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1 .- Variability in the expected half bandwidth and the expected intensity ratios of metabolite signals in 
complex matrices 

 
Automatic profiling tools must handle the variability in the signal parameters; and typical ap-

proaches tend to minimise the search space during the optimization of lineshape fitting. A common 
method to achieve this minimization is the development of bioinformatics solutions based on empirical 
observations. The solutions are mostly based on rules that permit the reduction of the search space nec-
essary to consider during the optimization of lineshape fitting. 

 
Figure S1. The relative intensities of signals of a same metabolite can be not constant. The three hippurate signals at the 
7.85-7.5 ppm region are shown for two datasets of human urine and for the BMRB standard. After normalizing the spectra 
by the left signal, the other two signals show clear differences in relative intensity even when coming from the same matrix. 
This variability is mediated by shimming differences and possible other effects related to differences in samples properties 
or preparation. As a result, the simultaneous lineshape fitting of all metabolites can be compromised as the assumption of 
constant relative intensity is not accomplished. 

 



 

 

Examples of these solutions are the calculation of the half bandwidth of a signal from the half band-
width of a chemical shape indicator (CSI) or the simultaneous lineshape fitting of all the signals of a same 
metabolite based on the expected ratios between its signal intensities. However, the assumptions which 
are based on, can be optimal but are not fully accomplished. For example, internal exploratory analyses 
of two human urine datasets with different lab protocols show that general assumptions are not present 
even in the same matrix. More concretely, the relative intensities of the signals of a same metabolite can 
be different (as shown in the hippurate signals in Figure S1) and the relationships between the half band-
widths of signals and the ones of a CSI such as TSP (as shown in the ratio between a creatinine signal and 
the TSP one in Figure S2) show differences. Signal lineshapes sometimes do not follow a strict Lorentzian 
lineshape: Voigt lineshapes (with a % percentage of Gaussian lineshape) might be necessary to fit when 
shimming variations and other possible kinds of effects appear mediated by sample properties or prepa-
ration. The breaking of assumptions can be not observed when doing controlled experiments based on 
spike-ins but appear when dealing with actual samples from complex matrices. As a result, bioinformatic 
solutions like the simultaneous lineshape fitting of all the signals of a same metabolite might be not robust 
to the breaking of these assumptions as the simultaneous lineshape fitting requires a prior strict estima-
tion of chemical shifts, half bandwidths and relative intensities which cannot be ensured. 

 
Figure S2. The ratio between half bandwidths of signals can be not constant. The TSP signal is used as CSI to estimate 
the expected half bandwidth of the rest of signals in a spectrum. However, in datasets of the same matrix (human urine), 
differences between the ratio of the half bandwidth of a signal such as a creatinine one and the one of the CSI signal can 
be observed. More concretely, on the dataset 1, the ratio creatinine/TSP is much higher than on the dataset 2. As a result, 
the assumption of constant ratio between half bandwidths is not accomplished and the estimation of accurate half band-
widths is compromised. 

 
2.- Creation of narrow spectrum-specific PIs in a human urine dataset 
 

For chemical shift, the median range in the spectrum-specific 95% PIs calculated was 5.69e-04 ppm. 
This value is lower than the bucket width (6e-04 ppm) and is a reduction of 87.16% in the median range 
in the spectrum-unspecific 95% PIs (4.43e-03 ppm) (Figure S3, left). 

For half bandwidth, the median range in the spectrum-specific 95% PIs calculated was 9.66% of the 
predicted half bandwidth. This value is a reduction of 57.32% in the median range in the spectrum-un-
specific 95% PIs (22.62% of the predicted half bandwidth) (Figure S3, middle). 



 

 

For intensity, the median range in the spectrum-specific 95% PIs calculated was 13.42% of the pre-
dicted intensity. This value is a reduction of 92.79% in the median range in the spectrum-unspecific 95% 
PIs (186.03% of the predicted intensity) (Figure S3, right). 

 
Figure S3. The spectrum-specific 95% PIs of the parameter values. PIs are much narrower than the spectrum-unspecific 
95% PIs. Chemical shift PIs are generally lower than the bucketing applied (6e-4 ppm). The narrow PIs enhance the per-
formance of error minimization algorithms to end in the right local minimum. 

 
3.- Values of algorithm parameters used during lineshape fitting 

Standard algorithm parameters used during lineshape fitting are available at: https://cran.r-pro-
ject.org/web/packages/minpack.lm/minpack.lm.pdf. The following parameters were tweaked to maxim-
ize quality/speed performance: 

• maxiter = 500 
• ftol = 1e-6 
• ptol = 1e-6 
• factor = 0.01 

 
4.- Signal-specific calculation of lineshape fitting error 
 

1. The spectrum region with the 90% central area below the quantified signal is identified. 
2. The root mean squared error from the linear model between the spectrum region lineshape and 

the fitted lineshape is estimated. 
3. The root mean squared error is normalized by the maximum of the spectrum region lineshape. 

 
5.- Analysis of coefficient of variation after profiling improvement 

The coefficient of variation is a quality indicator of profiling quality (the lower the noise added dur-
ing profiling, the lower the coefficient of variation). The mean lowering in the coefficient of variation after 
profiling improvement based on prediction information was 7.8%. In certain metabolite signals, the coef-
ficient of variation decreased more than 25%. 

 
 


