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Abstract: Lung cancer is the leading cause of cancer-related mortality worldwide, with five-year
survival rates varying from 3–62%. Screening aims at early detection, but half of the patients are
diagnosed in advanced stages, limiting therapeutic possibilities. Positron emission tomography-
computed tomography (PET-CT) is an essential technique in lung cancer detection and staging, with
a sensitivity reaching 96%. However, since elevated 18F-fluorodeoxyglucose (18F-FDG) uptake is
not cancer-specific, PET-CT often fails to discriminate between malignant and non-malignant PET-
positive hypermetabolic lesions, with a specificity of only 23%. Furthermore, discrimination between
lung cancer types is still impossible without invasive procedures. High mortality and morbidity, low
survival rates, and difficulties in early detection, staging, and typing of lung cancer motivate the search
for biomarkers to improve the diagnostic process and life expectancy. Metabolomics has emerged
as a valuable technique for these pitfalls. Over 150 metabolites have been associated with lung
cancer, and several are consistent in their findings of alterations in specific metabolite concentrations.
However, there is still more variability than consistency due to the lack of standardized patient
cohorts and measurement protocols. This review summarizes the identified metabolic biomarkers
for early diagnosis, staging, and typing and reinforces the need for biomarkers to predict disease
progression and survival and to support treatment follow-up.

Keywords: lung cancer; metabolomics; metabolite profile

1. Introduction

With an estimated 1.8 million deaths and 2.2 million new cases in 2020, lung cancer is
the leading cause of cancer-related mortality worldwide. Covering 11.4% of all diagnosed
cancers, lung cancer is the second most commonly diagnosed form of cancer [1]. With an
overall five-year survival rate varying from 3–62% depending on the stage and regional
differences, lung cancer is still a substantial burden to life expectancy in every country.
When non-small cell lung cancer (NSCLC) is diagnosed early (i.e., in stages I and II), the
five-year survival rate is about 62% in females and 51% in males. Unfortunately, about half
of the patients are diagnosed in a later stage of the disease (locoregional advanced stage
III and metastatic stage IV), limiting therapeutic options and decreasing five-year survival
rates to 3% for both genders [2,3].

Despite the advances in understanding of risk factors, development, and treatment of
lung cancer, it remains the leading cause of cancer death. With smoking being the dominant
risk factor, disease prevention mainly focusses on tobacco avoidance [4]. Nevertheless,
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certain lifestyle factors, such as exposure to hazardous chemical substances, also pose a
major risk for lung cancer development. Therefore, protective measures for risk professions
minimize the potential harm of chemical exposure. Additionally, a healthy diet and
a physically active lifestyle are known to have a reductive effect on the likelihood of
developing cancer [5].

Screening aims to detect lung cancer before clinical symptoms are present. Low-dose
computed tomography (LDCT) has proven effective in identifying suspicious pulmonary
nodules or focal lung lesions. The National Lung Screening Trial showed that LDCT
screening could reduce lung cancer mortality in high-risk patients by 20% compared to
radiography [6–8]. Nevertheless, the most critical shortcoming of LDCT is its inability
to verify whether the detected lung lesions result from benign lung disease or a malig-
nant disease process [8,9]. PET-CT is an essential technique in lung cancer detection and
staging, where almost no lung lesion goes undetected since its sensitivity reaches 96% [6].
However, regardless of its high accuracy and sensitivity, elevated 18F-FDG uptake is not
cancer-specific. Increased levels of 18F-FDG uptake can also be detected in benign lesions
such as inflammation and tuberculosis [10,11]. Therefore, the finding of increased FDG
uptake often causes uncertainty about a diagnosis and sometimes even false-positives due
to misinterpretation [12]. Although PET-CT is essential in disease diagnosis and staging,
there is currently no fixed measure to estimate the probability of malignancy of a hyperme-
tabolic single pulmonary nodule (SPN) in case of doubt. Therefore, PET-CT often fails to
discriminate between malignant and non-malignant PET-positive hypermetabolic SPNs
with a specificity of only 23% [6].

High mortality and morbidity, low survival rates, and difficulties with early-stage
diagnostics provide good motivation for the search for biomarkers to improve the early
detection process of lung cancer and life expectancy. Although such biomarkers are a hot
research topic currently, few are used in the clinic. Proteomics and genomics have been
widely used to identify new molecular targets and improve patient care [13,14]. Although
they marked the past decades by the rapid development of new technologies, the individ-
ual genetic variability and costs associated with proteomic and genomic analysis make it
impossible to monitor all relevant disease processes [15]. Therefore, a complementary tech-
nique, independent of genetic variability, is indispensable to improve lung cancer detection,
staging, and treatment. Metabolomics has emerged as a valuable alternative. Since metabo-
lites are the end products of cellular processes, alterations in metabolism automatically
induce changes in metabolite concentrations, altering the individual metabolite profile [16].
The metabolic phenotype or fingerprint consists of many variables representing a single or
several metabolite concentrations. In recent years, metabolite profiling/phenotyping, so-
called metabolomics, has been used to investigate metabolic changes in plasma associated
with lung cancer.

Hanahan and Weinberg describe several biological processes and characteristics as-
sociated with tumor development as the Hallmarks of Cancer [17–20]. These complex
processes include bypassing growth suppression, limitless replicative potential, angiogene-
sis induction, metastasis activation, resistance to cell death, and chronic and uncontrolled
proliferation [17]. Two important hallmarks joined the list a decade later, i.e., the evasion
of immune destruction and metabolic dysregulation [18]. Another decade later, Senga
et al. updated the hallmarks and added the genetic de- and transdifferentiation capability
of cancer cells, epigenetic dysregulation that affects gene expression, altered microbiome,
and altered neuronal signaling [19]. Those four additional hallmarks were confirmed and
further described by Hanahan [20]. Tumor cells can establish all these hallmarks by genetic
mutations and changes in the tumor microenvironment, resulting in metabolic changes.

Evidence has shown that cancer cell metabolism differs from that of normal cells.
Tumors are often faced with nutrient- and oxygen-poor surroundings and develop various
nutrient-scavenging strategies to bypass these limitations. The major reprogramming
of the cancer cell energy metabolism is essential to enable cell growth and proliferation
continuity. Cancer metabolic alterations have been organized into several features, such
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as the upregulated glycolysis, glutaminolysis, and amino acid and fatty acid synthesis
pathways [21]. Lastly, there is continuous communication between stromal cells and
malignant cells by which their metabolic interactions create a dynamic microenvironment.
Cells surrounding the cancer cells, such as cancer-associated fibroblasts and immune cells,
contribute to the metabolic needs of the malignant cells [22,23].

Tumor cells reprogram their energy production mechanism by consuming more glu-
cose than normal cells and upregulation of their glycolytic capability. Glucose is prefer-
entially converted into lactate instead of diverting pyruvate into the tricarboxylic acid
(TCA) cycle (Krebs cycle), even in normoxic conditions [24]. This fermentation of glu-
cose in aerobic conditions is known as the “Warburg effect”, providing rapidly dividing
tumor cells with adenosine triphosphate (ATP) and metabolic intermediates needed to
synthesize cellular components, such as DNA and proteins [25,26]. The excess lactate is
secreted and accumulates in the extracellular space, the tumor microenvironment (TME),
promoting the emergence of an immune-permissive microenvironment by attenuating
T-cell activation [27]. Furthermore, excessive lactate stimulates angiogenesis by inducing
VEGF secretion, an angiogenic factor, from tumor-associated stromal cells [28].

Additionally, cancer cells upregulate their glutaminolysis, which contributes to cell
growth by promoting proliferation and inhibiting cell death. Glutamine is converted into
α-ketoglutarate and used in the TCA cycle to provide intermediary metabolites, providing
nitrogen and carbon skeletons to synthesize proteins such as amino acids [29–31]. Overfill-
ing of the TCA cycle goes hand in hand with reactive oxygen species (ROS) production,
which stimulates cell signaling and promotes cancer progression and spread. Tight con-
trol is crucial, as high levels of ROS are lethal to the cells [32]. Additionally, the pentose
phosphate pathway (PPP) undergoes an upregulation in cancer cells since it plays a pivotal
role in the nucleic acid synthesis and fatty acid synthesis by generating pentose phosphate
and nicotinamide adenine dinucleotide phosphate (NADPH), respectively. The pathway
is essential in cancer cell growth and survival under stress conditions [33]. Cancer cells
are also characterized by a dramatic increase in lipid production, which is advantageous
in forming lipid bilayers, and an increase in oxidative-damage-resistant saturated fatty
acids [34].

It is well known that tumor cells mirror inflammatory conditions. Historically, such
immune responses were thought to reflect an attempt by the immune system to attack ma-
lignant cells. That is not entirely untrue, but studies recently revealed that the inflammatory
effect enhances tumor progression, besides the tumor-antagonizing effects. Inflammation
contributes to several hallmarks by supplying the TME with growth factors for prolifer-
ative signaling, survival factors limiting cell death, proangiogenic factors, and enzymes
facilitating invasion and metastasis [18,35].

These modified biological processes give rise to alternations in metabolite concentra-
tions in tissues and biofluids (such as plasma, urine, bronchial aspirate, etc.). More than
150 metabolites have been identified in the altered lung cancer cell metabolism. This review
provides an overview of studies that classified various metabolites using plasma, serum, or
tissue samples with the possibility to aid clinicians in the differentiation between (1) lung
cancer patients vs. healthy controls, (2) lung cancer patients vs. other cancer patients,
(3) lung cancer vs. benign lung disease, (4) early-stage vs. advanced stage lung cancer,
(5) lung cancer tissue vs. normal lung tissue, and (6) different histologies of lung cancer, as
graphically shown in Figure 1. Some results are consistent in different published studies
regarding specific metabolites. Therefore, an overview of the main study results is summa-
rized in Table 1. However, there is still much variability between different studies about
the used techniques and patient cohorts involved. Therefore, the crucial characteristics of
the studies described in this review are compared in Table 2.
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Figure 1. Types of lung cancer metabolite differentiation evaluated in this review.

2. Methods

This systematic review was written following the 2020 updated Preferred Reporting
Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines [36,37]. The review
protocol was submitted to the Prospero database (registration number 331945). PubMed
was used as a database for the main search for articles. Covering the past 15 years, all
articles were considered potentially useful if they covered the topics of lung cancer and
metabolomics in plasma/serum or tissue samples. All articles were screened in which a
comparison was made between all types of lung cancer and healthy controls, other cancer
types, and patients with benign pulmonary disease, and a comparison was made between
different stages and histologies of lung cancer. Metabolic alterations were documented to
identify possible biomarkers that could facilitate lung cancer diagnosis, staging, and typing.

The literature search is presented in Figure 2 using the PRISMA diagram avail-
able from http://prisma-statement.org/prismastatement/flowdiagram.aspx (accessed
on 17 April 2022). The literature search in PubMed allowed the identification of 569 studies,
of which 65 were included in the full-text evaluation. After a full-text read, 50 publications
were excluded for various reasons, such as different focus (e.g., urine) or the inability to
retrieve full-text, and 7 articles were added after checking the literature list of the already
included articles. As a result, 22 articles were included in this review. For each included
study, the characteristics of the study design, patients and their disease, and measurements
techniques were registered. Finally, a summary was made of those characteristics, the
identified metabolites, and their link to cancer metabolism.

http://prisma-statement.org/prismastatement/flowdiagram.aspx
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Figure 2. PRISMA 2020 flow diagram for new systematic reviews, which include searches of
databases: flowchart of the literature process and selection of studies included in this review.

3. Results
3.1. Metabolic Differentiation between Lung Cancer Patients and Healthy Controls

Many studies have evaluated metabolic variations to differentiate between lung cancer
(LC) patients and healthy individuals, primarily in serum and plasma samples, with high
sensitivity and specificity. Several metabolites seem to have discriminative potential and
might be clinically valuable as biomarkers.

However, inconsistent findings are reported regarding metabolites involved in the gly-
colysis and glutaminolysis. Glucose and lactate are both metabolites that, not surprisingly,
stand out in many articles. Decreases in glucose and increases in lactate levels in serum
samples of LC patients compared to healthy controls could represent the maintenance of
increased aerobic glycolysis in cancer cells (Warburg effect) [25,26]. Zhang et al. [38] suc-
ceeded in discriminating between 25 early-stage LC patients and matched healthy controls,
using proton nuclear magnetic resonance (1H-NMR) spectroscopy, with a 100% sensitivity
and specificity. These investigators reported decreased glucose levels and increased lactate
levels in LC serum samples compared to healthy controls [38]. Increased serum lactate lev-
els were also reported by Puchades-Carrasco et al. [39] and Berker et al. [40]. The opposite
finding, increased glucose and decreased lactate in LC vs. control, may be explained by the
compensatory upregulated gluconeogenesis, using lactate, enabling the highly glycolytic
character of cancer cells [26]. Louis et al. [41] reported increased plasma glucose levels and
decreased lactate levels in a study with 98 LC patients and 89 controls [41]. Their findings
are supported by Derveaux et al. [42].
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Glutamine is another essential metabolite that has been extensively studied in cancer
research. Additionally, for this metabolite, results are contradictory throughout several
studies. Increases in glutamine and glutamate levels in LC serum compared to healthy
controls confirm the increased glutaminolysis in cancer patients, supporting the production
of metabolic intermediates for protein and nucleotide synthesis, essential for cell prolifera-
tion and survival [30,31]. Another possible explanation for the increased glutamine and
glutamate serum levels may be the increased muscle protein breakdown seen in pathologi-
cal conditions such as cancer. Proinflammatory cytokines, TNF-α and IL-6, mediate the
augmented muscle protein degradation in cancer [43]. Zhang et al. [38] found increased glu-
tamine and glutamate levels in LC serum samples compared to control samples, confirming
increased glutaminolysis in cancer patients [30,31]. However, Puchades-Carrasco et al. [39]
reported decreased glutamine levels in NSCLC serum samples. The targeted study group
could explain differences, i.e., early stages of LC in the study of Zhang et al. [38] vs. all
stages of LC in Puchades-Carrasco et al. [39]. This difference in the targeted population
suggests that glutamine dependency increases as LC progresses, resulting in lower serum
glutamine levels in the patients of all-stage study [31]. Louis et al. [41] detected increased
plasma glutamine levels, despite including all stages of LC. It is worth mentioning that
results may vary due to the different biofluids, i.e., plasma and serum, being used across
different studies.

Changes in the TCA cycle intermediates are often altered in lung cancer samples, such
as decreased citrate and increased fumarate levels [44,45]. Decreased serum citrate in LC
patients confirms the highly proliferative character of cancer cells since citrate is the primary
substrate in the production of fatty acids and cholesterol, building blocks necessary for
the increased proliferation and membrane biogenesis [46]. Fumarate has been associated
with overcoming hypoxia by inhibiting the degradation of hypoxia-inducible factor (HIF)
in cancer cells. HIF activity in tumoral hypoxia mediates angiogenesis, invasion, and
metastasis by inducing glycolytic enzymes [47].

Most studies are consistent in the increase in leucine and isoleucine serum/plasma
levels in cancer patients [38,39,41,42]. Branched-chain amino acids (BCAAs), including
leucine and isoleucine, can regulate protein and lipid signaling pathways and cell growth.
The upregulation of those amino acids could be explained by the tumor’s increased en-
ergetic and proliferative needs [48]. An attempt to counteract increased muscle protein
breakdown in cancer patients might also explain the increased leucine levels. Leucine might
counteract muscle degradation by stimulating protein synthesis by enhancing sensitivity
for insulin [49].

Besides these metabolites returning in almost every paper on lung cancer metabolomics,
there are papers describing other, less frequent metabolites associated with lung cancer.
For example, ornithine [50–52] and arginine [52,53] are potential discriminative biomarkers
for lung cancer. Ornithine aminotransferase, synthesizing proline from ornithine, promotes
proliferation and metastasis of NSCLC by the upregulation of the miR-21 gene [54]. This
finding suggests that proline and ornithine could be possible biomarkers for LC [52]. In
addition, several studies observed that arginine could become limiting in states of rapid
growth, such as malignancy [52,53]. Arginine is an essential amino acid for cellular growth
and protein biosynthesis. Its overuse for these upregulated tumor processes and the in-
ability of lung cancer cells to express argininosuccinate synthase (AS), the enzyme that
regulates the biosynthesis of arginine, explains the decreased serum levels [53,55].

Increasing serum levels of tyrosine and histidine, precursors of catecholamine neu-
rotransmitters and histamine, respectively, are mentioned in several studies [38,41,52].
Furthermore, tyrosine promotes lipid metabolism [56], whereas histamine is involved in
cell proliferation and differentiation and regulates immune response [57].

Many papers describe a reduced level of plasma lipids in LC plasma/serum sam-
ples [42,58]. This finding is in accordance with the dysregulation of lipid metabolism in
cancer [59,60]. Decreases in phosphatidylcholines are often seen in lung cancer patients, as
they are major components of cell membranes [45,61]. Subsequently, serum levels of choline
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are decreased as it is the precursor of phospholipids in the membrane [39]. Unsaturated
lipids and (very) low-density lipoproteins are also decreased due to the excess need for
growth, proliferation, and metastasis [38,39].

Additionally, decreases in fatty acids, such as palmitic acid, support cancer cells’ high
energy and biomass needs [50]. Alterations in ketone body levels are also consistent in
different studies. Serum levels of ketone bodies, β-hydroxybutyrate and acetoacetate, have
increased in LC patients vs. healthy individuals [38,39,44]. This increase can be observed
when acetyl-CoA, derived from fatty acid oxidation, exceeds the TCA cycle [62]. This
finding could also explain the reduced lipid levels in the serum of cancer patients.

3.2. Metabolic Differentiation between Lung Cancer Patients and Other Cancer Patients

Louis et al. succeeded in classifying 60 breast cancer (BC) patients and 81 LC patients
with a sensitivity of 89% and a specificity of 82% [63]. They discovered that LC cells seem
to be metabolically more active since they show a higher 18F-FDG uptake on a PET-CT
scan. Increased glucose levels and decreased lactate levels suggest a more pronounced
body response to the “Warburg” effect in LC patients. The difference in metabolic activity
between lung tumor and breast tumor tissue is supported by the significant difference in
membrane phospholipid concentrations in blood plasma samples from both patient cohorts.
Decreased levels of sphingomyelin, phosphatidylcholine, and phospholipids with short,
unsaturated fatty acid chains and increased phospholipids with long, saturated fatty acid
chains were observed in LC samples compared to BC samples [63]. The difference in long
saturated chains suggests that lung cancer cells have a more rigid membrane and are less
sensitive to peroxidation [64]. The same research group extended the research by adding
a group of colorectal cancer patients. They successfully classified 78% of the colorectal
cancers, 95% of the breast cancers, and 84% of the lung cancers correctly. Further research
needs to uncover the key metabolites in this discrimination [65].

To our knowledge, there are no other studies discriminating between primary LC
versus any other primary tumors. However, Christen et al. published results of a study
comparing primary BC to BC-derived lung metastases. Using 13C tracer analysis, they
showed a more pyruvate carboxylase-dependent anaplerosis in BC-derived lung metastases
rather than metabolizing glutamine to α-ketoglutarate to refill the TCA cycle, as seen in
primary BC tissue [66].

3.3. Metabolic Differentiation between Lung Cancer and Benign Lung Disease

As mentioned earlier, PET-CT has high accuracy and sensitivity in detecting lung
cancer. Nevertheless, it often fails to discriminate between cancer and benign lung le-
sions, such as inflammation and tuberculosis, since elevated 18F-FDG uptake is not cancer-
specific [10,11]. Nevertheless, several studies have identified metabolites that can distin-
guish between patients with LC and patients with inflammatory lung conditions. For
example, Deja et al. compared serum samples from NSCLC patients to those of chronic
obstructive pulmonary disorder (COPD) patients. NSCLC patients showed decreased
serum acetate, citrate, and methanol and increased leucine, choline, and ketone bodies
compared to COPD patients [67].

Additionally, increased isoleucine, valine, lactate, and creatinine levels and decreased
glutamine levels could discriminate between early-stage NSCLC compared to COPD [67].
Less discriminative potential was present when comparing advanced stage LC to COPD
patients, presumably because advanced LC and COPD have a comparable level of tissue
degradation [67]. As mentioned earlier, leucine was significantly increased in LC patients
compared to healthy controls [38,39,41]. Interestingly, leucine levels were significantly
decreased when comparing COPD patients to healthy controls [68,69]. This finding could
make leucine a promising biomarker to distinguish between COPD and early-stage LC.

Puchades-Carrasco et al. [39] found that patients with benign pulmonary disease
(BPD) have a different metabolite profile than patients with LC or healthy individuals. BPD
is characterized by significantly higher levels of methanol, choline, and (very-) low-density



Metabolites 2022, 12, 545 8 of 18

lipoproteins ((V)LDL) and lower levels of glucose and lactate compared to LC [39], which is
partly in accordance with the findings of Deja et al. [67]. A combination of five metabolites,
including lactate and methanol, is presented that can discriminate between healthy controls,
patients with BPD, and LC with 77% sensitivity and 78% specificity [39].

Lastly, Vanhove et al. [6] succeeded in presenting a model that differentiated between
cancer and inflammation with 89% sensitivity and 87% specificity. In this model, tyrosine,
glutamate, methionine, alanine, isoleucine, and lysine showed the most discriminative
power. Moreover, glutamate was identified as a single diagnostic marker to discriminate
between lung cancer and inflammation with 85% sensitivity and 81% specificity and an
area under the curve of 0.88 [6].

3.4. Metabolic Differentiation between Early-Stage and Advanced-Stage Lung Cancer

Several studies identified differentially expressed metabolites in early-stage (I and II)
and advanced stage (III and IV) LC. As mentioned earlier, Puchades-Carrasco et al. [39]
documented decreased glucose levels and increased lactate levels in LC patients compared
to controls. They observed that these serum changes become more prominent in advanced-
stage LC compared to early-stage patient samples [39]. Parallel, higher levels of (iso)leucine
and glutamate and lower levels of glutamine are observed in advanced-stage LC compared
to early-stage LC. Comparable results were reported in the differentiation between healthy
individuals and LC patients. The same significant differences between early and advanced
stage LC support the higher energy and resource needs during cancer progression and
metastasis [39].

However, Deja et al. [67] reported contrary results. They observed reduced levels
of BCAA, lactate, and ketone bodies. The most significant difference between early- and
advanced-stage LC, according to Deja et al. [67], was related to glycerol. In advanced
patients, increased serum glycerol levels suggest lipid degradation or cell membrane
rearrangement [67].

Berker et al. reported decreased serum glutamine and lactate levels in advanced stage
lung cancer compared to stage I adenocarcinoma [40]. Higher energy needs in advanced LC
could explain these findings. As mentioned before, glutamine and lactate are essential ele-
ments in the upregulated glutaminolysis and compensatory upregulated gluconeogenesis.

3.5. Metabolic Differentiation between Lung Cancer Tissue and Normal Lung Tissue

Many studies focused on LC metabolomics in biofluids. However, a limited number
of studies applied it to tissue, presumably due to the highly invasive collection proce-
dure [70]. Two recent studies observed an apparent metabolic alteration between LC and
non-malignant tissue [71,72]. Some metabolites with a high predictive capability were iden-
tified. Moreno et al. detected changes in different glycolysis metabolites, such as a decrease
in glucose and an increase in lactate and pyruvate [71]. In addition, intermediates of the
TCA cycle, fumarate, and malate were accumulated in lung tumor tissue. Additionally,
the PPP was altered in LC tissue, with a significant increase in ribose, ribose 5-phosphate,
and fructose. Similar to biofluid studies [50,52,53], this tissue study by Moreno et al. [71]
evaluated changes in arginine and ornithine levels in lung tumor tissue. Furthermore, the
findings concerning fatty acid metabolism are comparable with biofluid studies [63]. Lung
tumor tissue showed a significant increase in glycerol and long-chain fatty acids, support-
ing the rigid membrane structure of lung tumor cells and disrupted lipid peroxidation [71].
This finding was confirmed by Kowalczyk et al. [72].

3.6. Metabolic Differentiation between Different Histologies of Lung Cancer

Moreno et al. [71] evaluated the difference between lung tumor tissue and normal
lung tissue and investigated whether adenocarcinoma (AC) tissue and squamous cell
carcinoma (SCC) tissue present a different metabolic phenotype. A decrease in glycolytic
metabolites was observed in both tumor subtypes, but a significant increase in lactate and
pyruvate was only seen in SCC. All differences detected between LC and normal lung tissue
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were more prominent in SCC than in AC. Differences in the levels of metabolites in AC
vs. SCC revealed that both subtypes regulate their cancer metabolism slightly differently.
Nucleotide metabolism varies significantly for both histological subtypes, shown by a
decrease in guanine in SCC [71]. A study by Kowalczyk et al. showed, slightly contrary
to the study of Moreno et al. [71], that metabolites belonging to fatty acid and amino acid
pathways were more upregulated in AC tissue compared to SCC tissue [72]. Both studies
reported increased creatinine levels in SCC tissue vs. AC tissue [71,72].

Berker et al. described increased serum glutamine and glutamate levels in SCC
compared to AC and decreased lactate levels when comparing stage I SCC to stage I AC.
In addition, tissue analysis of both histological subtypes revealed an increase in alanine,
valine, and lipid levels in SCC compared to AC. Additionally, tissue glutamate levels were
higher in SCC than in AC, similar to the results of serum analysis [40].

Table 1. Summary of most extensively studied metabolites and their alterations in lung cancer.

Involved Pathway Metabolite

Plasma/Serum Tissue

Healthy BC BPD Early LC AC NLT AC

LC LC LC Advanced LC SCC LCT SCC

Glycolysis

Glucose

↓ [38,39]
↑ [41,42] ↑ [41] ↓ [39] ↓ [39] ↓ [71,72]

Lactate

↑ [38–40]
↓ [41,42] ↓ [41] ↑ [67]

↓ [39]
↑ [39]
↓ [40,67] ↓ [40] ↑ [71,72] ↑ [71]

Pyruvate

↑ [71,72] ↑ [71]

Glutaminolysis

Glutamine
↑ [38,41]
↓ [40] ↓ [67] ↓ [39,40] ↑ [40] ↑ [40]

Glutamate
↑ [38,39]
↓ [40] ↓ [6] ↑ [39] ↑ [40] ↑ [40]

BCAA metabolism

Leucine

↑ [38,39,41,42] ↑ [67] ↑ [39]

Isoleucine

↑ [38,39,41,42] ↑ [67] ↑ [39]
↓ [67]

Valine

↑ [41] ↑ [67] ↓ [67] ↑ [40]
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Table 1. Cont.

Involved Pathway Metabolite

Plasma/Serum Tissue

Healthy BC BPD Early LC AC NLT AC

LC LC LC Advanced LC SCC LCT SCC

TCA cycle

Citrate

↓ [44] ↓ [67]

Acetate

↓ [67]

Fumarate

↑ [44,45] ↑ [71]

Metabolism involving
other amino acids

Tyrosine

↑ [38,41,52] ↓ [6]

Histidine

↑ [38]

Urea cycle

Ornithine

↓ [38,50–52] ↓ [71,72]

Arginine
↓ [38,52,53] ↓ [71,72]

Creatinine

↑ [67] ↓ [67] ↑ [71,72]

Lipid metabolism

Choline

↓ [38,39] ↑
[39,67] ↑ [40]

(V)LDL ↓ [38] ↑ [39] ↑ [40]

Fatty acids ↓ [38] ↑ [41] ↑ [71,72] ↑ [40]

Glycerol

↑ [39] ↑ [67] ↑ [67] ↑ [71,72]

Ketone bodies
β-

hydroxybutyrate

Acetoacetate

↑ [38,39,44] ↑ [67] ↓ [67]

↑ indicates that the values are higher in the lower group compared to the upper group; ↓ indicates the opposite.
For instance, the ↓ arrow for glucose means that LC samples presented lower glucose levels than the group of
healthy controls. LC: lung cancer, BC: breast cancer, BPD: benign pulmonary disease, AC: adenocarcinoma, SCC:
squamous cell carcinoma, NLT: normal lung tissue, LCT: lung cancer tissue, BCAA: branched-chain amino acids,
TCA: tricarboxylic acid, (V)LDL: (very) low-density lipoproteins. References between brackets.
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Table 2. Characteristics of the studies most extensively described in this review.

Reference Sample
Type Study Population Measurement

Technique
Statistical
Analysis Discriminative Capacity

Zhang et al.,
2016
[38]

Serum
• 25 stage I LC
• 25 healthy controls

1H-NMR
RRLC

OPLS-DA LC vs. healthy: 100% sens, 100% spec

Puchades-
Carrasco et al.,
2016
[39]

Serum

• 90 A-LC
• 82 E-LC
• 27 BPD
• 87 healthy controls

1H-NMR OPLS-DA

LC vs. healthy based on all
metabolites: 92% sens, 95% spec, R2

0.931, Q2 0.873
LC vs. BDP vs. healthy based on 5
metabolites: 77% sens, 77.5% spec
E-LC vs. A-LC: R2 0.779, Q2 0.592

Berker et al.,
2019
[40]

Serum

• Stage I LC: 27 SCC
+ 31 AC

• Advanced stage LC:
15 SCC + 20 AC

• 29 healthy controls

HRMAS-MRS LDA
CCA ROC_AUC LC: 0.989

Tissue
• Stage I LC: 27 SCC

+ 31 AC
• Advanced stages: 15 SCC

+ 20 AC

HRMAS-MRS LDA
CCA None reported

Louis et al.,
2016
[41]

Plasma

• Training: 233 LC vs.
226 healthy controls

• Validation: 98 LC vs.
89 controls

• 91 AC vs. 66 SCC

1H-NMR OPLS-DA

Training LC vs. healthy: correct
classification of 78% of LC, 92% of
controls
Validation LC vs. healthy: 71% sens,
81% spec
AC vs. SCC: correct classification of
81% of AC, 38% of SCC

Derveaux et al.,
2021
[42]

Plasma
• Training: 80 LC vs.

80 healthy controls
• Validation: 34 LC vs.

38 controls

1H-NMR OPLS-DA

Training LC vs. healthy: 85% sens,
93% spec
Validation LC vs. healthy: 74% sens,
74% spec

Maeda et al.,
2010
[52]

Plasma

• 141 LC vs. 423 healthy
controls

o 69 stage I,
72 advanced stage

o 100 AC, 36 SCC

LC-MS Logistic
regression

ROC_AUC LC: 0.817
ROC_AUC stage I: 0.796
ROC_AUC AC: 0.795
ROC_AUC SCC: 0.860

Chen et al.,
2015
[45]

Serum
• 30 LC (pre-op + post-op)
• 30 healthy controls

LC-MS
GC-MS PLS-DA

LC-MS:

• pre-op vs. healthy: R2X 0.527,
R2Y 0.991, Q2 0.938

• post-op vs. healthy: R2X 0.412,
R2Y 0.992, Q2 0.935

• pre-op vs. post-op: R2X 0.432,
R2Y 0.906, Q2 0.975

GC-MS:

• pre-op vs. healthy: R2X 0.533,
R2Y 0.854, Q2 0.747

• post-op vs. healthy: R2X 0.518,
R2Y 0.883, Q2 0.758

• pre-op vs. post-op: R2X 0.457,
R2Y 0.680, Q2 0.570

Deja et al., 2014
[67] Serum

• 77 LC vs. 22 COPD

o 17 E-LC + 60
A-LC

1H-NMR OPLS-DA

COPD vs. LC: R2X 0.682, R2Y 0.762,
Q2 0.568, AUC 0.993
COPD vs. E-LC: R2X 0.694, R2Y 0.809,
Q2 0.651, AUC: 1
COPD vs. A-LC: R2X 0.663, R2Y 0.909,
Q2 0.595, AUC; 1
E-LC vs. A-LC: R2X 0.732, R2Y 0.908,
Q2 0.298, AUC: 0.904
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Table 2. Cont.

Reference Sample
Type Study Population Measurement

Technique
Statistical
Analysis Discriminative Capacity

Vanhove et al.,
2018
[6]

Plasma
• 269 LC vs.

108 inflammation vs.
347 controls

1H-NMR PLS-DA

LC vs. inflammation:

• based on all metabolites: 89%
sens, 87% spec

• based on glutamate: 85% sens,
81% spec

LC vs. control based on glutamate:
68% sens, 82% spec

Moreno et al.,
2018
[71]

Tissue
• 68 LC and normal lung

tissue of same patients

o 33 AC vs. 35 SCC

LC-MS
GC-MS PLS-DA None reported

Zhang et al.,
2020
[44]

Plasma
• 156 stage I/II LC vs. 60

healthy controls
LC-MS
HPLC-MS/MS

PLS-DA
Logistic
regression

Stage I/II vs. healthy: 0.919 sens,
0.900 spec, AUC 0.959

Kowalczyk et al.,
2021
[72]

Plasma

• 72 LC vs. 20 COPD

o 39 E-LC: 21 AC +
18 SCC

o 33 A-LC: 11 AC +
15 SCC + 7 other

LC-MS: UHPLC
combined with
QTOF

PLS-DA None reported

Tissue

• 99 LC and normal lung
tissue of same patients

o 28 E-LC: 14 AC +
14 SCC

o 71 A-LC: 19 AC +
40 SCC + 12 other

LC-MS: UHPLC
combined with
QTOF

PLS-DA

RPLC: AC vs. SCC vs. control: R2

0.983, Q2 0.853
HILIC: AC vs. SCC vs. control: R2

0.858, Q2 0.732

Qi et al., 2021
[50] Plasma

• 98 LC vs. 75 healthy
controls

o 55 stage I/II+
43 stage III/IV

o 70 AC + 14 SCC +
14 other

LC-MS
Logistic
regressionOPLS-
DA

LC vs. healthy all stages

• RPLC: R2X 0.282, R2Y 0.960, Q2

0.703
• HILIC: R2X 0.465, R2Y 0.962, Q2

0.820

Healthy vs. stage I/II vs. stage III/IV

• Top 5 significant metabolites:
AUC 0.869, acc 0.829

• Top 10 significant metabolites:
AUC 0.947, acc 0.857

• Top 20 significant metabolites:
AUC 0.964, acc 0.900

Healthy vs. AC vs. SCC

• Top 20 significant metabolites:
AUC 0.890, acc 0.830

LC: lung cancer, 1H-NMR: proton nuclear magnetic resonance spectroscopy, RRLC: rapid resolution liquid
chromatography, (O)PLS-DA: (Orthogonal) Partial Least Squares Discriminant Analysis, A-LC: advanced-stage
lung cancer, E-LC: early-stage lung cancer, BPD: benign pulmonary disease, sens: sensitivity, spec: specificity, SCC:
squamous cell carcinoma, AC: adenocarcinoma, HRMAS-MRS: high-resolution magic angle spinning magnetic
resonance spectroscopy, LDA: linear discriminant analysis, CCA: canonical correlation analysis, ROC: receiver
operating characteristic, AUC: area under curve, (LC-)MS: (liquid chromatography–)mass spectrometry, GC-MS:
gas chromatography mass spectrometry, pre-op: preoperative samples, post-op: postoperative samples, COPD:
chronic obstructive pulmonary disorder, (U)HPLC: (ultra-) high-performance liquid chromatography, QTOF:
quadrupole time of flight, RPLC: reversed-phase liquid chromatography, HILIC: hydrophilic interaction liquid
chromatography, acc: accuracy. References between brackets.

4. Discussion

This review highlights potential plasma/serum metabolomic biomarkers associated
with lung cancer. Table 1 shows an overview of the metabolites that were investigated
in different studies as most discriminating in the differentiation between (1) lung cancer
patients vs. healthy controls, (2) lung cancer patients vs. other cancer patients, (3) lung



Metabolites 2022, 12, 545 13 of 18

cancer vs. benign lung disease, (4) early-stage vs. advanced-stage lung cancer, (5) lung
cancer tissue vs. normal lung tissue, and (6) different histologies of lung cancer. Several
research groups have developed a metabolite signature for lung cancer. However, there
is still considerable variability in study characteristics (Table 2) and results, making it
difficult to draw a clear line to potential lung cancer biomarkers for early diagnosis, staging,
and progression. Furthermore, it underlines the difficulties in translating research to
clinical applicability.

The variability can be explained by the lack of uniformity and standardized pro-
cedures for sample collection and NMR analysis, the limited number of samples, and
the variety of collected biofluids throughout all studies. The stability of the metabolites
is critical for consistent results. Collection procedures and materials, time and temper-
ature of storage, and sample processing protocols differ extensively and can all affect
the stability and thus the concentration of the metabolites. Plasma is shown to be more
stable than serum, for example. Another consideration regarding stability is the freezing-
thawing cycles [73]. Additionally, researchers should consider the metabolite binding
to plasma proteins, such as human serum albumin (HSA), which leads to an underesti-
mated concentration of the bonded metabolites. An HSA-binding competitor, such as
trimethylsilyl-2,2,3,3-tetradeuteropropionic acid (TSP), could be added to the samples to
avoid unwanted metabolite binding, as described by Derveaux et al. [42].

Each analysis technique has its strengths and advantages on the one hand but, on the
other hand, introduces a variety of metabolites that could be significant for lung cancer.
The most intensively used techniques are MS and 1H-NMR. 1H-NMR is a quantitative
tool and does not require extra sample preparation, such as derivatization. 1H-NMR is
a fast technique with a low cost per sample compared to MS. MS-based metabolomics
can analyze more metabolites and has better sensitivity than 1H-NMR, but 1H-NMR
has higher reproducibility than MS and needs no solvent extraction steps in the sample
preparation [74]. An extended list of the characteristics of the most commonly used
measurement techniques mentioned in the studies included in this review is listed in
Table 3.

Table 3. Characteristics of the measurement techniques used in the studies included in this review.

1H-NMR HPLC (LC/GC)-MS

Sensitivity Low Higher Highest

Sample preparation Minimal sample
preparation required

Extra sample
preparation steps
required: e.g.,
derivatization,
solvent extraction

Extra sample
preparation steps
required: e.g.,
derivatization,
solvent extraction

Number of detectable
metabolites 30–100 300–1000+ 300–1000+

Number of samples
in one run

Analysis of 1 sample
in 1 run

Analysis of more
samples in 1 run

Analysis of more
samples in 1 run

Cost per sample Low High High

Reproducibility High Average Average

Tissue samples Can be analyzed
directly

Requires tissue
extraction

Requires tissue
extraction

Speed Fast Slower Slower
1H-NMR: proton nuclear magnetic resonance spectroscopy, (LC/GC-)MS: (liquid chromatography/gas chro-
matography –)mass spectrometry, HPLC: high-performance liquid chromatography.

Many studies focused on LC metabolomics in biofluids since biofluid samples are
more easily accessible and convenient for investigation. In addition, relatively limited
studies investigated tissue metabolomics, presumably due to the highly invasive collection
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procedure. However, biofluids are not organ-specific and reflect biochemical processes
all over the body, complicating the interpretation of metabolomic results. Metabolomic
tissue phenotyping serves a more straightforward interpretation since results originate at
the localized site of the pathological process in a specific organ.

In addition to differences in experimental methods, it is necessary to consider patient-
related factors when comparing the data obtained from various studies. The included
patients differ widely across several studies, ranging from 25 LC patients and 25 con-
trols [38] to 233 cancer patients and 226 controls [41]. Nevertheless, patient characteristics
are even more critical since metabolites vary significantly with age, sex, dietary habits,
smoking status, underlying diseases, medication intake, etc. The perfect biomarker is both
sensitive and specific with diagnostic potential and clinical utility, independent of known
predictors of the disease. The goal is to achieve superior performance to the standard of
care-based strategy.

Potential biomarkers involve metabolites belonging to glycolysis, TCA cycle, PPP,
urea cycle, other amino acid pathways, and lipid metabolism. As displayed in Table 1,
metabolite changes vary in magnitude and direction depending on disease stage and type.
These metabolites could aid the daily clinical practice in the early diagnosis and staging
of lung cancer and provide molecular targets in developing new cancer therapies, which
can considerably improve disease prognosis. The ability to distinguish between lung
cancer and other cancers allows diagnosing whether LC originates from a primary lung
tumor or as a metastasis from a tumor localized elsewhere. A metabolomic differentiation
between LC and inflammation could support the results from PET-CT in diagnosing early-
stage LC since 18F-FDG uptake is not cancer-specific. Increased levels of 18F-FDG uptake
can also be detected in benign lesions, often causing doubt in diagnosis. Metabolomics
could complement PET-CT to estimate the probability of malignancy of an SPN. The
possibility of metabolic phenotyping to support the detection of LC in different stages
and types could predict disease progression and survival. A correlation between stadium,
aggressiveness, and the metabolic profile could support the choice of the most appropriate
therapy and the follow-up of treatment response. Moreover, LC biomarkers could serve
as a basis for personalized, targeted therapy since individual predictive biomarkers could
improve efficacy and lower the toxicity of the treatment. The impact on patients would
reach further than the advantages mentioned before in diagnosis, staging, and treatment
follow-up. Healthcare costs could be reduced when LC is diagnosed early, avoiding
extra hospitalizations and additional therapy, such as chemotherapy or radiotherapy.
Additionally, metabolomics as a tool for early LC diagnosis could reduce emotional stress
by providing a definite diagnosis within hours, whereas patients with doubtful SPNs are
often advised to have another CT in three to six months.

Screening programs based on LDCT are already in place, and The National Lung
Screening Trial showed that LDCT screening could reduce lung cancer mortality in high-
risk patients by 20% compared to radiography [8]. In addition, screening and prevention
programs could apply to high-risk patients with a 30-pack-year smoking history [75]. In the
NELSON trial involving high-risk persons, lung cancer mortality was significantly lower
among those who underwent volume CT screening than among those who underwent no
screening. In this study, the cumulative rate ratio for death from lung cancer at 10 years was
0.76 (95% confidence interval [CI], 0.61 to 0.94; p = 0.01) in the screening group compared
with the control group [76]. A blood-based test is more likely to encourage patients
to participate in screening programs since sample collection is almost not invasive and
straightforward.

Metabolomics has been used to investigate the association between metabolites in
pre-diagnostic serum and cancer risk. Kühn et al. [77] analyzed pre-diagnostic levels of
120 metabolites in 835 cancer cases. They report that higher levels of phosphatidylcholines
were consistently related to a lower risk of breast, prostate, and colorectal cancer [77]. His
et al. confirm the associations between specific metabolites (e.g., phosphatidylcholines) and
pre-diagnostic breast cancer serum samples [78]. The prostate, lung, colorectal, and ovarian
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(PLCO) cancer screening trial was the first to report associations between pre-diagnostic
serum metabolites and caffeine intake [79]. Despite these promising associations, it is a
continuous struggle to unravel whether these metabolites play a direct role in tumorigenesis
or are merely an early manifestation of disease in a preclinical state.

Even more, several clinical trials are investigating the possibility of prediction of
different cancer types with metabolomic analysis. Metabolomics urinalysis can play a role
in the screening for colorectal cancer (CRC). Metabolites of the glycolysis, TCA cycle and
urea cycle were identified as significant in the prediction of CRC, since increased urinary
concentrations of these metabolites correlated with a more advanced stage of CRC [80]. A
currently active trail in Taiwan (NCT03504098) investigates whether one-carbon nutrient
intake can serve as a predictive marker for the development of lung cancer. Low folate
intake is hypothesized to be associated with the increased risk for lung cancer, since it
acts as a metabolic stressor. Another ongoing trial (NCT05185713) is analyzing vaginal
metabolites to select biomarkers for the prediction of human papillomavirus-mediated
cervical cancer and construct a cervical cancer risk and outcome prediction model.

5. Future Directions

Metabolomics activities on lung cancer are still in the research stage, with too much
variability between different studies. Therefore, there is an essential need for more exten-
sive studies with extended patient cohorts and standardized measurement and analysis
protocols to make lung cancer biomarkers clinically applicable. In addition, the lack of
quantitative, reproducible results currently impedes the possibility of implementing LC
biomarkers in daily clinical practice. Quantitative results that measure absolute metabolite
concentrations would give an objective individual metabolic profile, making the results
comparable between patients of different clinical centers. Furthermore, most studies fo-
cused on the differentiation between LC patients and healthy controls. These results are
extremely valuable. Nevertheless, more studies are needed to identify the discrimina-
tive metabolites for LC stages and types to find biomarkers that could predict disease
progression, survival, and support treatment choice and follow-up.

Once specific biomarkers are successfully validated in a clinical setting, the entire
workflow, from sample collection to analysis, can be summarized in a Standard Operating
Procedure (SOP), and HPLC, 1H-NMR, and MS assay kits can be developed to make the
procedure easily repeatable and minimally subject to (pre)analytical errors.
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