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Abstract: Fetal overnutrition predisposes offspring to increased metabolic risk. The current study
used metabolomics to assess sustained differences in serum metabolites across childhood and ado-
lescence among youth exposed to three typologies of fetal overnutrition: maternal obesity only,
gestational diabetes mellitus (GDM) only, and obesity + GDM. We included youth exposed in utero to
obesity only (BMI ≥ 30; n = 66), GDM only (n = 56), obesity + GDM (n = 25), or unexposed (n = 297),
with untargeted metabolomics measured at ages 10 and 16 years. We used linear mixed models to
identify metabolites across both time-points associated with exposure to any overnutrition, using
a false-discovery-rate correction (FDR) <0.20. These metabolites were included in a principal com-
ponent analysis (PCA) to generate profiles and assess metabolite profile differences with respect to
overnutrition typology (adjusted for prenatal smoking, offspring age, sex, and race/ethnicity). Fetal
overnutrition was associated with 52 metabolites. PCA yielded four factors accounting for 17–27% of
the variance, depending on age of measurement. We observed differences in three factor patterns
with respect to overnutrition typology: sphingomyelin-mannose (8–13% variance), skeletal muscle
metabolism (6–10% variance), and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF; 3–4%
variance). The sphingomyelin-mannose factor score was higher among offspring exposed to obesity
vs. GDM. Exposure to obesity + GDM (vs. GDM or obesity only) was associated with higher skeletal
muscle metabolism and CMPF scores. Fetal overnutrition is associated with metabolic changes in the
offspring, but differences between typologies of overnutrition account for a small amount of variation
in the metabolome, suggesting there is likely greater pathophysiological overlap than difference.

Keywords: pregnancy; obesity; gestational diabetes mellitus; metabolomics; childhood

1. Introduction

Maternal obesity and Gestational Diabetes Mellitus (GDM) are interrelated metabolic
conditions leading to fetal overnutrition, a term that refers to fetal exposure to excess
maternal fuels including but not limited to glucose, amino acids, and lipids [1]. Although
these conditions are interrelated, GDM with or without maternal obesity may represent
different metabolic entities [2], and thus may have implications for in utero programming.
For instance, large epidemiological studies have demonstrated independent and exposure-
specific effects of GDM or obesity in relation to offspring outcomes (e.g., obesity vs. fat mass
% vs. cardiovascular disease vs. diabetes) [1,3–6]. In 597 adult offspring of Danish women
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with GDM, there was an eight-fold increased risk of pre-diabetes or diabetes [3]. Among
over 4500 mother–offspring pairs from an international multicenter cohort, GDM has been
associated with a 5% risk difference in offspring obesity during adolescence, even after
accounting for maternal body mass index (BMI) [4]. In a Swedish population-based cohort,
age-adjusted cardiovascular disease rates in offspring increased linearly with maternal BMI
status in pregnancy [5].

Recent data indicate that there are overlapping as well as distinct changes in the
metabolome of offspring [7–9], depending on exposure to these fetal overnutrition ty-
pologies (i.e., obesity or GDM). These studies have used metabolomics in offspring to
capture the consequences of exposure to maternal obesity or GDM. For instance, maternal
overweight/obesity, but not glucose tolerance status, has been associated with increased
branched-chain amino acids (BCAAs) in cord blood [7,10,11]. Maternal BMI and glucose
levels have been correlated with an offspring metabolite profile characterized by phospho-
and sphingo-lipids in childhood (5–7 years of age) [8]. Similarly, we have found that
exposure to GDM was associated with an offspring metabolite profile characterized by
higher phospholipids during childhood and adolescences [9]. However, this association
was attenuated after accounting for maternal pre-pregnancy BMI, which may represent
an overlapping biological pathway [9]. This biological overlap is likely related to the
effects of excess adiposity and insulin resistance, leading to increased glucose levels during
pregnancy [12]. Nevertheless, there may also be distinct biochemical/metabolic pathways
affected by exposure to maternal obesity and/or GDM. A more nuanced characterization
of such differences with respect to type of fetal overnutrition—i.e., exposure to maternal
obesity only, GDM only, or both—may elucidate differences in metabolic processes linking
these conditions to long-term offspring health.

The objective of this hypothesis-generating analysis was to extend current knowledge
on the relationship between fetal overnutrition and offspring metabolic health by leveraging
repeated untargeted metabolomics data in offspring across 6 years of follow-up. We
aimed to: (1) identify a set of metabolites associated with any type of fetal overnutrition;
(2) identify differences in offspring metabolite profiles with respect to maternal obesity
only, GDM only, or both, thereby shedding light on distinct and shared pathways, and
(3) assess the correlation of offspring metabolite profiles with conventional indicators of
metabolic health to aid in interpretation of the metabolite profiles identified.

2. Results
2.1. Characteristics

The mean (±SD) age of participants at the childhood visit was 10.4 ± 1.5 years (range,
6.0–13.9 years), and at the adolescent visit, it was 16.7 ± 1.2 years (range, 12.6–19.6 years).
Approximately half the participants were female, and 33% were exposed to any fetal
overnutrition (obesity or GDM). Maternal and child characteristics by fetal overnutrition
typology are presented in Table 1. The frequency of women who smoked during pregnancy
differed across typology: of the women with obesity and GDM, 20.0% reported smoking,
whereas the percentage of smokers among women with GDM only, obesity only, or neither
was 17.9%, 6.1%, and 7.2%, respectively. There was a higher percentage of Hispanic
offspring among women with obesity (57.6%), and a higher percentage of non-Hispanic
White offspring among women with GDM only or obesity and GDM (71.4% and 52.0%).
As expected, offspring of women with obesity and GDM had a higher birthweight-for-
gestational-age z-score. At each research visit, offspring of women with either obesity
or GDM tended to be younger. Offspring of women with obesity only had the highest
mean BMI.
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Table 1. Bivariate associations of fetal overnutrition typologies with participant characteristics.

Overnutrition Typology

No GDM or
Obesity Obese Only GDM Only GDM & Obesity

p 1

Maternal Characteristics n = 293 n = 66 n = 56 n = 25

Pre-pregnancy BMI (kg/m2) 23.2 ± 3.1 35.0 ± 5.3 24.0 ± 3.4 35.1 ± 4.1 -
Education level 0.10

<High school 3.1 (9) 6.1 (4) 5.4 (3) 4.0 (1)
High school or some college 44.4 (130) 62.1 (41) 46.4 (26) 56.0 (14)
Associates degree or higher 52.6 (154) 31.8 (21) 48.2 (27) 40.0 (10)

Smoked during pregnancy 7.2 (21) 6.1 (4) 17.9 (10) 20.0 (5) 0.01
Offspring characteristics at
birth
Female 48.8 (143) 47.0 (31) 46.4 (26) 28.0 (7) 0.26
Race/ethnicity <0.001

Non-Hispanic White 42.3 (124) 18.2 (12) 71.4 (40) 52.0 (13)
Hispanic 44.0 (129) 57.6 (38) 21.4 (12) 44.0 (11)
Non-Hispanic Black 7.2 (21) 21.2 (14) 3.6 (2) 4.0 (1)
Non-Hispanic Other 6.5 (19) 3.0 (2) 3.6 (2) 0.0 (0)

Birthweight for gestational
age z-score 2 −0.4 ± 0.9 −0.3 ± 1.0 −0.1 ± 1.0 0.0 ± 0.9 0.02

Childhood visit
Age, years 10.7 ± 1.4 10.5 ± 1.4 9.5 ± 1.8 9.8 ± 1.5 <0.001
BMI (kg/m2) 18.6 ± 4.0 21.1 ± 5.5 18.1 ± 4.2 20.6 ± 5.7 <0.001
BMI z-score 0.2 ± 1.2 0.9 ± 1.1 0.1 ± 1.4 0.8 ± 1.1 <0.001
Kilocalories 1791.5 ± 565.3 1819.8 ± 581.1 1773.0 ± 495.5 1727.4 ± 415.2 0.90
Energy expenditure 68.4 ±11.3 65.15 ± 9.41 66.04 ± 9.39 65.64 ± 11.91 0.09
Adolescent visit
Age, years 16.7 ± 1.1 16.4 ± 1.3 15.8 ± 1.1 16.0 ± 1.0 <0.001
BMI (kg/m2) 22.7 ± 4.8 28.0 ± 7.1 22.6 ± 4.6 24.8 ± 6.3 <0.001
BMI z-score 3 0.2 ± 1.1 1.2 ± 1.0 0.4 ± 1.1 0.8 ± 1.1 <0.001
Kilocalories 1672.5 ± 717.0 1599.4 ± 762.3 1730.2 ± 887.6 1660.7 ± 577.5 0.88
Energy expenditure 70.5 ± 16.1 66.87 ± 11.89 67.8 ± 13.5 78.25 ± 20.12 0.05

1 ANOVA for continuous variables; Pearson chi-squared test for categorical variables. 2 Birthweight for gestational
age z-score based on U.S. national reference [13]. 3 Age- and sex-specific z scores according to the WHO
Growth Reference for children aged 5–19 years [14]. Abbreviations: BMI, Body Mass Index; GDM, Gestational
Diabetes Mellitus.

2.2. Identification of Metabolites in Offspring Associated with Any Fetal Overnutrition

The metabolome-wide association study (MWAS) yielded 52 metabolites across child-
hood and adolescence that were significantly associated with exposure to any fetal overnu-
trition (obesity or GDM) versus no exposure to overnutrition (false-discovery-rate [FDR]
p-value < 0.20) (Table 2). These metabolites were predominately from peptide, amino acid,
and lipid super classes.

Table 2. Metabolites in fasting serum of 440 youth in the Exploring Perinatal Outcomes among
Children (EPOCH) cohort across 6 years of follow-up (childhood–adolescences) that differed with
respect to exposure to any fetal overnutrition (OB and/or GDM vs. neither).

Compound Superclass Subclass p-Value FDR
p-Value

Tyrosine Amino Acid Tyrosine Metabolism 0.001 0.119
Homoarginine Amino Acid Urea cycle; Arginine and Proline Metabolism 0.002 0.144
2-hydroxy-3-methylvalerate Amino Acid Leucine, Isoleucine and Valine Metabolism 0.004 0.144
3-methyl-2-oxobutyrate Amino Acid Leucine, Isoleucine and Valine Metabolism 0.006 0.144
2-aminoadipate Amino Acid Lysine Metabolism 0.007 0.154
Glycine Amino Acid Glycine, Serine and Threonine Metabolism 0.007 0.154
N-acetylglycine Amino Acid Glycine, Serine and Threonine Metabolism 0.008 0.158
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Table 2. Cont.

Compound Superclass Subclass p-Value FDR
p-Value

Methionine sulfoxide Amino Acid Methionine, Cysteine, SAM, Taurine 0.010 0.167
Alpha-hydroxyisocaproate Amino Acid Leucine, Isoleucine and Valine Metabolism 0.014 0.190
Mannitol/sorbitol Carbohydrate Fructose, Mannose and Galactose Metabolism 0.003 0.144
Glucuronate Carbohydrate Aminosugar Metabolism 0.004 0.144
Mannose Carbohydrate Fructose, Mannose and Galactose Metabolism 0.005 0.144
Pantothenate Cofactors, Vitamins Pantothenate and CoA Metabolism 0.001 0.119
Alpha-ketoglutarate Energy TCA Cycle 0.001 0.119
Citrate Energy TCA Cycle 0.004 0.144
Malate Energy TCA Cycle 0.006 0.144
Succinate Energy TCA Cycle 0.012 0.181
12-HETE Lipid Eicosanoid 0.000 0.119
13-HODE + 9-HODE Lipid Fatty Acid, Monohydroxy 0.002 0.119
Hydroxy-CMPF 1 Lipid Fatty Acid, Dicarboxylate 0.005 0.144
Choline Lipid Phospholipid Metabolism 0.005 0.144
3-hydroxybutyroylglycine 1 Lipid Fatty Acid Metabolism(Acyl Glycine) 0.005 0.144
7-alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca) Lipid Sterol 0.006 0.144
Palmitoyl-arachidonoyl-glycerol (16:0/20:4) [2] 1 Lipid Diacylglycerol 0.006 0.144
N-oleoylserine Lipid Endocannabinoid 0.007 0.154
1-linoleoyl-GPA (18:2) 1 Lipid Lysophospholipid 0.009 0.158
Hexanoylcarnitine (C6) Lipid Fatty Acid Metabolism(Acyl Carnitine) 0.009 0.161
3-carboxy-4-methyl-5-propyl-2-furanpropanoate
(CMPF) Lipid Fatty Acid, Dicarboxylate 0.012 0.180

Glycosyl-N-palmitoyl-sphingosine (d18:1/16:0) Lipid Hexosylceramides (HCER) 0.012 0.181
1-(1-enyl-palmitoyl)-GPC (P-16:0) 1 Lipid Lysoplasmalogen 0.013 0.188
Sphingomyelin (d18:2/14:0, d18:1/14:1) 1 Lipid Sphingomyelins 0.014 0.190
Dodecadienoate (12:2) 1 Lipid Fatty Acid, Dicarboxylate 0.016 0.193
1-(1-enyl-palmitoyl)-2-oleoyl-GPE (P-16:0/18:1) 1 Lipid Plasmalogen 0.016 0.193
Sphingomyelin (d18:0/18:0, d19:0/17:0) 1 Lipid Dihydrosphingomyelins 0.016 0.193
Dihydroorotate Nucleotide Pyrimidine Metabolism, Orotate contain. 0.002 0.119
Urate Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine 0.009 0.158
N1-methyladenosine Nucleotide Purine Metabolism, Adenine contain. 0.010 0.167
Guanosine Nucleotide Purine Metabolism, Guanine contain. 0.013 0.189
Fibrinopeptide A, des-ala(1) 1 Peptide Fibrinogen Cleavage Peptide 0.001 0.119
Gamma-glutamylglutamate Peptide Gamma-glutamyl Amino Acid 0.004 0.144
Gamma-glutamylcitrulline 1 Peptide Gamma-glutamyl Amino Acid 0.004 0.144
Gamma-glutamyl-alpha-lysine Peptide Gamma-glutamyl Amino Acid 0.005 0.144
Glycylvaline Peptide Dipeptide 0.008 0.158
Gamma-glutamylthreonine Peptide Gamma-glutamyl Amino Acid 0.009 0.158
Gamma-glutamyl-2-aminobutyrate Peptide Gamma-glutamyl Amino Acid 0.009 0.163
Gamma-glutamylglycine Peptide Gamma-glutamyl Amino Acid 0.014 0.190
Phenylalanylglycine Peptide Dipeptide 0.015 0.193
Sulfate of piperine metabolite C16H19NO3 (2) 1 Xenobiotics Food Component/Plant 0.000 0.119
Sulfate of piperine metabolite C16H19NO3 (3) 1 Xenobiotics Food Component/Plant 0.001 0.119
Quinate Xenobiotics Food Component/Plant 0.004 0.144
Piperine Xenobiotics Food Component/Plant 0.004 0.144
Perfluorooctanesulfonate (PFOS) Xenobiotics Chemical 0.011 0.174

Abbreviations: OB, pre-pregnancy obesity; GDM, Gestational Diabetes Mellitus. Adjusted for maternal smoking
in pregnancy, child sex, race, and age at visit. 1 Tier 2 identification in which no commercially available authentic
standards could be found, but annotated based on accurate mass, spectral and chromatographic similarity to tier
1-identified compounds.

2.3. Associations between Fetal Overnutrition Typologies and Offspring Metabolite Profiles

We implemented the PCA on the 52 metabolites identified from the MWAS and selected
six factors to retain at each visit based on the break in Scree plot and shown in Table 3.

Following qualitative assessment of the top loading metabolites, we noted consistency
in factor composition for four factors across the two visits: γ-glutamyl-peptide factor,
sphingomyelin-mannose factor, skeletal muscle metabolism factor, and the 3-carboxy-4-
methyl-5-propyl-2-furanpropanoic acid (CMPF) factor. The first factor, which accounts for
the most variation in metabolites associated with fetal overnutrition (i.e., 44% variance
at the childhood visit, 20% at the adolescent visit), was driven by compounds in the γ-
glutamyl-peptide amino acid subclass (top three metabolites were: γ-glutamylglutamate
γ-glutamyl-α-lysine, γ-glutamylglycine) was well as some phospholipids and fatty acids.
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Table 3. Metabolite factors and factor loadings of the top metabolites at the childhood and
adolescent visits.

Factor Loading

Childhood Visit Adolescent Visit Compound Superclass Subclass

Factor label: γ-glutamyl
Factor 1

(44% variance)
Factor 1

(20% variance)
0.81 0.83 Gamma-glutamylglutamate Peptide Gamma-glutamyl Amino Acid
0.77 0.81 Gamma-glutamyl-alpha-lysine Peptide Gamma-glutamyl Amino Acid
0.72 0.69 Gamma-glutamylglycine Peptide Gamma-glutamyl Amino Acid

0.70 0.74 Methionine sulfoxide Amino Acid Methionine, Cysteine, SAM,
Taurine Metabolism

0.66 0.68 Glycylvaline Peptide Dipeptide
0.66 0.68 1-linoleoyl-GPA (18:2) Lipid Lysophospholipid
0.61 <0.40 13-HODE + 9-HODE Lipid Fatty Acid, Monohydroxy
0.61 0.65 Choline Lipid Phospholipid Metabolism

<0.40 0.62 Gamma-glutamylthreonine Peptide Gamma-glutamyl Amino Acid
Factor label: Sphingomyelin-mannose

Factor 3 a

(8% variance)
Factor 2 a

(13% variance)

0.61 0.58 Sphingomyelin (d18:2/14:0,
d18:1/14:1) Lipid Sphingomyelins

0.59 0.64 Sphingomyelin (d18:0/18:0,
d19:0/17:0) Lipid Dihydrosphingomyelins

0.54 0.59 Mannose Carbohydrate Fructose, Mannose and Galactose
Metabolism

0.52 0.58 Homoarginine Amino Acid Urea cycle; Arginine and Proline
Metabolism

0.45 0.50 N1-methyladenosine Nucleotide Purine Metabolism, Adenine
containing

Factor label: Skeletal muscle metabolism
Factor 4

(6% variance)
Factor 4

(10% variance)

0.63 0.76 Alpha-hydroxyisocaproate Amino Acid Leucine, Isoleucine and Valine
Metabolism

0.49 0.62 2-hydroxy-3-methylvalerate Amino Acid Leucine, Isoleucine and Valine
Metabolism

0.40 0.51 Malate Energy TCA Cycle

0.40 0.51 Urate Nucleotide Purine Metabolism,
(Hypo)Xanthine/Inosine

0.40 <0.40 Citrate Energy TCA Cycle

<0.40 0.41
7-alpha-hydroxy-3-oxo-4-
cholestenoate
(7-Hoca)

Lipid Sterol

Factor label: 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF)
Factor 6

(3% variance)
Factor 6

(4% variance)

0.74 0.91
3-carboxy-4-methyl-5-propyl-2-
furanpropanoate
(CMPF)

Lipid Fatty Acid, Dicarboxylate

0.71 0.90 Hydroxy-CMPF Lipid Fatty Acid, Dicarboxylate
Factor 2 a

(11% variance)
Factor 3 a

(13% variance)

0.58 0.94 Sulfate of piperine metabolite
C16H19NO3 (2) Xenobiotics Food Component/Plant

0.56 0.93 Sulfate of piperine metabolite
C16H19NO3 (3) Xenobiotics Food Component/Plant

0.51 0.85 Piperine Xenobiotics Food Component/Plant
0.50 <0.40 2-aminoadipate Amino Acid Lysine Metabolism

0.45 <0.40 2-hydroxy-3-methylvalerate Amino Acid Leucine, Isoleucine and Valine
Metabolism

Factor 5
(4% variance)

Factor 5
(4% variance)

0.50 <0.40 Sulfate of piperine metabolite
C16H19NO3 (2) Xenobiotics Food Component/Plant

0.49 <0.40 Sulfate of piperine metabolite
C16H19NO3 (3) Xenobiotics Food Component/Plant

0.43 <0.40 Piperine Xenobiotics Food Component/Plant
<0.40 0.53 Dodecadienoate (12:2) * Lipid Fatty Acid, Dicarboxylate
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Table 3. Cont.

Factor Loading

Childhood Visit Adolescent Visit Compound Superclass Subclass

<0.40 0.53 3-hydroxybutyroylglycine * Lipid Fatty Acid Metabolism (Acyl
Glycine)

<0.40 0.44 Hexanoylcarnitine (C6) Lipid Fatty Acid Metabolism (Acyl
Carnitine)

<0.40 0.57 N-acetylglycine Amino Acid Glycine, Serine and Threonine
Metabolism

<0.40 0.45 Glycine Amino Acid Glycine, Serine and Threonine
Metabolism

Note: Labeled factors are of interest due to similarity in non-xenobiotic composition at both the childhood and
adolescent visits. a Factor number differed across research visits. * Tier 2 identification in which no commercially
available authentic standards could be found, but annotated based on accurate mass, spectral and chromatographic
similarity to tier 1-identified compounds.

Although the γ-glutamyl-peptide factor score was lower among offspring of women
with obesity only vs. GDM only (Figure 1), covariate adjustment attenuated the difference,
and the confidence intervals included the null (Table 4).
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and GDM only) with metabolite factor scores across 6 years of follow-up among 444 youth in the 

Figure 1. Unadjusted associations (β [95% CI]) of fetal overnutrition (obesity and GDM, obesity only,
and GDM only) with metabolite factor scores across 6 years of follow-up among 444 youth in the EPOCH
cohort. (A) Longitudinal association fetal overnutrition typology and γ-glutamyl factor scores: offspring
of women with obesity only had significantly lower factor scores compared to offspring of women
with GDM only. (B) Longitudinal association fetal overnutrition typology and sphingomyelin-mannose
factor scores: offspring of women with obesity only had significantly higher factor scores compared
to offspring of women with GDM only. (C) Longitudinal association fetal overnutrition typology and
skeletal muscle metabolism factor scores: offspring of women with obesity and GDM had significantly
higher factor scores compared to offspring of women with GDM only, and offspring of women with
obesity only. (D) Longitudinal association fetal overnutrition typology and CMPF factor scores: offspring
of women with obesity and GDM had significantly higher factor scores compared to offspring of women
with GDM only. Offspring of women with obesity only had significantly higher factor scores compared
to women with GDM only. Abbreviations: CMPF, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid;
GDM, Gestational Diabetes Mellitus; Sphingomyelin, SM; OB, pre-pregnancy obesity. * p < 0.05.
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Table 4. Longitudinal associations (β [95% CI]) of fetal overnutrition (obesity and GDM, obesity only,
and GDM only) with metabolite factor scores across 6 years of follow-up among 444 youth in the
EPOCH cohort.

OB + GDM
vs.

GDM Only

OB + GDM
vs.

OB Only

OB Only
vs.

GDM Only

Factor Adjusted Adjusted Adjusted

γ-glutamyl −0.20 (−0.50, 0.10) −0.14 (−0.44, 0.17) −0.06 (−0.32, 0.20)
Sphingomyelin-mannose 0.29 (−0.04, 0.63) −0.03 (−0.38, 0.33) 0.32 (0.07, 0.57) *
Skeletal muscle metabolism 0.36 (0.09, 0.64) * 0.47 (0.21, 0.72) * −0.10 (−0.34, 0.13)
CMPF 0.50 (0.11, 0.89) * 0.05 (−0.34, 0.44) 0.45 (0.17, 0.73) *

Adjusted model includes maternal smoking in pregnancy, child sex, race, and age at visit. Abbreviations: CMPF,
3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid; GDM, Gestational Diabetes Mellitus OB, pre-pregnancy
obesity. * p < 0.05.

We found that the other three factors did differ by type of fetal overnutrition in
both unadjusted (Figure 1) and adjusted models (Table 4). The sphingomyelin-mannose
factor score, which had a similar top loading metabolite composition at each visit despite a
difference in factor order, was higher among offspring of women with obesity only vs. GDM
only. The skeletal muscle metabolism factor score was higher among offspring of women
with obesity and GDM vs. GDM only or obesity only. The CMPF factor score was higher
among offspring of women with obesity and GDM or obesity only vs. GDM only. The
associations of fetal overnutrition typology with key metabolites (i.e., factor loading > 0.40)
within each of these factors are shown in Supplementary Table S1. In general, the direction
and significance of associations with key metabolites are similar but smaller in magnitude
to those of the overall metabolite factors.

Sensitivity Analyses

After excluding women with type-one diabetes, the estimates with GDM only as the
reference were attenuated, but with no impact on statistical significance. After adjustment
for offspring BMI (a potential mediator to the relationship between fetal overnutrition
and later-life metabolite profiles), the difference in the sphingomyelin-mannose factor
scores between offspring of women with obesity only vs. GDM only was attenuated to
null (Supplementary Table S2). No other associations were impacted by adjustment for
offspring BMI. There were minimal changes in the significance of findings after adjusting
for offspring Tanner stage, kilocalories, physical activity, or birthweight-for-gestational-age
z-score (Supplementary Table S2). Adjusting for GDM treatment modality had minimal
impact on the magnitude of association and significance, with the greatest impact (6%
reduction in beta) observed for differences in the skeletal muscle metabolism factor between
obesity and GDM vs. obesity only. There was no statistical evidence that the association
between fetal overnutrition and metabolite profiles/factors scores were different in males
versus females (all p-values for interaction terms >0.1)

2.4. Correlation of Offspring Metabolite Profiles and Indicators of Metabolic Health

Pearson correlations of the four metabolite factors of interest with conventional
metabolic biomarkers and body composition are shown in Figure 2. In general, a higher
score for the γ-glutamyl-peptide factor correlated with lower measures of adiposity, higher
total cholesterol, and greater physical activity. The sphingomyelin-mannose factor was
strongly positively correlated with adiposity and lipids (high-density lipoprotein, low-
density lipo-protein, cholesterol). The skeletal muscle metabolism factor was positively
correlated with adiposity and insulin resistance, and inversely correlated with lipids. The
CMPF factor showed weak to no correlations with offspring indicators of metabolic health.
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Figure 2. Pearson correlation of offspring clinical metabolic and body composition markers and
metabolomic factors at the childhood and adolescent visits. * p < 0.05. (A) Correlations at ~10 years
of age. (B) Correlations at ~16 years of age. Abbreviations: CMPF, 3-carboxy-4-methyl-5-propyl-2-
furanpropanoic acid; SM, sphingomyelins.

3. Discussion
3.1. Summary of Overall Findings

In this longitudinal study of 440 mother–offspring pairs, we sought to identify sus-
tained differences in serum metabolites across childhood and adolescence among youth
exposed to fetal overnutrition, and explored differences in metabolite profiles with respect
to typology of fetal overnutrition (obesity only, GDM only, obesity and GDM). Exposure to
any fetal overnutrition was associated with persistent metabolic changes in the offspring,
but further differences between typologies of overnutrition account for a relatively small
amount of variation in the metabolome, suggesting that there is likely a greater degree of
pathophysiological overlap than distinct differences.
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3.2. γ-Glutamyl Peptides Factor

The greatest amount of variation in metabolites associated with developmental over-
nutrition was accounted for by the γ-glutamyl-peptide factor, although this factor did not
differ by overnutrition typology after adjustment for confounders. Key metabolites in
this factor were derivates of glutamate (non-essential amino acid), lysine (essential amino
acid), and glycine (gluconeogenic amino acid). GDM has been associated with a higher
glutamine/glutamate ratio in cord blood [10] and glutamine has been associated with
amino acid-mediated insulin secretion, and is sensitive to dietary changes [15–17]. Thus,
this latter finding in cord blood may reflect both offspring’s exposure to hyperglycemia
and the dietary and lifestyle changes implemented by women with GDM, which are also
likely adopted by their children.

Methionine sulfoxide was also a top loading metabolite in the γ-glutamyl-peptide
factor. This amino acid metabolite is a resulting compound of oxidation by reactive oxygen
species that influences redox homeostasis and regulates many metabolic pathways includ-
ing protein synthesis [18]. In mice with diet-induced obesity, deletion of enzymes required
for reduction of methionine sulfoxide resulted in diminished insulin receptor function [19],
highlighting a potential role of protein oxidation in insulin signaling. Thus, this component
of the γ-glutamyl-peptide factor may represent differences in oxidative stress associated
with fetal overnutrition.

Interestingly, we found that the correlation of the γ-glutamyl-peptide factor with
indicators of metabolic health in offspring was in a direction indicative of a more favorable
metabolic profile—lower adiposity, increased insulin sensitivity, and greater physical
activity. In children, plasma levels of glutamine, a precursor to glutamate, were higher
following a reduction in BMI [15]. Indeed, our finding that γ-glutamyl-peptide factor
metabolites were associated with both exposure to overnutrition and a more favorable
metabolic profile in offspring may simply reflect the precursor–product relationship of
glutamine and glutamate, and that some of these youth adopted healthier behaviors.

3.3. Sphingomyelin-Mannose Factor

Although there was no unifying theme among the metabolites in this factor, sub-
classes of metabolites in this pattern have been linked to obesity and metabolic risk [20–22].
Sphingomyelins and dihydrosphongomyelin are important constituents of plasma mem-
branes that interact closely with cholesterol and directly impact cholesterol homeostasis [23].
Indeed, we found that the sphingomyelin-mannose factor was more strongly correlated
with cholesterol in childhood and adolescence compared to any other factor. We found
a higher sphingomyelin-mannose factor score among offspring of women with obesity
only vs. GDM only, which was likely driven by offspring adiposity, as the estimate was
attenuated after adjusting for offspring BMI and this factor was strongly correlated with
concurrent subcutaneous and visceral fat.

Interpretation of our findings with this factor in the context of previous studies is
somewhat difficult given that prior studies have used different indicators of fetal overnutri-
tion (maternal weight gain, BMI, glucose levels, GDM), and metabolite profile composition
and choice of targeted assays has been study-specific. In a pre-birth cohort of 330 mother–
offspring pairs with metabolomics measured in childhood (5–7 years of age), a metabolite
profile characterized by phosphatidylcholines, plasmalogens, sphingomyelins and some
ceramides was positively correlated with maternal pregnancy weight gain, but negatively
correlated with fasting glucose [8]. These findings remained significant following adjust-
ment for maternal waist circumference—a marker of central adiposity. However, among
412 mother–offspring pairs, GDM was positively associated with cord blood metabolites
from sub-classes of phosphatidylcholines and sphingomyelins, but these differences were
no longer significant after adjusting for maternal BMI [24]. Taken together, the associations
of fetal overnutrition with phospholipids and sphingomyelins in offspring may represent
pathways of adiposity and glycemia that are distinct and specific to the lipid class, as well
as overlapping, and which operate through shared maternal–offspring risk of obesity.
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3.4. Skeletal Muscle Metabolism Factor

Key compounds in this factor included α-hydroxyisocaproate and 2-hydroxy-3-methy-
lvalerate, ketoacid metabolites of the branched-chain amino acids (BCAA) leucine and
isoleucine; malate and citrate, TCA cycle intermediaries [25]; and urate, a catabolite of
purine metabolism [26]. Skeletal muscle metabolism of BCAAs is critical for maintaining
energy homeostasis, as well as anaplerotic supply to the TCA cycle. In the current study, we
found that exposure to any fetal overnutrition was associated with a higher score for this
factor, especially among those exposed to obesity and GDM compared to either typology
alone. Further, in both childhood and adolescence, the skeletal muscle metabolism factor
was correlated with greater adiposity and HOMA-IR. In general, maternal BMI/obesity has
been positively associated with cord blood BCAAs and their metabolites [7,10,11], which
in turn, have been positively related to birthweight [7,11]. These data point toward the
early origins of the relationship between obesity, BCAA catabolism, and insulin resistance,
which has been repeatedly found in animal and adult populations [27–30].

3.5. CMPF Factor

CMPF and its hydroxylated metabolite hydroxy-CMPF are metabolites of furan and
long-chain omega-3 fatty acids [31,32]. Although data have linked CMPF to diabetes and
β-cell dysfunction, this finding was attributed to differences in dietary intake and not
directly implicated in glucose metabolism [33,34]. We found that offspring of women with
obesity and GDM or obesity only had higher CMPF factor scores compared to offspring
exposed to GDM only, suggesting an association specific to maternal obesity. However,
the CMPF factor accounted for only 3–4% of the variation in the metabolites associated
with any developmental overnutrition and was not strongly correlated with conventional
indicators of metabolic health in offspring. To our knowledge, prior studies in youth
have not identified associations of maternal glucose or adiposity with CMPF. Thus, in the
context of fetal overnutrition, the relevance of the differences in the CMPF factor requires
further investigation.

3.6. Strengths and Limitations

Our study has several strengths. First, the repeated metabolomics data are a unique
asset of the EPOCH cohort that allowed us to examine the association of fetal overnutrition
across two sensitive life stages for development of metabolic disease risk: childhood and
adolescence [6]. Assessment of sustained differences in metabolite profiles across these life
stages has important implications for chronic disease etiology, which typically take root
during the first decade of life [35,36], can be tracked across development [37], and eventually
manifest as overt chronic disease in adulthood [38]. Second, we used a multi-step analytical
approach that identified individual metabolites, as well as correlated metabolites depicted
by a data-driven latent construct, enabling us to capture the biochemical interactions among
compounds on the same and/or related metabolic pathways.

Limitations include only having data on GDM diagnosis (yes/no) and pre-pregnancy
BMI, without further detail on specifics of maternal glycemic physiology (e.g., insulin
secretion, insulin resistance). This may have contributed to the minimal differences in fetal
overnutrition typology detected, as these features have been related to specific differences
in neonatal outcomes [39]. Although we had a relatively large sample size of offspring
(n = 440), especially in comparison to other metabolomics analyses of intrauterine expo-
sures and outcomes in youth (n for most <350) [40,41], some fetal overnutrition-exposure
groups were relatively small (e.g., obesity and GDM), which may have impacted our
power to detect specific contrasts with this group. It is also worth noting that the PCA
was implemented separately for the childhood and adolescence metabolite data. Thus,
while the composition of top-loading metabolites for the factors of interest were similar,
the weighting scheme for the factor loadings differed slightly between time points, po-
tentially hindering direct comparability of factors across the follow-up. However, this
approach is widely used in nutritional epidemiology to identify distinct dietary patterns
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both longitudinally within the same population, as well as for comparability purposes
across populations [42–44]. Future longitudinal studies with complex matrix-variate data,
similar to repeated measures of high-dimensional data, might consider the use of novel
two-way principal component methods [45]. Although the current study was hypothesis-
generating, it is worthwhile to note that the concurrent measurement of conventional
metabolic biomarkers and metabolomics hinders directionality and makes any inference on
causal mechanisms challenging. Finally, given the large number of metabolites used in the
MWAS approach, we cannot discount the potential for false-positive findings, though we
applied an (FDR) correction and implemented dimension reduction to reduce this possibility.

3.7. Conclusion and Future Direction

In this study of 444 mother–child pairs, fetal overnutrition, defined as in utero expo-
sure to maternal obesity, GDM or both, was associated with differences in fasting serum
concentrations of 52 metabolites in offspring across childhood and adolescence after FDR
correction. Further assessment of differences in metabolite profiles within typology of fetal
overnutrition revealed differences in sphingomyelin-mannose, skeletal muscle metabolism,
and CMPF metabolite profiles. However, these differences accounted for a relatively small
percent of variation in the metabolomics dataset, suggesting that although maternal obe-
sity and GDM are often regarded as distinct conditions, their impact on the offspring
metabolome does not differ greatly. Thus, studies investigating the impacts of obesity
and GDM on offspring metabolite profiles may consider maternal obesity and GDM not
as separate entities, but rather as degrees of severity within a metabolic spectrum. The
metabolite factors in this study were correlated with established indicators of adiposity
and metabolic risk in offspring, and thus, may capture some of the underlying metabolic
dysregulation and chronic disease risk associated with fetal overnutrition [3–5]. Given the
growing evidence that fetal overnutrition has impacts on offspring health across the life
span, future research is warranted to identify whether etiologic pathways, mechanisms,
and mediators linking fetal overnutrition to the metabolic differences found herein are
relevant to overt disease states.

4. Materials and Methods
4.1. Study Population

This hypothesis-generating analysis included mother–offspring pairs from the Ex-
ploring Perinatal Outcomes among Children (EPOCH) cohort. Eligible participants were
children exposed to maternal GDM and a random sample of children not exposed and
without intrauterine growth restriction (defined as birthweight-for-gestational-age score
<the 10th percentile) (n = 604). Eligibility criteria for EPOCH were offspring of singleton
pregnancies delivered between 1992 and 2002 whose biological mothers were members
of the Kaiser Permanente of Colorado Health Plan. Details on recruitment and study
population have been previously published [46]. In 2006–2009 and 2012–2015, offspring
were invited to complete two research visits: first in childhood between 6 and 14 years old
(mean age, 10.4 ± 1.5 years) and second in adolescence between 12 and 19 years old (mean
age, 16.7 ± 1.2 years). From here forward, these visits are referred to as the childhood
and adolescent visits, respectively. At both research visits, fasting blood was collected,
refrigerated immediately, processed within 24 h, and stored at −80 ◦C until the time of
analysis. These samples were used for untargeted metabolomics profiling and conventional
biomarker assays.

For the current analysis, we excluded women missing data on pre-pregnancy BMI
(n = 161), followed by offspring without sufficient blood volume for untargeted metabolomics
profiling (n = 3). The analytic sample for this study included 440 mother–offspring pairs.
In comparison to the 160 offspring who were not included in this analysis, the present
sample was slightly younger and had a lower proportion of females, lower proportion of
non-Hispanic white, and higher proportion of Hispanic youth.
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4.2. Assessment of Exposure to Fetal Overnutrition
4.2.1. Gestational Diabetes Mellitus

Women were screened for GDM based on the National Diabetes Data Group, which
follows a two-step approach [47]. Presence of a GDM diagnosis was abstracted from
medical records.

4.2.2. Obesity

Maternal pre-pregnancy BMI (kg/m2) was calculated from pre-pregnancy weight
abstracted from the medical records and height measured at the childhood visit. Obesity
was defined as a pre-pregnancy BMI ≥ 30.0 kg/m2.

4.2.3. Typology of Fetal Overnutrition

We assessed three typologies of fetal overnutrition: resulting from both maternal
obesity and GDM (n = 25), maternal obesity only (n = 66), and GDM only (n = 56). Offspring
of women without obesity or GDM were the reference group (n = 297).

4.3. Assessment of Metabolite Profiles in Offspring

Details on the untargeted metabolomic profiling in the EPOCH cohort have been
published [9,48]. Briefly, Metabolon © (Morrisville, NC, USA) carried out untargeted
metabolomics from the fasting serum collected at the childhood and adolescent visits using
a multi-platform mass spectroscopy (MS)-based technique. Serum samples from both visits
were analyzed at the same time, resulting in balanced batches and increased comparability
of relative metabolite concentrations across both time points. Prior to formal statistical
analysis, we removed metabolites with ≥20% missing values and imputed metabolites with
<20% missing using the k-nearest neighbor technique (k = 10). There were 766 metabolites
identified in both batches from the childhood and adolescent visit. Metabolite levels
were log10-transformated, normalized, and corrected for batch effects (as well as other
biological and technical variability) using the remove-unwanted-variation method (the
number of factors of unwanted variation estimated from the data [k] = 2). In this analysis,
we retained 637 metabolites at both the childhood and adolescent visit that were annotated.
All metabolite processing was performed using R (Version 3.5.3; Vienna, Austria).

4.4. Assessment of Conventional Biomarkers of Metabolic Risk in Offspring
4.4.1. Biomarkers

Fasting triglycerides (TGs), total cholesterol, high-density lipoprotein (HDL), low-
density lipoprotein (LDL), and glucose were measured using enzymatic kits. Insulin was
measured using a radioimmune assay, and leptin and adiponectin were measured using a
Multiplex assay kit, all by Millipore Corporation (Darmstadt, Germany). We calculated the
Homeostatic Model Assessment of Insulin Resistance (HOMA-IR). At both research visits,
research assistants measured offspring’ blood pressure twice in the sitting position using
an oscillometric monitor (Dinamap ProCare V100).

4.4.2. Anthropometric and Body Composition

At each research visit, offspring waist circumference, triceps and subscapular skinfold
thickness, height, and weight were measured. BMI was calculated as kg/m2, age- and sex-
specific BMI z-scores were derived using the World Health Organization (WHO) growth
reference for children aged 5–19 years [49], and the mean of triceps and subscapular
skinfolds were summed. MRI of the abdominal region was used to quantify visceral
adipose tissue (VAT) and subcutaneous adipose tissue (SAT) depots with a 3 T HDx Imager
(General Electric, Waukashau, WI, USA) by a trained technician. One axial, 10 mm, T1-
weighted image, at the umbilicus or L4/L5 vertebrae, was analyzed to determine SAT and
VAT content by a single reader, blinded to exposure status.
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4.4.3. Lifestyle Behaviors

At each research visit, total energy intake (calories/day) was assessed using the Block
Kid’s Food Questionnaire [50]. Average energy expenditure was calculated based on
number of minutes of moderate-to-vigorous activity per day based on a 3-day self-report
physical activity questionnaire [51].

4.5. Covariates

Maternal level of education, total household income, and smoking at any time during
pregnancy were self-reported during the childhood visit. Offspring race and ethnicity, sex,
and date of birth were self-reported at the first research visit.

4.6. Statistical Analysis

We assessed bivariate associations of maternal and offspring characteristics with
typology of fetal overnutrition and tested for statistical differences using an ANOVA for
continuous variables and Pearson chi-squared tests for categorical variables. This step, in
conjunction with prior knowledge of determinants of metabolic health in youth, informed
covariate selection for multivariable analysis. We then conducted the analysis in three
sequential steps outlined below.

4.6.1. Identification of Offspring Metabolites Associated with Any Fetal Overnutrition

We implemented a metabolome-wide association study (MWAS) using linear mixed
models to identify offspring metabolites across the childhood and adolescent visits that
were persistently associated with exposure to any type of fetal overnutrition.

Yij = β1x1i + β2x2i + X3iβ3 + x4ijβ4 + εij (1)

where Y is the metabolite for individual i at time j. x1 = intercept; x2 = fetal overnutrition
category (maternal obesity or GDM vs. neither); X3 = a vector of time-invariant factors
(maternal smoking, offspring sex, ethnicity and race); x4 = offspring age for individual i at
time j; ε = error term i at time j.

For these models, the outcome (Y) is repeated assessments of the metabolites for
individual i at time j (childhood and adolescent visits), βs are the main independent
variable/exposure of interest (fetal overnutrition: maternal obesity or GDM vs. neither),
and covariates (maternal smoking during pregnancy, offspring sex, and ethnicity and race,
and offspring age for individual i at time j). We included offspring ID as a repeated subject
statement to account for correlation between metabolites from the same individual with
an unstructured correlation matrix. Considering the number of tests and high degree of
correlation among metabolites, we employed a FDR described by Benjamini and Hochberg
(1995) at level α = 0.20 [52].

4.6.2. Associations of Fetal Overnutrition Typology with Offspring Metabolite Profiles

First, we consolidated the metabolites from Step 1 into distinct metabolite profiles
using principal component analysis (PCA), an unsupervised dimension-reduction approach
that creates latent variables (i.e., metabolite profiles) based on their intercorrelations. This
procedure, completed separately for metabolite data at the childhood and adolescent visit,
reduced the number of subsequent comparisons and enhanced interpretability given that
metabolites on related metabolic pathways are correlated with one another. Upon creation
of the PCA factors, we determined the number of factors to retain at each visit based on
visual inspection of the Scree plots. To interpret the factors, we assessed the composition of
each factor and focused on metabolites with positive factor loadings ≥0.40.

When assessing the composition of each factor at the childhood and adolescent visits,
we found that despite slight differences in the factor order—an indicator of the amount
of variation explained by each factor—there were factors with the same combination of
high-loading metabolites at both visits. For instance, the high-loading metabolites of the
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first factor at the childhood and adolescent visit were the same, as was the case for high-
loading metabolites of the third factor at the childhood visit and the second factor of the
adolescent visit, despite slight variation in the exact degree of loading. These factors, for
which metabolite composition was similar across the two visits, were of interest as they
represent persistent metabolic differences in the offspring’s metabolite profile that spanned
both time points.

We then used linear mixed models to examine associations of fetal overnutrition
typology with the metabolite factors across the childhood and adolescent visits. In the
models, fetal overnutrition was categorized as a four-level parameter: obesity and GDM,
obesity only, GDM only, and neither obesity nor GDM (reference) and repeated metabolite
factors were the outcome. We used contrast statements to compare the difference in our
response variable (metabolite factors) between different levels of the fetal overnutrition
parameter. This allows us to compare the difference in metabolite factor between all
three different combinations of our fetal overnutrition parameter. The contrasts used the
following specification: (1) obesity and GDM vs. GDM only, (2) obesity and GDM vs.
obesity only, and (3) obesity only vs. GDM. If a factor was associated with a specific fetal
overnutrition typology, we then further explored differences in individual metabolites from
that factor. We assessed unadjusted associations followed by adjusted associations after
accounting for maternal prenatal smoking, and offspring sex, age, and ethnicity and race.

The following sensitivity analyses were conducted. Seven women in the GDM-only
typology had type-one diabetes; we excluded them in multivariable models to assess if
potential etiological differences of hyperglycemia in pregnancy impacted the conclusions.
Second, although birthweight, BMI, kilocalories, and physical activity are potential media-
tors to the relationship between fetal overnutrition and metabolite profiles during child-
hood and adolescence, we assessed the impact of including birthweight-for-gestational-age
z-score, and repeated measures of BMI, kilocalories, and physical activity in sperate mul-
tivariable models. Third, in multivariable models we additionally adjusted for Tanner
stage at the childhood and adolescent visits. Fourth, we assessed the impact of adjustment
for GDM treatment in the multivariable models. Lastly, we tested for an interaction with
offspring sex in unadjusted models to assess for evidence that the association between fetal
overnutrition and metabolite profiles/factors scores was different in males versus females.

4.6.3. Correlation of Offspring Metabolite Profiles and Indicators of Metabolic Health
and Lifestyle

We used Pearson correlation coefficients to inform interpretation of offspring metabo-
lite profiles captured by the factors and their correlation to concurrently measured conven-
tional indicators of metabolic health (conventional metabolic biomarkers, anthropometry,
and lifestyle). Statistical analyses were performed with SAS version 9.4 (SAS Institute, Cary,
NC, USA).
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metabolite factor scores across 6 years of follow-up among 444 youth in the EPOCH cohort.

Author Contributions: E.C.F. and W.P. designed research question; E.C.F. analyzed data with critical
oversight by W.P. and K.K.; E.C.F., K.K., C.C.C., D.D., and W.P. wrote the paper; G.M. provided insight
into metabolite factors. E.C.F. and W.P. had primary responsibility for final content. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Institutes of Health (NIH), National Institute of
Diabetes, Digestive, and Kidney Diseases (R01 DK068001). Francis is supported by NICHD grant no.
1K99HD108272-01. Cohen is supported by NIDDK grant no. T32DK07658. Perng is supported by a
CCTSI KL2-TR002534 award.

https://www.mdpi.com/article/10.3390/metabo12030265/s1
https://www.mdpi.com/article/10.3390/metabo12030265/s1


Metabolites 2022, 12, 265 15 of 17

Institutional Review Board Statement: The study was approved by Colorado Multiple Institutional
Review Board (#09-0563). The study was performed in accordance with the ethical standards as laid
down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed Consent Statement: Mothers provided written informed consent and children provided
written assent.

Data Availability Statement: Data Availability Statement: Because of the participant consent ob-
tained as part of the recruitment process, it is not possible to make these data publicly available. The
data resented in this study are available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Perng, W.; Oken, E.; Dabelea, D. Developmental overnutrition and obesity and type 2 diabetes in offspring. Diabetologia 2019, 62,

1779–1788. [CrossRef] [PubMed]
2. Kim, S.Y.; England, L.; Wilson, H.G.; Bish, C.; Satten, G.A.; Dietz, P. Percentage of gestational diabetes mellitus attributable to

overweight and obesity. Am. J. Public Health 2010, 100, 1047–1052. [CrossRef]
3. Clausen, T.D.; Mathiesen, E.R.; Hansen, T.; Pedersen, O.; Jensen, D.M.; Lauenborg, J.; Damm, P. High prevalence of type 2 diabetes

and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes. Diabetes Care 2008, 31, 340.
[CrossRef] [PubMed]

4. Lowe, W.L., Jr.; Scholtens, D.M.; Lowe, L.P.; Kuang, A.; Nodzenski, M.; Talbot, O.; Catalano, P.M.; Linder, B.; Brickman, W.J.;
Clayton, P.; et al. Association of gestational diabetes with maternal disorders of glucose metabolism and childhood adiposity.
JAMA 2018, 320, 1005–1016. [CrossRef] [PubMed]

5. Razaz, N.; Villamor, E.; Muraca, G.M.; Bonamy, A.-K.E.; Cnattingius, S. Maternal obesity and risk of cardiovascular diseases in
offspring: A population-based cohort and sibling-controlled study. Lancet Diabetes Endocrinol. 2020, 8, 572–581. [CrossRef]

6. Hivert, M.F.; Perng, W.; Watkins, S.M.; Newgard, C.S.; Kenny, L.C.; Kristal, B.S.; Patti, M.E.; Isganaitis, E.; DeMeo, D.L.; Oken, E.;
et al. Metabolomics in the developmental origins of obesity and its cardiometabolic consequences. J. Dev. Orig. Health Dis. 2015,
6, 65–78. [CrossRef] [PubMed]

7. Lowe, W.L., Jr.; Bain, J.R.; Nodzenski, M.; Reisetter, A.C.; Muehlbauer, M.J.; Stevens, R.D.; Ilkayeva, O.R.; Lowe, L.P.; Metzger,
B.E.; Newgard, C.B.; et al. Maternal BMI and glycemia impact the fetal metabolome. Diabetes Care 2017, 40, 902–910. [CrossRef]

8. Rahman, M.L.; Doyon, M.; Arguin, M.; Perron, P.; Bouchard, L.; Hivert, M.-F. A prospective study of maternal adiposity and
glycemic traits across pregnancy and mid-childhood metabolomic profiles. Int. J. Obes. 2021, 45, 860–869. [CrossRef]

9. Perng, W.; Ringham, B.M.; Smith, H.A.; Michelotti, G.; Kechris, K.M.; Dabelea, D. A prospective study of associations between in
utero exposure to gestational diabetes mellitus and metabolomic profiles during late childhood and adolescence. Diabetologia
2020, 63, 296–312. [CrossRef]

10. Shokry, E.; Marchioro, L.; Uhl, O.; Bermudez, M.G.; Garcia-Santos, J.A.; Segura, M.T.; Campoy, C.; Koletzko, B. Impact of maternal
BMI and gestational diabetes mellitus on maternal and cord blood metabolome: Results from the PREOBE cohort study. Acta
Diabetol. 2019, 56, 421–430. [CrossRef]

11. Perng, W.; Rifas-Shiman, S.L.; McCulloch, S.; Chatzi, L.; Mantzoros, C.; Hivert, M.F.; Oken, E. Associations of cord blood metabolites
with perinatal characteristics, newborn anthropometry, and cord blood hormones in project viva. Metabolism 2017, 76, 11–22.
[CrossRef]

12. Barbour, L.A.; McCurdy, C.E.; Hernandez, T.L.; Kirwan, J.P.; Catalano, P.M.; Friedman, J.E. Cellular mechanisms for insulin
resistance in normal pregnancy and gestational diabetes. Diabetes Care 2007, 30, S112. [CrossRef] [PubMed]

13. Oken, E.; Kleinman, K.P.; Rich-Edwards, J.; Gillman, M.W. A nearly continuous measure of birth weight for gestational age using
a United States national reference. BMC Pediatrics 2003, 3, 6. [CrossRef] [PubMed]

14. World Health Organization (WHO). Available online: https://www.BMI-for-AgeandSex(5--19Years) (accessed on 5 February 2021).
15. Reinehr, T.; Wolters, B.; Knop, C.; Lass, N.; Hellmuth, C.; Harder, U.; Peissner, W.; Wahl, S.; Grallert, H.; Adamski, J.; et al.

Changes in the serum metabolite profile in obese children with weight loss. Eur. J. Nutr. 2015, 54, 173–181. [CrossRef] [PubMed]
16. MacDonald, M.J.; Fahien, L.A.; Brown, L.J.; Hasan, N.M.; Buss, J.D.; Kendrick, M.A. Perspective: Emerging evidence for signaling

roles of mitochondrial anaplerotic products in insulin secretion. Am. J. Physiol.-Endocrinol. Metab. 2005, 288, E1–E15. [CrossRef]
17. Brunengraber, H.; Roe, C.R. Anaplerotic molecules: Current and future. J. Inherit. Metab. Dis. 2006, 29, 327–331. [CrossRef]

[PubMed]
18. Lee, B.C.; Gladyshev, V.N. The biological significance of methionine sulfoxide stereochemistry. Free Radic. Biol. Med. 2011, 50,

221–227. [CrossRef]
19. Styskal, J.; Nwagwu, F.A.; Watkins, Y.N.; Liang, H.; Richardson, A.; Musi, N.; Salmon, A.B. Methionine sulfoxide reductase A

affects insulin resistance by protecting insulin receptor function. Free Radic. Biol. Med. 2013, 56, 123–132. [CrossRef]

http://doi.org/10.1007/s00125-019-4914-1
http://www.ncbi.nlm.nih.gov/pubmed/31451868
http://doi.org/10.2105/AJPH.2009.172890
http://doi.org/10.2337/dc07-1596
http://www.ncbi.nlm.nih.gov/pubmed/18000174
http://doi.org/10.1001/jama.2018.11628
http://www.ncbi.nlm.nih.gov/pubmed/30208453
http://doi.org/10.1016/S2213-8587(20)30151-0
http://doi.org/10.1017/S204017441500001X
http://www.ncbi.nlm.nih.gov/pubmed/25631626
http://doi.org/10.2337/dc16-2452
http://doi.org/10.1038/s41366-021-00750-4
http://doi.org/10.1007/s00125-019-05036-z
http://doi.org/10.1007/s00592-019-01291-z
http://doi.org/10.1016/j.metabol.2017.07.001
http://doi.org/10.2337/dc07-s202
http://www.ncbi.nlm.nih.gov/pubmed/17596458
http://doi.org/10.1186/1471-2431-3-6
http://www.ncbi.nlm.nih.gov/pubmed/12848901
https://www.BMI-for-AgeandSex(5--19Years)
http://doi.org/10.1007/s00394-014-0698-8
http://www.ncbi.nlm.nih.gov/pubmed/24740590
http://doi.org/10.1152/ajpendo.00218.2004
http://doi.org/10.1007/s10545-006-0320-1
http://www.ncbi.nlm.nih.gov/pubmed/16763895
http://doi.org/10.1016/j.freeradbiomed.2010.11.008
http://doi.org/10.1016/j.freeradbiomed.2012.10.544


Metabolites 2022, 12, 265 16 of 17

20. Boini, K.M.; Xia, M.; Koka, S.; Gehr, T.W.B.; Li, P.-L. Sphingolipids in obesity and related complications. Front. Biosci. 2017, 22,
96–116. [CrossRef]

21. Lee, S.; Zhang, C.; Kilicarslan, M.; Piening, B.D.; Bjornson, E.; Hallström, B.M.; Groen, A.K.; Ferrannini, E.; Laakso, M.; Snyder,
M.; et al. Integrated network analysis reveals an association between plasma mannose levels and insulin resistance. Cell Metab.
2016, 24, 172–184. [CrossRef]

22. Samad, F.; Hester, K.D.; Yang, G.; Hannun, Y.A.; Bielawski, J. Altered adipose and plasma sphingolipid metabolism in obesity.
Diabetes 2006, 55, 2579. [CrossRef] [PubMed]

23. Slotte, J.P. Biological functions of sphingomyelins. Prog. Lipid Res. 2013, 52, 424–437. [CrossRef] [PubMed]
24. Lu, Y.P.; Reichetzeder, C.; Prehn, C.; von Websky, K.; Slowinski, T.; Chen, Y.P.; Yin, L.H.; Kleuser, B.; Yang, X.S.; Adamski, J.; et al.

Fetal serum metabolites are independently associated with gestational diabetes mellitus. Cell Physiol. Biochem. 2018, 45, 625–638.
[CrossRef] [PubMed]

25. Wang, J.; Liu, Y.; Lian, K.; Shentu, X.; Fang, J.; Shao, J.; Chen, M.; Wang, Y.; Zhou, M.; Sun, H. BCAA catabolic defect alters glucose
metabolism in lean mice. Front. Physiol. 2019, 10, 1140. [CrossRef] [PubMed]

26. Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Regulation of uric acid metabolism and excretion. Int. J. Cardiol.
2016, 213, 8–14. [CrossRef] [PubMed]

27. Lynch, C.J.; Adams, S.H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 2014, 10,
723–736. [CrossRef] [PubMed]

28. Wurtz, P.; Soininen, P.; Kangas, A.J.; Ronnemaa, T.; Lehtimaki, T.; Kahonen, M.; Viikari, J.S.; Raitakari, O.T.; Ala-Korpela, M.
Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 2013, 36, 648–655.
[CrossRef] [PubMed]

29. Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al.
Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17, 448–453. [CrossRef] [PubMed]

30. Cheng, S.; Rhee, E.P.; Larson, M.G.; Lewis, G.D.; McCabe, E.L.; Shen, D.; Palma, M.J.; Roberts, L.D.; Dejam, A.; Souza, A.L.; et al.
Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation 2012, 125, 2222–2231. [CrossRef]
[PubMed]

31. Zheng, J.S.; Lin, M.; Imamura, F.; Cai, W.; Wang, L.; Feng, J.P.; Ruan, Y.; Tang, J.; Wang, F.; Yang, H.; et al. Serum metabolomics
profiles in response to n-3 fatty acids in Chinese patients with type 2 diabetes: A double-blind randomised controlled trial. Sci.
Rep. 2016, 6, 29522. [CrossRef] [PubMed]

32. Price, N.D.; Magis, A.T.; Earls, J.C.; Glusman, G.; Levy, R.; Lausted, C.; McDonald, D.T.; Kusebauch, U.; Moss, C.L.; Zhou, Y.; et al.
A wellness study of 108 individuals using personal, dense, dynamic data clouds. Nat. Biotechnol. 2017, 35, 747–756. [CrossRef]

33. Prentice, K.J.; Luu, L.; Allister, E.M.; Liu, Y.; Jun, L.S.; Sloop, K.W.; Hardy, A.B.; Wei, L.; Jia, W.; Fantus, I.G.; et al. The furan
fatty acid metabolite CMPF is elevated in diabetes and induces beta cell dysfunction. Cell Metab. 2014, 19, 653–666. [CrossRef]
[PubMed]

34. Lankinen, M.A.; Hanhineva, K.; Kolehmainen, M.; Lehtonen, M.; Auriola, S.; Mykkänen, H.; Poutanen, K.; Schwab, U.; Uusitupa,
M. CMPF Does not associate with impaired glucose metabolism in individuals with features of metabolic syndrome. PLoS ONE
2015, 10, e0124379. [CrossRef] [PubMed]

35. Webber, L.S.; Srinivasan, S.R.; Wattigney, W.A.; Berenson, G.S. Tracking of serum lipids and lipoproteins from childhood to
adulthood: The bogalusa heart study. Am. J. Epidemiol. 1991, 133, 884–899. [CrossRef]

36. Rundle, A.G.; Factor-Litvak, P.; Suglia, S.F.; Susser, E.S.; Kezios, K.L.; Lovasi, G.S.; Cirillo, P.M.; Cohn, B.A.; Link, B.G. Tracking of
obesity in childhood into adulthood: Effects on body mass index and fat mass index at age 50. Child Obes. 2020, 16, 226–233.
[CrossRef] [PubMed]

37. Nguyen, Q.M.; Srinivasan, S.R.; Xu, J.-H.; Chen, W.; Kieltyka, L.; Berenson, G.S. Utility of Childhood glucose homeostasis
variables in predicting adult diabetes and related cardiometabolic risk factors. Bogalusa Heart Study 2010, 33, 670–675. [CrossRef]
[PubMed]

38. Lee, J.M. Why young adults hold the key to assessing the obesity epidemic in children. Arch. Pediatrics Adolesc. Med. 2008, 162,
682–687. [CrossRef]

39. Powe, C.E.; Allard, C.; Battista, M.-C.; Doyon, M.; Bouchard, L.; Ecker, J.L.; Perron, P.; Florez, J.C.; Thadhani, R.; Hivert, M.-F.
Heterogeneous contribution of insulin sensitivity and secretion defects to gestational diabetes mellitus. Diabetes Care 2016, 39,
1052–1055. [CrossRef]

40. Perng, W.; Hector, E.C.; Song, P.X.K.; Tellez Rojo, M.M.; Raskind, S.; Kachman, M.; Cantoral, A.; Burant, C.F.; Peterson, K.E.
Metabolomic determinants of metabolic risk in mexican adolescents. Obesity 2017, 25, 1594–1602. [CrossRef]

41. Perng, W.; Oken, E.; Roumeliotaki, T.; Sood, D.; Siskos, A.P.; Chalkiadaki, G.; Dermitzaki, E.; Vafeiadi, M.; Kyrtopoulos, S.;
Kogevinas, M.; et al. Leptin, acylcarnitine metabolites and development of adiposity in the Rhea mother–child cohort in Crete,
Greece. Obes. Sci. Pract. 2016, 2, 471–476. [CrossRef]

42. Perng, W.; Harte, R.; Ringham, B.M.; Baylin, A.; Bellatorre, A.; Scherzinger, A.; Goran, M.I.; Dabelea, D. A Prudent dietary pattern
is inversely associated with liver fat content among multi-ethnic youth. Pediatric Obes. 2021, 16, e12758. [CrossRef] [PubMed]

43. Batis, C.; Mendez, M.A.; Gordon-Larsen, P.; Sotres-Alvarez, D.; Adair, L.; Popkin, B. Using both principal component analysis and
reduced rank regression to study dietary patterns and diabetes in Chinese adults. Public Health Nutr. 2016, 19, 195–203. [CrossRef]

http://doi.org/10.2741/4474
http://doi.org/10.1016/j.cmet.2016.05.026
http://doi.org/10.2337/db06-0330
http://www.ncbi.nlm.nih.gov/pubmed/16936207
http://doi.org/10.1016/j.plipres.2013.05.001
http://www.ncbi.nlm.nih.gov/pubmed/23684760
http://doi.org/10.1159/000487119
http://www.ncbi.nlm.nih.gov/pubmed/29402850
http://doi.org/10.3389/fphys.2019.01140
http://www.ncbi.nlm.nih.gov/pubmed/31551816
http://doi.org/10.1016/j.ijcard.2015.08.109
http://www.ncbi.nlm.nih.gov/pubmed/26316329
http://doi.org/10.1038/nrendo.2014.171
http://www.ncbi.nlm.nih.gov/pubmed/25287287
http://doi.org/10.2337/dc12-0895
http://www.ncbi.nlm.nih.gov/pubmed/23129134
http://doi.org/10.1038/nm.2307
http://www.ncbi.nlm.nih.gov/pubmed/21423183
http://doi.org/10.1161/CIRCULATIONAHA.111.067827
http://www.ncbi.nlm.nih.gov/pubmed/22496159
http://doi.org/10.1038/srep29522
http://www.ncbi.nlm.nih.gov/pubmed/27404516
http://doi.org/10.1038/nbt.3870
http://doi.org/10.1016/j.cmet.2014.03.008
http://www.ncbi.nlm.nih.gov/pubmed/24703697
http://doi.org/10.1371/journal.pone.0124379
http://www.ncbi.nlm.nih.gov/pubmed/25874636
http://doi.org/10.1093/oxfordjournals.aje.a115968
http://doi.org/10.1089/chi.2019.0185
http://www.ncbi.nlm.nih.gov/pubmed/32191541
http://doi.org/10.2337/dc09-1635
http://www.ncbi.nlm.nih.gov/pubmed/20009096
http://doi.org/10.1001/archpedi.162.7.682
http://doi.org/10.2337/dc15-2672
http://doi.org/10.1002/oby.21926
http://doi.org/10.1002/osp4.65
http://doi.org/10.1111/ijpo.12758
http://www.ncbi.nlm.nih.gov/pubmed/33296951
http://doi.org/10.1017/S1368980014003103


Metabolites 2022, 12, 265 17 of 17

44. Batis, C.; Mendez, M.A.; Sotres-Alvarez, D.; Gordon-Larsen, P.; Popkin, B. Dietary pattern trajectories during 15 years of follow-up
and HbA1c, insulin resistance and diabetes prevalence among Chinese adults. J. Epidemiol. Community Health 2014, 68, 773–779.
[CrossRef] [PubMed]

45. Huang, L.; Reiss, P.T.; Xiao, L.; Zipunnikov, V.; Lindquist, M.A.; Crainiceanu, C.M. Two-way principal component analysis for
matrix-variate data, with an application to functional magnetic resonance imaging data. Biostatistics 2017, 18, 214–229. [CrossRef]
[PubMed]

46. Crume, T.L.; Ogden, L.; West, N.A.; Vehik, K.S.; Scherzinger, A.; Daniels, S.; McDuffie, R.; Bischoff, K.; Hamman, R.F.; Norris, J.M.;
et al. Association of exposure to diabetes in utero with adiposity and fat distribution in a multiethnic population of youth: The
exploring perinatal outcomes among children (EPOCH) study. Diabetologia 2011, 54, 87–92. [CrossRef]

47. National Diabetes Data Group. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance.
National Diabetes Data Group. Diabetes A J. Am. Diabetes Association. 1979, 28, 1039–1057. [CrossRef]

48. Perng, W.; Francis, E.C.; Smith, H.A.; Carey, J.; Wang, D.; Kechris, K.M.; Dabelea, D. Sex-specific metabolite biomarkers of NAFLD
in youth: A prospective study in the EPOCH cohort. J. Clin. Endocrinol. Metab. 2020, 105, e3437–e3450. [CrossRef]

49. De Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for
school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [CrossRef] [PubMed]

50. Cullen, K.W.; Watson, K.; Zakeri, I. Relative reliability and validity of the block kids questionnaire among youth aged 10 to 17
Years. J. Am. Diet. Assoc. 2008, 108, 862–866. [CrossRef]

51. Weston, A.T.; Petosa, R.; Pate, R.R. Validation of an instrument for measurement of physical activity in youth. Med. Sci. Sports
Exerc. 1997, 29, 138–143. [CrossRef]

52. Benjamini, Y.; Liu, W. A step-down multiple hypotheses testing procedure that controls the false discovery rate under indepen-
dence. J. Stat. Plan. Inference 1999, 82, 163–170. [CrossRef]

http://doi.org/10.1136/jech-2013-203560
http://www.ncbi.nlm.nih.gov/pubmed/24729424
http://doi.org/10.1093/biostatistics/kxw040
http://www.ncbi.nlm.nih.gov/pubmed/27578805
http://doi.org/10.1007/s00125-010-1925-3
http://doi.org/10.2337/diab.28.12.1039
http://doi.org/10.1210/clinem/dgaa467
http://doi.org/10.2471/BLT.07.043497
http://www.ncbi.nlm.nih.gov/pubmed/18026621
http://doi.org/10.1016/j.jada.2008.02.015
http://doi.org/10.1097/00005768-199701000-00020
http://doi.org/10.1016/S0378-3758(99)00040-3

	Introduction 
	Results 
	Characteristics 
	Identification of Metabolites in Offspring Associated with Any Fetal Overnutrition 
	Associations between Fetal Overnutrition Typologies and Offspring Metabolite Profiles 
	Correlation of Offspring Metabolite Profiles and Indicators of Metabolic Health 

	Discussion 
	Summary of Overall Findings 
	-Glutamyl Peptides Factor 
	Sphingomyelin-Mannose Factor 
	Skeletal Muscle Metabolism Factor 
	CMPF Factor 
	Strengths and Limitations 
	Conclusion and Future Direction 

	Materials and Methods 
	Study Population 
	Assessment of Exposure to Fetal Overnutrition 
	Gestational Diabetes Mellitus 
	Obesity 
	Typology of Fetal Overnutrition 

	Assessment of Metabolite Profiles in Offspring 
	Assessment of Conventional Biomarkers of Metabolic Risk in Offspring 
	Biomarkers 
	Anthropometric and Body Composition 
	Lifestyle Behaviors 

	Covariates 
	Statistical Analysis 
	Identification of Offspring Metabolites Associated with Any Fetal Overnutrition 
	Associations of Fetal Overnutrition Typology with Offspring Metabolite Profiles 
	Correlation of Offspring Metabolite Profiles and Indicators of Metabolic Health and Lifestyle 


	References

