes
listed are vital in preventing pathogen infections and preserving the plant under various
environmental circumstances. Ultimately, after inoculation with Ps-c, an untargeted LC–
MS-based metabolomics method can be employed to uncover the underlying metabolic
alterations and identify metabolic markers that contribute to the oat defence response. This
will aid in obtaining a more comprehensive understanding of the oat metabolome under
biotic stress, which can then be used in crop improvement, development and breeding
strategies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo12030248/s1, Figure S1: Key metabolic components that underlie plant responses to
abiotic and biotic stressors. Plant metabolomics is a powerful tool for studying the metabolic mech-
anisms that trigger and embody plant stress responses to environmental (left) and/or pathogenic
(right) threats; Figure S2: Halo blight disease severity index on Avena sativa L. inoculated with
Pseudomonas syringae pv. coronafaciens. Example images represent visual observation of disease sever-
ity using a 0–8 scale, where 0 = no disease symptoms, 1–3 = slight disease symptoms, 3–6 = moderate
disease symptoms and 6–8 = severe symptoms of yellowing and wilting; Figure S3: Typical symptom
development of halo blight on “Dunnart” leaves in response to Ps-c infection; Figure S4: Principal
component analysis (PCA) of the ESI(−) data illustrating the two infected oat cultivars and the
respective control groups; Figure S5: An orthogonal projection to latent structures discriminant anal-
ysis (OPLS-DA) model of the two infected cultivars, “Dunnart” and “SWK001”; Figure S6: Colour
coded PCA score plots showing the presence and increasing abundance of discriminatory ions in
the respective treated cultivars, “Dunnart” & “SWK001”, (red- high abundance, blue- low abun-
dance); Figure S7: Variable importance in projection (VIP) scores generated using MetaboAnalyst
softwate. Indicated are the top 15 discriminating ions in oat leaves from the respective cultivars
“Dunnart” & “SWK001” for their treated and control groups. Metabolites with a VIP score ≥0.5 were
considered to be significant in the discrimination between the cultivars; Figure S8: Avenanthramide
structures illustrating the core structure and various functional groups unique to each compound;
Figure S9: 16S rRNA sequence of Pseudomonas syringae pv. coronafaciens [19].
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