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Abstract: A reliable and practical renal-lipid quantification and imaging method is needed. Here, the
feasibility of an accelerated MRSI method to map renal fat fractions (FF) at 3T and its repeatability
were investigated. A 2D density-weighted concentric-ring-trajectory MRSI was used for accelerating
the acquisition of 48 × 48 voxels (each of 0.25 mL spatial resolution) without respiratory navigation
implementations. The data were collected over 512 complex-FID timepoints with a 1250 Hz spectral
bandwidth. The MRSI sequence was designed with a metabolite-cycling technique for lipid–water
separation. The in vivo repeatability performance of the sequence was assessed by conducting a
test–reposition–retest study within healthy subjects. The coefficient of variation (CV) in the esti-
mated FF from the test–retest measurements showed a high degree of repeatability of MRSI-FF
(CV = 4.3 ± 2.5%). Additionally, the matching level of the spectral signature within the same anatom-
ical region was also investigated, and their intrasubject repeatability was also high, with a small
standard deviation (8.1 ± 6.4%). The MRSI acquisition duration was ~3 min only. The proposed
MRSI technique can be a reliable technique to quantify and map renal metabolites within a clinically
acceptable scan time at 3T that supports the future application of this technique for the non-invasive
characterization of heterogeneous renal diseases and tumors.

Keywords: kidney; renal; lipid; fast MRSI

1. Introduction

The accumulation of lipids within and around kidney tissues has been linked to
different renal pathophysiologies [1–4]. Recently, it was suggested that fatty kidney disease
deserves designation as a specific clinical entity similar to fatty liver disease [5]. With
this increase in interest in renal lipids, a non-invasive in vivo method to investigate their
accumulation levels and locations is needed. Proton magnetic resonance imaging (MRI)
and spectroscopy (MRS) methods have shown their potential to assess lipid-related kidney
diseases, such as diabetic nephropathy, using fat fraction (FF) quantification [6–9].
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Different MRI techniques for detecting abdominal lipid have been introduced [10–14].
However, these imaging methods provide summed fat fraction information, as they cannot
differentiate lipid components (triglyceride fatty acids). Alternatively, the indirect detection
of intracellular lipid (since it is considered a biomarker of renal cell carcinoma (RCC))
has been previously tried by an MRI method based on the signal drop in out-of-phase
T1-weighted images [15–17]. This limitation of MRI can be addressed by implementing
MRS, which can directly identify specific fatty acids and other metabolites, such as choline
and lactate that can help in differentiating and grading RCC [18–23]. Due to the alteration in
lipid content within the tumor cells of RCC, differentiation from other histological subtypes
could be feasible by detecting intracellular lipid contents. For example, the elevation of the
amount of lipid peak resonating at 1.3 ppm was used to discriminate clear cell RCC from
non-clear cell RCC subtypes, which have less amount of this fatty acid [19]. This suggests
that MRS could be useful for RCC characterization and tumor grading. However, renal
MRS remains technically challenging. Although single-voxel MRS can differentiate lipid
peaks in the kidney, it does not provide their signal distributions within large heterogeneous
tumors. Conventional magnetic resonance spectroscopic imaging (MRSI) addresses this
limitation by delivering spatially resolved spectra over many voxels but requiring a long
acquisition time [24–26].

We recently demonstrated a high-resolution, density-weighted concentric ring tra-
jectory (DW-CRT) metabolite cycling (MC) free induction decay (FID) MRSI acquisition
technique to provide the spatially resolved musculoskeletal water and lipid spectra si-
multaneously [27]. In this work, our major goal was to investigate the feasibility of this
accelerated MRSI acquisition to acquire reliable quantitative renal data in healthy volun-
teers with the intent to establish the spectral signature of the lipid composition of healthy
renal tissues, which will be used as a future tool for the non-invasive characterization of
renal diseases.

2. Results

The MRSI data that were collected in 3 min and 16 s were used to calculate FF maps.
Examples of these MRSI FF maps are shown in Figure 1, where they were overlaid over
their corresponding structural MRI images.
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used as an anatomical marker to acquire data from the same axial slice. The color-coded area is the
coregistered MRSI fat-fraction map (masked about the left kidney) overlaid over its corresponding
structural MRI image.
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MRSI renal fat quantification per subject and the repeatability results were summarized
in Table 1. The calculated mean CV was 4.3 ± 2.5%, representing excellent repeatability.

Table 1. Fat quantification and its repeatability results.

Subject Mean FF (%) CV (%)

1 1.01 ± 0.05 4.90
2 1.60 ± 0.02 1.30
3 1.11 ± 0.06 5.80
4 1.69 ± 0.03 2.00
5 2.00 ± 0.15 7.40

FF, fat-fraction; CV, coefficient of variation.

As shown in Figure 2, the comparison between the spectral signature from the repeated
scans within the same anatomical region (kidney-cortex) showed a high consistency be-
tween the scans with high intrasubject repeatability of spectral signature (CV = 8.1 ± 6.4%).
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Figure 2. The spectral signature from the repeated scans within the kidney cortex. The image on
the corner shows the region of interest (dark blue box) where the spectra were evaluated. The solid
black line represents the mean signal, and the brown shade represents the standard deviation of the
test–retest signal acquired from the same anatomical region. The blue shade highlights the peak’s
bandwidth that has been covered to quantify the fat fraction. The labeled lipid peaks represent fatty
acids of different saturation (CH3 at 0.9 ppm, (CH2)n at 1.3 ppm, and CH2 around 1.6 ppm).

The structural images produced by MRSI also provided general anatomical features
comparable to MRI structural images, but with fewer details (Figure 3).
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(b) The PD-water-only-MRSI anatomical image (5 × 5 × 10 mm3) for the same subject. Although
spatial resolution and contrast are different (due to the variation in sequence parameters), similar
structural details of the anatomy were demonstrated by both sequences.

3. Discussion

In this work, our accelerated MRSI technique was evaluated for assessing renal fat
contents at clinically available magnetic strength (3T). The MRSI method showed promising
results. High reliability of fat-fraction quantification (CV < 5%) and good imaging abilities
(anatomical representation) were demonstrated. The signature of lipid spectra from the
same kidney region was also consistent between the scan sessions. MRSI data acquisition
was completed within about 3 min, which is relatively short compared to the most common
MRSI techniques. Based on our previous experiment [28], the DW-CRT trajectory not only
improves SNR and reduces side lobes but also offers time efficiency compared with EPSI
and conventional MRSI. DW-CRT achieves this by simultaneously sampling k-space in kx
and ky directions [29]. In contrast, a conventional MRSI acquisition time is given by (kx
points × ky points × TR), resulting in a longer scan time.

Although the MRSI was acquired without respiratory gating, the image and quantita-
tive data were of good quality. Scanning without respiratory gating helped to maintain
a short acquisition time. The main factor contributing to achieving good results without
respiratory gating is related to how data were collected and post-processed. Each data set
was composed of in-phase and out-of-phase spectra. The prominent water peaks within
these spectra were matched to compensate for potential motions. Due to the high SNR
water peak in the high-resolution MRSI voxel, non-water-suppressed metabolite-cycling
MRSI can detect the frequency changes induced by motions. Thus, non-water-suppressed
metabolite-cycling MRSI enables voxel-wise single-scan frequency, phase, and eddy cur-
rent correction of metabolite spectra before subtraction, resulting in improved spectral
quality [30]. However, this requires good shimming to reduce the peak’s width, improving
the water-peak matching process. In this process, the average of the measured spectral
linewidth was 24.5 ± 0.4 Hz, which was enough to achieve good outcomes. Although the
technique provided a high degree of reproducibility of fat fraction, it would be interesting
to acquire additional data sets with a respiratory gating method and to compare their
results in the future. The breath-holding effects on the spectral quality of visible metabolites
have been investigated in a previous MRS study [31]. In this previous study, the SNRs
of the peaks of lipids and trimethylamine (TMA) moiety of choline metabolites were im-
proved with breath-holding techniques, as less contamination from the surrounding tissue
occurred. It is worth mentioning that this improvement has been observed in a large single
voxel (8 mL), which suffers from more contamination if compared with the smaller voxels
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(0.25 mL) used in our method. In the same study, to employ the breath-holding approach
with multivoxel spectroscopy, they suggested filling the k-space in segments to allow the
patient to re-breathe. Although this segmentation of acquisition can allow a breath-holding
approach, it prolongs the scan session’s duration. Thus, the implemented post-processing
self-motion correction and smaller voxel sizes can promote our proposed method as a good
alternative to improve data quality and to reduce scan times.

The MRSI images provided structural information that is sufficient to determine
anatomical landmarks. For instance, as shown in Figure 3, one can identify kidneys and
liver within the MRSI, which is in good agreement with its corresponding MRI image.
However, the anatomical detail is not as good as what could be obtained with dedicated
MRI sequences due to the lower MRSI spatial resolution, which is a standard limitation of
most available MRSI sequences.

The exact MRSI sequence was previously tested on muscles and provided high-quality
quantification results [27]. Here, we tested it on a more challenging area (moving and
heterogeneous). In addition to extending the practicality of the sequence by granting more
applications through the body regions, we decided to evaluate the technique on the kidney
because of the clear need. According to the published reports in the field, there is some
heterogeneity among studies regarding the mechanisms, consequences, and localization of
renal lipid accumulation in the kidney, with a few in vivo studies performed on humans [1].
Additionally, the importance of metabolic imaging as a potential biomarker and research
aid has been expressed in earlier publications [2]. Moreover, a need for a reliable MR
spectroscopy method to quantify triglycerides in kidney structures was also expressed
in other studies [32]. Although single-voxel MRS showed its powerful ability to provide
unique information that can help diagnose many health disorders, it still faces several
challenges. Some limitations of renal-MRS include its relatively low spatial resolution
and the difficulty of assessing large heterogeneous tumors [18]. For instance, in addition
to lipid fatty acids, MR spectroscopy methods allow gathering extra information about
other metabolites such as choline, which was also used as a biomarker of RCC in the
past [20]. However, the choline peak was clearer in relatively larger tumors, which returned
to the potential volume effect factor that overwhelmed the choline peak [20]. Nevertheless,
the signature of metabolites in renal tissues is different between the cortex and medulla,
as shown in a previous ex vivo study [33]. This anatomical difference needs a higher
spatial resolution than what is used in conventional MRS techniques. Therefore, employing
MR spectroscopic imaging techniques that can provide the opportunity to evaluate large
heterogeneous tumors requires a higher spatial resolution (≥what was used in this work).
Accordingly, our proposed MRSI method can facilitate the non-invasive acquisition of
human kidney data to provide a clearer idea about renal lipid’s role in pathophysiology.
In addition to differentiating and grading RCC tumors, another potential application of
the proposed renal-MRSI can include the diabetic kidney, which has been evaluated before
using the MRS approach [9].

Although Dixon imaging methods can generate FF maps of a higher spatial resolution
and usually within a short scan time while covering a larger anatomical FOV, MRS provides
insight into the metabolism that is not achievable by other noninvasive methods [34].
Additionally, MRS is considered more accurate and used as the gold-stranded MR method
to quantify FF, as it directly measures fat and water peaks [35]. Compared to Dixon, MRS/I
methods can differentiate the signal of different fatty acids. In our study, we showed at
least three peaks up-field the water peak (see Figure 2). In Dixon, these lipid peaks are
summed up (undifferentiated). Several studies showed the importance of differentiating
fatty acids peaks, as some individual peaks can be a biomarker of specific diseases. For
example, the methylene lipid group (CH2)n is linked to arterial stiffness [36], while the
peak of the intramyocellular methylene (IMCL(CH2)n) is used as a biomarker for insulin
resistivity [37,38] and mitochondrial disorder MELAS [39]. In kidneys, the ratio of free
cholesterol and unsaturated fatty acid to saturated fatty acid at 1.3 ppm was suggested as
a biomarker for metastatic RCC, which might be helpful in post-therapy monitoring [21].
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The ratio between the renal lipid peak at 0.9 ppm over the lipid peak at 1.3 ppm was also
suggested to differentiate between patients with RCC, renal infarct, renal tuberculosis, and
healthy volunteers [23]. Moreover, the amount of lipid peak resonating at 1.3 ppm was
used to discriminate the clear cell from non-clear cell RCC histologic subtypes [19]. The
spectral signature was also suggested to differentiate the grade of RCC [22]. In a recent
study, the renal triglyceride spectrum in type 2 Diabetes Mellitus patients was used to
assess glycemic control influences [40]. This infers the possibility of using MR spectroscopy
to evaluate glucose-lowering treatments.

Additionally, other metabolites such as choline and lactate can be detected by MRS/I
techniques that are inaccessible to available imaging techniques. The choline peak detection
in malignant renal tissues has been demonstrated in previous MRS studies and approved
by histology [20]. The lactate peak was observed in patients with a tumor at an advanced
stage, promoting it as a staging biomarker [22]. These peaks were not reported in this
work, as the study was performed with healthy volunteers. However, if MRS has already
detected choline and lactate signals, there are no reasons to expect that MRSI will not detect
these metabolites. The only difference between the MRS and MRSI will be the ability to
generate maps for each individual detected peak.

In terms of the accuracy of MRS methods, a recent study showed a high correlation
between the quantified renal triglyceride content measured by 1H-MRS and the biopsy [9].
In a previous study, we performed a phantom study to evaluate the accuracy of our pro-
posed MRSI and compared its results to a Dixon method, and a higher MRSI quantification
accuracy was found [27].

The proposed MRSI method was able to detect the important lipid peaks that were
used as biomarkers in previous MRS studies and are detectable in healthy subjects. Since
the main goal of this study was to evaluate the feasibility of our proposed accelerated
DW-CRT MRSI technique and its reliability for scanning kidneys, we preferred to conduct
the study with healthy volunteers. In the future, we hope to use the proposed methods to
assess the wide variety of renal abnormalities.

4. Materials and Methods
4.1. Human Subjects

In vivo abdominal MRIs were performed on five healthy volunteers (four males and
one female; average age 31 ± 5 years; body mass index (BMI) = 25 ± 4 kg/m2). Informed
consent was obtained from all subjects involved in the study before they participated in the
study. The study was conducted following the guidelines of the institutional review board
of Purdue University (protocol code 1102010525 on 24 January 2020).

4.2. Test–Retest Study

To evaluate the repeatability of the kidney-MRSI method, test–retest studies were
conducted. The studies were performed on a 3 Tesla Siemens Prisma scanner (Siemens
Healthineers, Erlangen, Germany). Subjects were asked to lie on a spine coil in a head-first
supine position before a flexible coil (18-channel body) was placed above their abdominal
region. The dedicated coils were used instead of the scanner integrated coil to improve the
signal-to-noise ratio (SNR).

The acquisition protocol included two sequences: (1) a high-resolution T2-HASTE
MRI sequence to provide structural reference images and (2) the proposed DW-CRT [41]
MC FID-MRSI acquisition, which is used for fat fraction quantification [27].

The high-resolution T2-HASTE MRI reference images were acquired with TE/TR =
82/1200 ms, FA = 150◦, number of averages = 1, spatial resolution = 0.9 × 0.9 × 4 mm3,
FOV = 280 × 280 mm2, and echo train length = 83.

DW-CRT MRSI was prescribed using a Hanning window and the following pa-
rameters: acquisition delay = 4 ms, TR = 1000 ms, FA = 90◦, number of averages = 1,
FOV = 240 × 240 mm2 (one slice), slice thickness = 10 mm, matrix size = 48 × 48, extractable
voxel resolution = 5 × 5 × 10 mm3 (0.25 mL nominal spatial resolution), TA = 192 s, number
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of rings = 24, points-per-ring = 64, temporal samples = 512, spatial interleaves = 4, time
acquire = 96 s, and spectral bandwidth = 1250 Hz. No respiration navigation/triggering
was used. This resulted in total acquisition duration of 3 min and 16 s. To enhance static
field (B0) homogeneity, the left kidney area was shimmed before acquiring MRSI data. The
typical full width at half maximum (FWHM) was 24.5 ± 0.4 Hz.

After a 30 min break outside the scanner, the subject returned to the scanner table and
was repositioned before the repeat scan was acquired using the same scanning protocol.
For repeatability purposes, MRSI data were obtained from an axial slice that demonstrated
the same anatomy, marked by the kidney hilum (Figure 1).

4.3. MRSI Post-Processing

MRSI data were reconstructed and post-processed offline in MATLAB (MathWorks,
Natick, MA, USA). Gridding and fast Fourier transform were performed using the nonuni-
form fast Fourier transform method [42] and without post hoc density compensation, as
DW-CRT is already weighted by design [28]. B0 inhomogeneity was corrected by calculat-
ing the ∆B0 maps described in our previous work [43]. Here, the ∆B0 maps were calculated
based on the first 2 MRSI phase-unwrapped images (TE1 = 4 ms and TE2 = 4.8 ms). The
voxel-wise frequency and phase corrections were performed using cross-correlation and
least-square fit algorithms, respectively, as described in Emir et al. [30]. The FIDs were
smoothed using a Gaussian filter of 250 ms timing parameter and zero filling to 1024 time
points. Next, the water-only and metabolite-only spectra were created by summing and
subtracting the alternating FIDs, respectively, as described in Alhulail et al. [27].

4.4. Fat Fraction Quantification and Mapping

To estimate the signal under each spectral peak, spectral fitting was performed using
LCModel [44]. An example of fitted spectra can be found in Figure 4. The integrated signals
of each fitted lipid peak (between 0.8 and 1.7 ppm) and water peak were used to calculate
the percentage of FF as follows.

FF =
Lipid signal

Total o f lipid & water signals
× 100 (1)

To generate quantitative FF maps, the preceding process was performed for all voxels
of the left kidney.

4.5. ROI Assignment and Statistical Analysis

The FF maps were first co-registered to their corresponding MRI images, which
provide more precise structural details (Figure 1). Next, to assess the quantification re-
peatability, regions of interest (ROIs) were carefully drawn to cover several MRSI voxels
only within the cortex region (to reduce anatomical variations) of the left kidney (Figure 2).
Finally, the intra-subject coefficients of variation (CV) of the ROI’s FF were used to evaluate
the repeatability of the MRSI outcomes.
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Figure 4. Example of lipid-only renal spectra fitting. Six spectra from adjacent voxels within the
kidney are demonstrated. The blue lines represent the MRSI spectra, and the red lines represent their
fit. The vertical offset between the blue and red line is due to the baseline correction implemented
during fitting.

5. Conclusions

The 2D density-weighted concentric ring trajectory MRSI is a reliable non-invasive
method to quantify and map renal fat fractions. In addition, it provides a promising tool to
further evaluate various renal diseases, such as diabetic kidney and renal tumors with their
subtypes.
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