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Abstract: Numerous patients with muscle-invasive bladder cancer develop low responsiveness
to cisplatin. Our purpose was to explore differential metabolites derived from serum in bladder
cancer patients treated with neoadjuvant chemotherapy (NAC). Data of patients diagnosed with
cT2-4aNxM0 was collected. Blood samples were retained prospectively before the first chemotherapy
for untargeted metabolomics by 1H-NMR and UPLC-MS. To identify characterized metabolites,
multivariate statistical analyses were applied, and the intersection of the differential metabolites
discovered by the two approaches was used to identify viable biomarkers. A total of 18 patients
(6 NAC-sensitive patients and 12 NAC-resistant patients) were enrolled. There were 29 metabolites
detected by 1H-NMR and 147 metabolites identified by UPLC-MS. Multivariate statistics demon-
strated that in the sensitive group, glutamine and taurine were considerably increased compared to
their levels in the resistant group, while glutamate and hypoxanthine were remarkably decreased.
Pathway analysis and enrichment analysis showed significant alterations in amino acid pathways,
suggesting that response to chemotherapy may be related to amino acid metabolism. In addition, hall-
mark analysis showed that DNA repair played a regulatory role. Overall, serum metabolic profiles of
NAC sensitivity are significantly different in bladder cancer patients. Glycine, hypoxanthine, taurine
and glutamine may be the potential biomarkers for clinical treatment. Amino acid metabolism has
potential value in enhancing drug efficacy.

Keywords: metabolomics; serum; neoadjuvant chemotherapy; bladder cancer; 1H-NMR; UPLC-MS

1. Introduction

Bladder cancer is one of the most prevalent malignant tumours worldwide, with about
550,000 new cases reported annually [1]. When the malignant tumour breaks through the
lamina propria and invades the muscle tissues, it is considered as muscle-invasive bladder
cancer (MIBC). MIBC is prone to recurrence and metastasis, and has a poor prognosis,
with 5-year overall survival (OS) of 36–48% [2]. At present, the standard treatment for
patients with MIBC is neoadjuvant chemotherapy (NAC) followed by radical cystectomy
(RC) and pelvic lymph node dissection [3]. Several studies have shown that patients with
T2-T4aN0M0 bladder cancer treated with NAC had a better oncology outcome compared to
RC alone. Specifically, addition of NAC increased 5-year OS by 8% relative to its absence [4],
and cisplatin-based NAC resulted in better OS and cancer specific survival (CSS) outcomes
compared to other chemotherapy drugs [5].
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Unfortunately, not all patients respond to NAC, with a modest pathological complete
response (pCR) of 25.7–38% [4,6], and many patients still suffer from delays in treatment
due to chemotherapy intolerance. Therefore, learning how to predict the efficacy of NAC
is crucial to guide clinical strategy. Pathological response is an objective criterion, while
invasive surgery is required to obtain tissues. Molecular subtypes have demonstrated a
contradictory result in the assessment of NAC sensitivity and OS, especially in basal and
luminal subtypes [7,8]. In addition, bladder cancer patients with ERCC2 mutations are
more sensitive to cisplatin-based NAC [9,10]. Liquid biopsy has been widely explored in
recent years because of its convenience and low invasiveness. Circulating tumour DNA
(ctDNA) and circulating tumour cells (CTCs) have great potential in predicting the efficacy
of NAC in MIBC patients [11,12], and our previous study also confirmed the value of CTCs
in predicting NAC sensitivity [13].

Serum metabolomics is essentially part of liquid biopsy. At present, serum metabolomics
has achieved excellent results in the exploration of risk factors for tumour recurrence and
biomarkers for tumour diagnosis, such as endometrial cancer, breast cancer and prostate
cancer [14–16]. In addition, the correlations between differential metabolites and NAC for
advanced patients are also emerging. Metabolic profile alterations before and after NAC, as
well as predictive models of NAC efficacy based on metabolites, have been widely reported
for colorectal cancer, oesophageal cancer, breast cancer and lung cancer [17–21].

With regard to bladder cancer, current studies have concentrated on metabolites
that can predict bladder tumour recurrence or differentiate bladder cancer patients from
non-tumour populations [22]. However, metabolomics for predicting drug efficacy of
bladder cancer is rarely reported. In the present study, we focused on identifying metabolic
biomarkers for predicting sensitivity of NAC by using nuclear magnetic resonance (1H-
NMR) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS), then
integrated them to explore potential metabolic pathways and molecular targets using
bioinformatics.

2. Results
2.1. Characteristics of the Patients

A total of 18 MIBC patients were selected, with six patients identified as NAC-sensitive
and 12 patients assessed as NAC-resistant. The details are shown in Table 1. There were no
significant differences in gender, age, BMI, smoking history and chemical exposure history
between the two groups.

2.2. Serum Metabolome Spectrum

2.2.1. Metabolome Spectrum for 1H-NMR

Typical NMR spectra of metabolites between the sensitive and resistant groups are
shown in Figure 1. A total of 29 metabolites were identified in the serum, including
2-hydroxybutyrate, isoleucine, 2-hydroxy-3-methylvalerate, leucine, valine, 3-methyl-2-
oxovalerate, 3-hydroxybutyrate, lactate, alanine, lysine, acetate, glutamate, pyruvate, pyrog-
lutamate, glutamine, ornithine, choline, carnitine, betaine, trimethylamine-N-oxide, taurine,
glycerol, glycine, creatine, tyrosine, histidine, phenylalanine, hypoxanthine and formate.
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Figure 1. Typical 500 MHz 1H-NMR spectra of serum for the two groups. Red spectra represent
NAC-resistant group and black spectra represent NAC-sensitive group.

Table 1. Patient baseline characteristics.

NAC-Sensitive NAC-Resistant

Patient number 6 12

Sex, n (%)
Male 6 (100%) 12 (100%)
Female 0 (0) 0 (0)

Age, median (range) 66.5 (39–75) 64.5 (49–77)

BMI, M ± SD (kg/m2) 24.9 ± 4.2 23.5 ± 2.4

Clinical T stage, n (%)
T2 4 5
T3 2 6
T4 0 1

Pathological T stage
T0 2 0
T1 4 0
T2 0 6
T3 0 5
T4 0 1

Smoking, n (%)
Yes 2 (33.3%) 8 (66.7%)
No 4 (66.7%) 4 (33.3%)

Chemical exposure, n (%)
Yes 0 (0) 1 (8.3%)
No 6 (100%) 11 (91.7%)

2.2.2. Metabolome Spectrum for UPLC-MS

In order to overcome the issue of the small number of compounds detected by 1H-
NMR [23], the same samples were evaluated by UPLC-MS, a technology with the advan-
tages of high sensitivity and broad metabolite obtainment. A total of 262 compounds were
detected, and 147 of them were identified as human metabolites according to The Human
Metabolome Database (HMDB) [24].
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2.3. Multivariate Statistical Analysis

2.3.1. PCA and OPLS-DA Analysis for 1H-NMR

Metabolomics usually uses multivariate statistics to further explore metabolite differ-
ences between two groups. The principal component analysis (PCA) score plot showed
partial overlap between the two groups (Figure S1). In order to better identify the dif-
ferences, we used the orthogonal partial least squares discriminant analysis (OPLS-DA)
method to perform a comprehensive evaluation. In the OPLS-DA score plot (Figure 2A), the
sensitive group was far away from the resistant group, indicating metabolic disturbances
between the two groups. S-plots (Figure 2B) and color-coded loading plots (Figure 2C)
were used to visualize the contribution of variables between the two groups.
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Figure 2. OPLS-DA analysis of the data obtained from 1H-NMR between the two groups. (A) Score
plots. Each point is one sample. Different groups are in different colours, with circles representing
the 95% confidence interval. (B) S plots. Different shapes represent different metabolites. (C) Corre-
sponding colour-coded loading plots. Colour is encoded by the absolute correlation coefficient of
each variable to the grouping, with hot-colour more significant than cool-colour signals.

Fold change and p value are shown in Table 2. In the sensitive group, glutamine and
taurine were considerably increased compared to their levels in the resistant group, while 2-
hydroxy-3-methylvalerate, 3-methyl-2-oxovalerate, 3-hydroxybutyrate, alanine, glutamate,
pyruvate, pyroglutamate, glycine and hypoxanthine were remarkably decreased. Therefore,
metabolite levels in patients with or without NAC response were different.
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2.3.2. PCA and OPLS-DA Analysis for UPLC-MS

As previously stated, PCA and OPLS-DA were used for multivariate analysis of the
metabolites obtained from UPLC-MS. Consistent with 1H-NMR data, the PCA score plot
(Figure S2A) showed partially overlapping, while the OPLS-DA (Figure S2B) score plot
showed well distinguished differences between the two groups.

Table 2. Identified metabolites between the two groups by 1H-NMR.

Metabolites
Sensitive vs. Resistant

Log2(FC) p
2-Hydroxybutyrate −0.11

Isoleucine −0.08
2-Hydroxy-3-methylvalerate −0.32 **

Leucine −0.32
Valine −0.22

3-Methyl-2-oxovalerate −0.44 **
3-Hydroxybutyrate −0.54 *

Lactate −0.15
Alanine −0.8 **
Lysine −0.06
Acetate −0.08

Glutamate −0.66 *
Pyruvate −2.06 **

Pyroglutamate −1.07 ***
Glutamine 0.69 *
Ornithine 0.01
Choline −0.31

Carnitine −0.01
Betaine 0.89

Trimethylamine-N-oxide 0.04
Taurine 1.23 *
Glycerol 0.05
Glycine −0.82 **
Creatine −0.73
Tyrosine 0.03
Histidine 0.07

Phenylalanine −0.06
Hypoxanthine −0.48 *

Formate 0.3
*: p < 0.05, **: p < 0.01, ***: p < 0.001.

A total of 57 metabolites were considered as differential metabolites (Figure 3A).
Glutamine, taurine, glycine and hypoxanthine were detected in both methods with the
same trends (Figure 3B). These four metabolites may be more reliable biomarkers for
predicting the NAC response in bladder cancer. In addition, some significant metabolites
that were not obtained by 1H-NMR were identified by UPLC-MS due to its high sensitivity,
including glyoxylic acid, ornithine, L-cystine, purine, uracil, serine and histidine, etc.
(Figures 3C and S3). Metabolite names corresponding to each violin diagram are shown in
Table S2.
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2.4. Metabolic Pathway Analysis

We performed pathway analysis using Metaboanalyst5.0 (https://www.metaboanalyst.
ca/ (accessed on 16 February 2022)) to explore potential metabolic pathways that might
affect NAC sensitivity. Differential metabolites with p < 0.05 were selected to import into the
tool. Figure 4A indicates the pathway analysis results of metabolites detected by 1H-NMR,
and the detailed results are shown in Table 3. MSEA shows that amino acid metabolism
pathway and carbohydrate metabolism pathway were significantly enriched, including
alanine, aspartate and glutamate metabolism, glyoxylate and dicarboxylate metabolism,
D-glutamine and D-glutamate metabolism, glutathione metabolism, arginine biosynthesis,
glycine, serine and threonine metabolism (Figure 4B).
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The results of pathway analysis (Figure 4C and Table 4) and MSEA (Figure 4D) of
characteristic metabolites identified by UPLC-MS were similar to the results of 1H-NMR.
Glutathione metabolism, glyoxylic acid and dicarboxylic acid metabolism, glycine, serine
and threonine metabolism remained remarkably enriched. These results suggest that the
three metabolic pathways may be the target pathways related to chemotherapy sensitivity.

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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2.5. Potential Proteins and Genes Associated with Metabolites

In order to search for the potential molecular target, we further performed bioin-
formatics analysis through a self-built database that integrated metabolites and proteins.
The interacting proteins were traced according to the characteristic metabolites, and their
corresponding genes were enriched. Due to the limited results of 1H-NMR detection, we
only selected the abundant metabolites detected in UPLC-MS for the analysis of gene
and protein level. First, GO enrichment analysis demonstrated that there were significant
alterations in amino acid pathways and organic acid transport (Figure 5A). Then, we use
hallmark analysis to show the signalling pathways. There were 18 remarkable pathways
(Figure 5B) enriched by the metabolites obtained from UPLC-MS, indicating that alterations
in these pathways may affect the sensitivity of NAC. The genes associated with these
pathways are detailed in Figure S4. Then, we used cystoscope to analyse the network,
finding 37 genes with strong potential correlation on the basis of degree of node table over
3 (Figure 5C), including BAX, CDKN1A, SOD1 and ERCC3. Metabolites directly associated
with these genes are shown in Figure 5D. Finally, we synthesized the results of GO analysis
and Hallmark analysis, and obtained the network diagram of the relationship between
these four significant metabolites and their related genes (Figure 5E).

Table 3. Metabolic pathway analysis of metabolites identified by 1H-NMR.

Pathway Name Matched
Metabolites

Raw p
(× 10 −3) −log10(p) FDR

(× 10 −3) Impact

Alanine, aspartate and
glutamate metabolism 4/28 0.02 4.7786 1.21 0.3109

Glyoxylate and
dicarboxylate metabolism 4/32 0.03 4.5394 1.21 0.10582

D-glutamine and
D-glutamate metabolism 2/6 0.55 3.256 8.16 0.5

Glutathione metabolism 3/28 0.58 3.2345 8.16 0.11548
Arginine biosynthesis 2/14 3.27 2.4851 39.27 0.11675

Glycine, serine and
threonine metabolism 2/33 17.78 1.75 149.37 0.24577

Taurine and hypotaurine
metabolism 1/8 50.57 1.2961 283.21 0.42857

The table contains a partial results of pathway analysis. The impact is the pathway impact value calculated from
pathway topology analysis.

Table 4. Metabolic pathway analysis of metabolites identified by UPLC-MS.

Pathway Name Matched
Metabolites Raw p −log10(p) FDR Impact

Glutathione metabolism 4/28 0.02 1.6362 1 0.12042
Glyoxylate and

dicarboxylate metabolism 4/32 0.04 1.4433 1 0.4127

Glycine, serine and
threonine metabolism 4/33 0.04 1.4001 1 0.24577

Taurine and hypotaurine
metabolism 1/8 0.28 0.5542 1 0.42857

The table contains partial results of pathway analysis. The impact is the pathway impact value calculated from
pathway topology analysis.
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Figure 4. Summary of pathway analysis and MSEA. (A) Pathway analysis of metabolites identified
by 1H-NMR. (a) Alanine, aspartate and glutamate metabolism; (b) glyoxylate and dicarboxylate
metabolism; (c) D-glutamine and D-glutamate metabolism; (d) glutathione metabolism; (e) arginine
biosynthesis; (f) glycine, serine and threonine metabolism; (g) taurine and hypotaurine metabolism.
(B) MSEA of metabolites identified by 1H-NMR. (C) Pathway analysis of metabolites identified by
UPLC-MS. (a) Glutathione metabolism; (b) glyoxylate and dicarboxylate metabolism; (c) glycine,
serine and threonine metabolism; (d) taurine and hypotaurine metabolism. (D) MSEA of metabolites
identified by UPLC-MS.
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Figure 5. Enrichment analysis based on the self-built database, which integrated metabolites and
proteins. (A) Summary of GO enrichment analysis. (B) Hallmark analysis of metabolites identified by
UPLC-MS. (C) Detailed network diagram of genes related to pathways. Red dots represent pathways
and blue dots represent genes. The darker the colour, the greater the degree. The shade of the line
colour indicates edge betweenness. (D,E) The network of these significant genes and their related
metabolites, and the four potential biomarkers and their related genes. Red represents the metabolites
increasing in the sensitive group compared to the resistant group, while blue represents decreasing.
The font size represents its significance.
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3. Discussion

Metabolites represent the lowest level of biological information, integrating the
changes of gene, transcription and protein [25]. Metabolomics establishes new oppor-
tunities for identifying cancer risk factors, distinguishing biomarkers for cancer monitoring
and discovering drugs targeted to cancer metabolism [23]. In this pilot study, we survey a
metabolic landscape associated with NAC sensitivity in patients with MIBC by 1H-NMR
and UPLC-MS (Figure 6). Some characteristic metabolites about amino acids, organic
acids, purines and ketone bodies were obtained. Then, we used bioinformatics methods
to visualize the internal metabolic pathways and potential molecular pathways under
metabolic phenotypes.
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is mapped according to KEGG pathway (https://www.genome.jp/kegg/pathway.html (accessed
on 11 April 2022)). Red represents elevated metabolites in the sensitive group, and blue represents
reduced metabolites.

1H-NMR, a mature metabolomics technique, is known for its unbiasedness, robustness
and complete database [26]. Liquid chromatography has the advantage of high sensi-
tivity and great resolution, applying to the detection of heat-resistant and non-volatile
compounds [27]. However, no single metabolomics platform could present a complete
metabolic profile. Therefore, we used complementary approaches to enhance the coverage
of metabolites to demonstrate the metabolic profiles of bladder cancer patients treated
with NAC and obtained biomarkers with higher potential by taking the intersection of the
two outcomes.

https://www.genome.jp/kegg/pathway.html
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With respect to our results, glycine and hypoxanthine were significantly decreased,
while taurine and glutamine were significantly increased in sensitive patients. Among
breast cancer studies, glycine decreased significantly after chemotherapy in chemotherapy-
sensitive patients, but not in resistant patients [28]. That is consistent with the results of
neoadjuvant chemoradiotherapy for oesophageal cancer, in which the levels of glycine
and serine were lower in sensitive patients [18]. Several studies have shown that dietary
therapy limiting the intake of serine and glycine can play a certain anti-tumour role [29,30].
The decrease in intracellular nucleotide concentration could improve the efficacy of gemc-
itabine [31], while glycine is a precursor to de novo synthesis of purine nucleotides [32].
Therefore, there may be a synergistic effect between lower glycine levels and efficacy of
cisplatin or gemcitabine. In bladder cancer, increased glycine has been found, compared
with patient health [33]. Taurine is a valuable metabolite in urine of bladder cancer patients,
and is elevated in ill patients [34]. Metabolic disorders of taurine are also associated with
recurrence of NMIBC [35]. Additionally, our study found that taurine is also a potential
biomarker in serum. Taurine combined with cisplatin could enhance the inhibitory effect
of cisplatin on the proliferation of cervical cancer cells by up-regulating P53 expression and
down-regulating anti-apoptotic protein expression [36,37]. Therefore, a high level of taurine
may contribute to the effect of chemotherapy. Hypoxanthine, an upstream metabolite in
the nucleotide biosynthetic pathway, was considerably decreased in sensitive patients,
probably related to DNA damage repair. In NAC-sensitive breast cancer patients, hypoxan-
thine decreased significantly after chemotherapy [21]. In low-risk bladder cancer patients,
elevated hypoxanthine in urine predicts the likelihood of recurrence [38]. In addition, lipids
are also important metabolites. Yang, et al. [17] investigated the plasma of colorectal cancer
patients and found that nine metabolites, primarily lipids, could predict the sensitivity to
NAC. In our study, we also identified some lipids, such as PA (14:0/20:2(11Z,14Z)) and PE
(14:0/22:2(13Z,16Z)), which were found to be elevated in NAC-responsive patients.

Alterations in individual metabolites reflect adaptation in metabolic pathways. We
found that glutathione metabolism and glycine, serine and threonine metabolism were
significantly enriched. Alterations in glycine, serine and threonine metabolic pathways
have been reported in NAC response of breast cancer [19]. Glutathione (GSH) is an
antioxidant metabolite capable of scavenging ROS [32]. Dysregulation of glutathione
metabolism is present in bladder cancer patients [39]. Our previous study found that GSH
reduction caused by overexpression of mir-218 increased the sensitivity of bladder cancer
to cisplatin [40]. The enrichment of the glutathione metabolic pathway suggests that GSH
level and oxidative stress status in NAC-sensitive patients may be different compared to
NAC-resistant patients.

Enrichment analysis of metabolite-related genes demonstrated that DNA damage
repair has crucial value. Defects in DNA repair genes could be used as biomarkers for
predicting response to cisplatin-based NAC in bladder cancer and improve patients’ long-
term survival after NAC [41,42]. Breast cancer patients with DNA repair gene mutations are
more sensitive to NAC [43]. BAX is related to the differential metabolite hypoxanthine. BAX
is involved in apoptosis, and the expression of BAX is more frequent in NAC responders
among cervical cancer patients [44].

Overall, our study reported the metabolic profile of NAC sensitivity in patients with
MIBC through untargeted metabolomics analysis of blood samples collected before the first
chemotherapy. Additionally, we provided a theoretical basis from metabolic phenotype to
potential genes for cisplatin resistance. However, there are some limitations in this study.
First, this study was performed with a small number of samples. Second, the metabolic
alterations caused by dietary patterns were not taken into account. Nevertheless, as the
first exploration in metabolites reflected from NAC response in bladder cancer patients,
our study also has implications for future studies. Conducting a more targeted metabolite
analysis with a larger sample size is necessary, in the hope of improving the status of
cisplatin resistance in MIBC patients.
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4. Materials and Methods
4.1. Study Design

Blood samples were prospectively collected before the first chemotherapy from pa-
tients who met NAC indications and agreed to receive NAC. 1H-NMR and UPLC-MS, two
complementary detection methods, were used to develop serum metabolomic analysis at
the Centre of Molecular Metabolism, Nanjing University of Science and Technology. All
patients underwent magnetic resonance imaging (MRI) before the first chemotherapy to
assess clinical stage. Tumour response to NAC were assessed by at least two pathologists.
We considered patients with complete response (pCR: pT0N0) and partial response (pPR:
pT1N0, pTaN0, or pTisN0) as NAC-sensitive, while patients with no response (≥pT2 or
pN+) were considered NAC-resistant [8]. The workflow is shown in Figure 7.
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4.2. Patients Population

Patients from January 2017 to December 2019 in the First Affiliated Hospital of Nanjing
Medical University were recruited. Inclusion criteria were (1) clinical diagnosis as cT2-
4aNxM0; (2) RC tolerated after clinical evaluation; (3) no history of chemotherapy or
immunotherapy; (4) no history of metabolic diseases. Exclusion criteria were (1) incomplete
clinical data; (2) not completed 2 cycles of NAC.

4.3. NAC Regimen

Patients were assigned to receive chemotherapy of gemcitabine (1.0 g/m2 on days 1
and 8) and cisplatin (70 mg/m2 evenly distributed over days 2 to 4) every 21 days for
2 cycles.

4.4. Serum Sample Collection

Fasting peripheral blood (3.5 mL) was collected in the morning before the first NAC
treatment. The blood was centrifuged at 3000 rpm for 10 min at 4 ◦C. The serum was care-
fully absorbed into 1.5 mL centrifuge tubes and stored at −80 ◦C for metabolite detection.
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4.5. Metabolomics Methods
4.5.1. Chemicals and Reagents

Ammonium acetate, ammonia water, deuterium oxide (D2O, 99.9%) and sodium
3-trimethylsilyl propionic acid (TSP) were obtained from Sigma-Aldrich Co. (St Louis, MO,
USA). Acetonitrile and methanol were purchased from Guangdong Guanghua SciTech
Co. (Shantou, Guangdong, China). Solution preparation used ultrapure water (resistivity
≥18.25 MΩcm−1).

4.5.2. Sample PreparationSample Preparation for 1H-NMR Spectroscopy
Sample Preparation for 1H-NMR Spectroscopy

A 600 µL amount of methanol was added into 300 µL serum and vortexed for 20 min.
The supernatant was centrifuged, and the methanol was removed with a nitrogen blower.
Then, samples were stored at −80 ◦C until the next day, followed by drying in a freeze-dryer.
The lyophilized samples were dissolved in 600 µL D2O phosphate buffer (containing TSP
as internal standard), then vortexed and centrifuged at 12,000 rpm for 5 min at 4 ◦C. Finally,
the supernatant solution was transferred to 5 mm NMR tubes for 1H-NMR testing [45,46].

Sample Preparation for UPLC-MS

A mixture of acetonitrile and methanol at the ratio of 1:1 was prepared in advance. Into
100 µL serum, 400 µL mixture solution were added and vortexed for 30 s before freezing at
−20 ◦C for 4 h. The samples were then centrifuged at 12,000 rpm for 12 min at 4 ◦C. The
supernatants were absorbed and dried in a freeze dryer. Then, samples were dissolved with
100 µL precooling mixture solution (acetonitrile and water at the radio of 1:1), treated with
ultrasound in ice water for 5 min, vortexed for 30 s, and centrifuged at 12,000 rpm for 5 min
at 4 ◦C. Finally, the supernatant solution was transferred to tubes for UPLC-MS testing.

4.6. Data Pre-Processing
1H-NMR Spectroscopy and Data Pre-Processing

The methods of 1H-NMR spectroscopy and data pre-processing were as described in
previous articles [45,47]. Briefly, the 1H-NMR spectra were obtained by Bruker AVANCE
III 500 MHz spectrometer (Bruker GmbH, Karlsruhe, Germany). The NMR spectra of
serum samples were collected at 298 K using modified transverse relaxation edited Call-
Purcell-Meiboom-Gill (CPMG) sequence (90 (τ-180-τ) n-acquisition), with a total spin echo
delay (2nτ) of 10 ms to suppress the signals of proteins. Then, free induction decay (FID)
was multiplied with an exponential window function corresponding to the 0.5 Hz line
spreading factor before performing Fourier transform. Phase and baseline of 1H-NMR data
were adjusted by Bruker TopSpin Software (version 3.5, Bruker). Mestre C (version 4.9.9.6,
Mestrelab Research SL) was used to export the adjusted 1H-NMR spectra into ASCII files,
which were then imported into “R” software for multivariate data analysis.

UPLC-MS Condition and Data Pre-Processing

A UPLC BEH Amide column (1.7 µm, 2.1 × 100 mm, Waters) was used for UPLC-MS
(Triple TOF 5600+ MS, AB SCIEX, USA). Mobile phase A was 20 mM ammonia plus 25 mM
ammonium acetate aqueous solution (500 mL pure water with 0.963 g ammonium acetate
and 0.774 mL ammonia), and mobile phase B was acetonitrile. The gradient procedure is
shown in Table S1. The flow rate was 0.3 mL/min, and the column temperature was set as
40 ◦C. One QC sample was put into every three samples.

The MS was performed in negative ion mode with an electrospray (ESI) ion source. The
bombardment energy was set at 35 ± 15 eV, and the cumulative time of each product ion
was 50 ms. Firstly, ProteoWizard software (https://proteowizard.sourceforge.io/ (accessed
on 31 December 2021)) was used to convert the original MS data into a common mzXML
format. Then, a data matrix consisting of retention time (RT), mass/charge ratio (M/z) and
peak intensity was obtained by pre-processing the data. Compound peaks were annotated

https://proteowizard.sourceforge.io/
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by MS database and “R” software ((http://cran.r-project.org/ (accessed on 31 December
2021)) package XCMS. Features with CV over 15% in pooled QC samples were removed,
and the missing values were input by random forest imputation. Finally, PCA and OPLS-
DA were performed on the data obtained from sample names, corresponding compound
of each peak, and peak area of each compound after normalization.

4.6.1. Multivariate Statistical Analysis

PCA and OPLS-DA are commonly used in multivariate statistics of metabolomics.
PCA, an unsupervised exploratory analysis, uses dimensionality reduction to identify the
overall distribution of the samples. OPLS-DA is a supervised recognition method that can
better clusters between the two groups by filtering through irrelevant effects [48]. Fold
change was calculated by integrating the area ratio of metabolites, and the associated
p-values were calculated and corrected by the Benjamin–Hochberg method. All statistical
analyses were run in the “R” software.

4.6.2. Metabolic Pathway and Enrichment Analysis

Metabolic pathway analysis and metabolite set enrichment analysis (MSEA) was
performed in Metaboanalyst5.0 (https://www.metaboanalyst.ca/ (accessed on 16 February
2022)). Enrichment analysis and hallmark analysis were run in the “R” software.

5. Conclusions

Serum metabolic profiles of NAC sensitivity are significantly different in bladder
cancer patients. Glycine, hypoxanthine, taurine and glutamine may be potential biomarkers
for contributing to clinical treatment. Targeting amino acid metabolic pathways is expected
to be a new direction to improve the sensitivity of NAC in bladder cancer.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo12060558/s1. Figure S1 PCA score plot of 1H-NMR. Figure S2
PCA (A) and OPLS-DA (B) analysis of the data obtained from UPLC-MS. Figure S3 Other significant
metabolites identified by UPLC-MS between the two groups. Figure S4 The genes associated with
these pathways and metabolites. Table S1 Gradient elution table of UPLC-MS. Table S2 Metabolites
corresponding to each violin diagram.
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