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Abstract: Despite decades of comprehensive research, Acute Respiratory Distress Syndrome (ARDS)
remains a disease with high mortality and morbidity worldwide. The discovery of inflammatory
subphenotypes in human ARDS provides a new approach to study the disease. In two different ovine
ARDS lung injury models, one induced by additional endotoxin infusion (phenotype 2), mimicking
some key features as described in the human hyperinflammatory group, we aim to describe protein
expression among the two different ovine models. Nine animals on mechanical ventilation were
included in this study and were randomized into (a) phenotype 1, n = 5 (Ph1) and (b) phenotype 2,
n = 4 (Ph2). Plasma was collected at baseline, 2, 6, 12, and 24 h. After protein extraction, data-
independent SWATH-MS was applied to inspect protein abundance at baseline, 2, 6, 12, and
24 h. Cluster analysis revealed protein patterns emerging over the study observation time, more
pronounced by the factor of time than different injury models of ARDS. A protein signature consisting
of 33 proteins differentiated among Ph1/2 with high diagnostic accuracy. Applying network analysis,
proteins involved in the inflammatory and defense response, complement and coagulation cascade,
oxygen binding, and regulation of lipid metabolism were activated over time. Five proteins, namely
LUM, CA2, KNG1, AGT, and IGJ, were more expressed in Ph2.

Keywords: protein expression profiles; SWATH; Acute Respiratory Distress Syndrome (ARDS);
phenotypes; ovine model

1. Introduction

More than five decades since its first description in 1967 [1], Acute Respiratory Distress
Syndrome (ARDS) remains a life-threatening critical illness that affects 10% of intensive
care unit patients on mechanical ventilation, with a mortality rate of 45% in the most severe
cases [2,3]. ARDS is implicated in up to 85% of all COVID-19 deaths—now estimated as
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the fourth leading cause of death globally since the start of 2020 [4]. Until recently, there
have been minimal advances in the understanding of the pathophysiology of ARDS [5,6].
The syndromic nature of ARDS, its broad etiological heterogeneity, as well as its variable
host responses have impeded significant progress in comprehensive research, resulting in a
consistently high mortality [2] and morbidity rate [7] worldwide.

Recent post-hoc analyses of large clinical ARDS trials within the National Health
Lung and Blood Institute (NHLBI) network revealed evidence for distinct ARDS sub-
groups, defined by specific clinical and biological features: a hypoinflammatory (P1) and
a hyperinflammatory subphenotype (P2) [8–13]. In brief, P2 is characterized by a more
severe shock and inflammatory state, hemodynamic alterations, and non-pulmonary or-
gan failure, as well as significantly higher mortality [8–13]. Additionally, retrospective
analyses of overall neutral or negative ARDS treatment studies demonstrated a possible
interaction between the ARDS subphenotype and the benefit of a specific management
strategy [8,10]. or anti-inflammatory treatment [11,14]. Therefore, early identification
of ARDS subphenotypes [13,15,16] combined with targeted treatment might offer a new
therapeutic approach [17,18].

Whilst promising, the current data based on subphenotypes are all retrospective in
nature, and, most importantly, at this time, little is known about the biological processes
over time driving the disease, and there is no tool set available for the early identification
of the respective subphenotype at bedside. There have been several efforts in the quest
for biomarkers in ARDS in the past [19–21], some using a genomics and/or proteomics
approach [22]. As proteins represent a dynamic expression of cell function, proteomics
is likely a more powerful tool in ARDS for biomarker discovery and the understanding
of biological pathways than genomics. In subphenotypes, this process has only recently
started [9,23]. Because of the syndromal nature of ARDS, and its complexity, multifactorial
causes, and risk factors, the discovery of a single biomarker remains unlikely. However,
subphenotyping based on protein patterns might help in narrowing the field through
predictive enrichment [15,24] and ultimately lead the approach towards targeted medicine
in ARDS [25,26].

Our group previously assessed different models of lung injury in an ovine model, and
demonstrated that one specific ARDS induction method mimics the key features observed
in the human ARDS P2 subphenotypes [27]. Given that a) inflammatory pathways in ovine
models and humans are comparable in many aspects [28] and that b) results from a recent
analysis showed similar gene expression patterns in human P2 and lipopolysaccharide
(LPS)-induced ARDS (as used in our Ph2 ovine model) in animal models [23], we hypoth-
esize that our ARDS models offer the opportunity to study protein expression among
different ARDS subgroups more closely.

We therefore aim to describe quantitative protein abundance among two different
ovine ARDS models: phenotype 1 (Ph1) and phenotype 2 (Ph2).

2. Results
2.1. Studied Population

Baseline characteristics of studied animals did not differ among Ph1 and Ph2 and
are shown in Table S1 in the Supplementary Materials. After induction of ARDS, Ph2
animals showed more metabolic disturbances and hemodynamic alterations. Selected
clinical and laboratory parameters during the experiment (at T12 and T24) are shown in
Table S2 (Supplementary Materials).

Inflammatory cytokines (interleukin-6 (IL), -8, -10) displayed an early peak in Ph2 around
2 h. Furthermore, while IL-8 and IL-10 then assimilated to Ph1 levels over the observation
period, IL-6 remained elevated in Ph2 animals (Figure S1, Supplementary Materials).

The Lung Injury Score (LIS) was 0.32 (0.28–0.37) among Ph1 and 0.35 (0.30–0.41) among
Ph2 animals (Figure S2, Supplementary Materials).
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2.2. Unsupervised Cluster Analysis

Principal component analysis (PCA) was performed to visualize differences and
similarities among Ph1 and Ph2. It resulted in distinctive patterns, with PC1 (principal
component) explaining 31%, PC2 19%, and PC3 10% of the variability among samples.
Figure 1 displays the discovered clusters among phenotypes and sampling time points.
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Correlation of all samples is shown in Figure S3 (Supplementary Materials).

2.3. Proteins of Differential Abundance

After quality control and log-normalization, 198 proteins remained for analysis. In
total, 45 proteins were detectable in every sample, 91 proteins in >75%, 120 in >50%, and
160 proteins in >25% of samples.

Differential abundance between Ph2 and Ph1 at each time point is shown Figure 2. A
comprehensive table of all differentially expressed proteins between Ph1 and Ph2 at every
time point can be found in Table S3 (Supplementary Materials). Overall, many uniquely
expressed proteins among Ph1 and Ph2 were detected, but little shared expression between
time points.
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Figure 2. Venn diagram displaying number of differentially expressed proteins between Ph1 and Ph2
at assessed time points. Abbreviations: B: baseline, T: time point.

2.4. Supervised Cluster Analysis

In the partial least squares discriminant analysis (PLS-DA), the best number of com-
ponents was determined to be three and the optimal number of proteins to keep per
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component was manually selected as 20, 3, and 10 according to Figure S4 (Supplementary
Materials). This resulted in two distinctive protein signatures among Ph1 and Ph2, as
shown in Figure 3A, with a final error rate per component of 0.15 to 0.27 (Figure 3B).
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The final class error rate among phenotypes as expressed in terms of maximal distance
(max. dist.) was generally low; for Ph1, it resulted in 29.7% (component 1; C1), 15.8%
(component 2; C2), and 12.3% (component 3; C3), and for Ph2, in 23.9% (C1), 18.3% (C2),
and 19.1% (C3).

The PLS-DA components resulted in an AUC of 0.916 (C1), 0.992 (C2), and 1.0 (C3) (all
p < 0.0001) for distinction between Ph1 and Ph2. Individual loadings of components 1 to 3
are reported in Table 1.

2.5. Analysis of Specific Proteins among Phenotypes over Time

We report on the top 34 proteins with a relaxed p to <0.1 to allow reasonable
pathway analysis.

The linear mixed-effect models (LMM) showed a difference between Ph1 and Ph2
for immunoglobulin J chain, hypothetical protein JEQ12_001510, heparin cofactor 2, an-
giotensinogen (upregulated in Ph2), and immunoglobulin lambda-1 light chain isoform X47
(downregulated in Ph2) (Table 2A, Figure 4A). A significant interaction effect for phenotype:time
was seen in lumican and carbonic anhydrase 2 (Table 2C, Figure 4B). Over the observation time
of the study, 27 proteins showed a significant up- or downwards trend (Table 2B).

2.6. Pathway Analysis

Identification of all “JEQ hypothetical proteins” among the top 33 identified ones in
LMM (p < 0.1 among Ph1/2, over time and/or for phenotype:time interaction) was done
with a peptide BLAST (at least 99% percent identity required; Table 3) in order to maximize
the input for pathway analysis. Then, a STRING analysis was conducted on all proteins
identified as potentially relevant with LMM.

The input consisted of 33 proteins, resulting in 22 nodes and 49 edges, with an average
node degree of 4.45 (11 proteins could not be identified by STRING). The average local
clustering coefficient was 0.591 and the protein–protein interaction (PPI) enrichment p-value
was determined to be <0.0001.
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The most dominant biological process found to be activated was the complement and
coagulation cascade (False Discovery Rate (FDR) < 0.001%) displaying antithrombin-III
precursor (SERPINC1), thrombin (F2), kininogen-1 isoform X2 (KNG1), inter-alpha-trypsin
inhibitor heavy chain H2 (ITHI2), complement C4-like isoform X1 (ENSOARP00000002890),
and ENSOARP00000000771 (uncharacterized protein). The same proteins except F2,
but with the addition of apolipoprotein CIII (APOC3), apolipoprotein A-II (APOA2),
and a serpin family protein (ENSOARP00000016410), are involved in the negative reg-
ulation of catalytic activity (FDR 0.0015%). Oxygen binding and carrier activity (FDR
both <0.03%) was represented by hemoglobin subunit alpha (ENSOARP00000011736) and
hemoglobin subunit beta (HBB). Other dominant biological processes include the inflam-
matory (FDR 0.023%; KNG1, F2, serum amyloid A protein (SAA1), ENSOARP00000002890,
ENSOARP00000000771) and the defense response (FDR 0.031%; same proteins; addition-
ally, Immunoglobulin J (IGJ), APOA2). APOA2 and APOC3 participate in the (negative)
regulation of cholesterol and lipid metabolism (FDR 0.012%) (Figure 5, Table S4).
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Table 1. A–C: component loadings for components 1 to 3.

(A) Component 1 Ph1 Ph2 GroupContrib Importance

hypothetical protein JEQ12_008126 −0.50842 0.635523 Ph2 −0.49715
hypothetical protein JEQ12_002713 −0.46116 0.576452 Ph2 −0.4048

immunoglobulin J chain −0.43948 0.549347 Ph2 −0.36243
hypothetical protein JEQ12_001510 −0.40883 0.511038 Ph2 −0.30254

lumican −0.46124 0.569764 Ph2 −0.26074
alpha-1-macroglobulin-like isoform X1 −0.4179 0.459686 Ph2 −0.22226

hypothetical protein JEQ12_014972 −0.36751 0.459382 Ph2 −0.22178
clusterin −0.36404 0.455049 Ph2 −0.21501

hypothetical protein JEQ12_010483 −0.35937 0.449214 Ph2 −0.20589
inter-alpha-trypsin inhibitor heavy chain H2 isoform X2 −0.34194 0.427429 Ph2 −0.17183

hypothetical protein JEQ12_008129, partial −0.35521 0.448681 Ph2 −0.16998
hypothetical protein JEQ12_008015 −0.33536 0.419202 Ph2 −0.15897

heparin cofactor 2 −0.32167 0.386004 Ph2 −0.10707
adiponectin isoform X1 −0.36314 0.453928 Ph2 −0.07133

hemoglobin subunit beta 0.279596 −0.34949 Ph1 0.049993
hypothetical protein JEQ12_003887 −0.27908 0.348852 Ph2 −0.04899

sex hormone-binding globulin isoform X3 −0.34802 0.386691 Ph2 −0.04769
fibronectin isoform X8 −0.2735 0.34187 Ph2 −0.03807

complement component C8 gamma chain −0.39878 0.451948 Ph2 −0.03353
short palate, lung and nasal epithelium

carcinoma-associated protein 2B-like −0.2696 0.37445 Ph2 −0.03047

(B) Component 2 Ph1 Ph2 GroupContrib Importance

fibrinogen gamma chain isoform X1 0.244913 −0.30614 Ph1 0.995488
hemopexin 0.093814 −0.11727 Ph1 0.089809

hypothetical protein JEQ12_017492 0.083199 −0.104 Ph1 0.030618

(C) Component 3 Ph1 Ph2 GroupContrib Importance

serum paraoxonase/arylesterase 1 isoform X1 −0.04943 0.061784 Ph2 0.562009
retinol-binding protein 4 0.056336 −0.07116 Ph1 0.49437

serpin A3–8 −0.21267 0.265832 Ph2 −0.39709
alpha-2-macroglobulin isoform X3 −0.22798 0.28498 Ph2 0.350947

thyroxine-binding globulin precursor 0.11401 −0.10801 Ph1 0.255706
hypothetical protein JEQ12_010483 −0.35937 0.449214 Ph2 −0.18727

carboxypeptidase N subunit 2 0.119992 −0.10736 Ph1 0.141224
PHD finger protein 21A isoform X13 0.07898 −0.09478 Ph1 0.133177

immunoglobulin lambda variable 1–40 isoform X18 0.047427 −0.06324 Ph1 0.130715
hypothetical protein JEQ12_012143 0.229434 −0.28679 Ph1 0.060661

Abbrev: Ph1/2: phenotypes 1 and 2; GroupContrib: group contribution.

Table 2. A–C: Estimates of linear mixed-effect models.

(A) p < 0.1 among Ph1 and Ph2 Ph1/Ph2 Time Interaction Constant

immunoglobulin J chain 0.9 (−0.09, 1.88),
p < 0.1 0.002 (−0.13, 0.14) −0.02 (−0.22, 0.18) 9.72 (9.06, 10.37),

p < 0.01

heparin cofactor 2 0.9 (−0.0004, 1.80),
p < 0.1 −0.09 (−0.27, 0.09) −0.12 (−0.39, 0.15) 10.17 (9.57, 10.77),

p < 0.01
immunoglobulin lambda-1 light

chain isoform X47
−1.35 (−2.85, 0.16),

p < 0.1 −0.43 (−1.38, 0.53) 0.41 (−1.02, 1.84) 5.37 (4.37, 6.37),
p < 0.01

angiotensinogen 0.88 (−0.14, 1.89),
p < 0.1 −0.12 (−0.30, 0.06) −0.16 (−0.43, 0.11) 10.16 (9.48, 10.84),

p < 0.01

hypothetical protein JEQ12_001510 0.84 (0.18, 1.50),
p < 0.05 0.06 (−0.06, 0.17) −0.11 (−0.28, 0.06) 11.02 (10.57, 11.46),

p < 0.01
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Table 2. Cont.

(B) p < 0.1 over time Ph1/Ph2 Time Interaction Constant

apolipoprotein C-III −0.14 (−1.73, 1.46) −0.48 (−0.79, −0.16),
p < 0.01 0.17 (−0.31, 0.64) 9.51 (8.45, 10.58),

p < 0.01

ceruloplasmin isoform X2 0.09 (−0.78, 0.96) 0.1 (−0.02, 0.23),
p < 0.1 0.02 (−0.17, 0.20) 12.34 (11.76, 12.91),

p < 0.01

complement C4-like isoform X1 0.01 (−1.06, 1.09) −0.25 (−0.43, −0.06),
p < 0.05 −0.03 (−0.31, 0.26) 11.02 (10.31, 11.74),

p < 0.01
inter-alpha-trypsin inhibitor heavy

chain H2 isoform X2 0.61 (−0.14, 1.36) −0.22 (−0.33, −0.12),
p < 0.01 −0.02 (−0.18, 0.14) 11.57 (11.07, 12.07),

p < 0.01

prothrombin precursor 0.34 (−1.10, 1.79) −0.27 (−0.48, −0.05),
p < 0.05 0.08 (−0.24, 0.40) 10.98 (10.02, 11.95),

p < 0.01

serpin A3–7 isoform X2 0.16 (−0.63, 0.95) 0.19 (0.05, 0.34),
p < 0.01 −0.1 (−0.32, 0.12) 10.36 (9.83, 10.88),

p < 0.01

serpin A3–8 0..35 (−0.84, 1.53) 0.47 (0.28, 0.65),
p < 0.01 0.07 (−0.20, 0.35) 8.86 (8.07, 9.65),

p < 0.01

serpin A3–6-like −1.55 (−4.04, 0.93) −0.42 (−0.89, 0.05),
p < 0.1 0.28 (−0.40, 0.95) 9.63 (7.92, 11.35),

p < 0.01

serum amyloid A protein 0.29 (−1.64, 2.21) 1.42 (1.06, 1.79),
p < 0.01 −0.03 (−0.55, 0.49) 4.09 (2.73, 5.46),

p < 0.01

glutathione peroxidase 3 −0.39 (−1.82, 1.04) 0.27 (−0.01, 0.55),
p < 0.1 0.31 (−0.07, 0.70) 5.69 (4.64, 6.74),

p < 0.01
synaptotagmin-like protein

4 isoform X3 −0.21 (−1.10, 0.69) 0.18 (0.01, 0.34),
p < 0.05 −0.01 (−0.26, 0.24) 16.43 (15.84, 17.03),

p < 0.01
serum paraoxonase/arylesterase 1

isoform X1 0.35 (−0.38, 1.08) −0.11 (−0.22, 0.01),
p < 0.1 −0.1 (−0.27, 0.08) 11.6 (11.11, 12.08),

p < 0.01

transthyretin precursor −1.35 (−4.77, 2.06) −0.48 (−0.97, 0.01),
p < 0.1 0.1 (−0.67, 0.87) 11.47 (9.21, 13.73),

p < 0.01

lumican 0.2 (−1.22, 1.62) 0.35 (0.07, 0.62),
p < 0.05

0.47 (0.06, 0.87),
p < 0.05

6.57 (5.08, 7.02),
p < 0.01

zinc finger protein 264-like
isoform X1 0.28 (−0.58, 1.14) 0.17 (−0.01, 0.36),

p < 0.1 −0.2 (−0.46, 0.06) 12.15 (11.54, 12.75),
p < 0.01

Hemopexin −0.8 (−2.22, 0.61) −0.38 (−0.63, −0.14),
p < 0.01 0.19 (−0.18, 0.55) 12.93 (11.98, 13.87),

p < 0.01

complement C3 0.08 (−0.66, 0.82) −0.12 (−0.25, 0.01),
p < 0.1 −0.001 (−0.20, 0.20) 9.53 (9.03, 10.02),

p < 0.01

hemoglobin subunit beta −1.74 (−4.02, 0.53) 0.44 (0.02, 0.85),
p < 0.05 0.17 (−0.45, 0.80) 13.25 (11.74, 14.77),

p < 0.01

apolipoprotein A-II 0.58 (−0.45, 1.61) −0.18 (−0.38, 0.03),
p < 0.1 −0.08 (−0.39, 0.23) 12.09 (11.40, 12.78),

p < 0.01
PHD finger protein 21A

isoform X13 −0.05 (−1.18, 1.08) 0.22 (0.001, 0.44),
p < 0.05 −0.04 (−0.37, 0.29) 14.89 (14.13, 15.64),

p < 0.01

hypothetical protein JEQ12_002713 0.54 (−0.15, 1.22) −0.11 (−0.24, 0.01),
p < 0.1 0.03 (−0.16, 0.22) 12.24 (11.78, 12.69),

p < 0.01

hypothetical protein JEQ12_008125 −0.42 (−1.05, 0.22) −0.15 (−0.26, −0.04),
p < 0.01 0.14 (−0.03, 0.31) 17.7 (17.28, 18.12),

p < 0.01

hypothetical protein JEQ12_008126 0.4 (−0.19, 1.00) −0.12 (−0.21, −0.02),
p < 0.05 0.08 (−0.06, 0.22) 15.48 (15.09, 15.88),

p < 0.01

hypothetical protein JEQ12_008387 0.34 (−0.33, 1.01) 0.53 (0.39, 0.66),
p < 0.01 −0.05 (−0.25, 0.15) 10.18 (9.73, 10.62),

p < 0.01

hypothetical protein JEQ12_005133 −0.17 (−1.93, 1.58) 1.72 (1.39, 2.04),
p < 0.01 0.02 (−0.49, 0.53) 3.73 (2.63, 4.83),

p < 0.01

hypothetical protein JEQ12_003887 0.59 (−0.72, 1.91) −0.22 (−0.46, 0.02),
p < 0.1 0.03 (−0.33, 0.38) 13.07 (12.20, 13.95),

p < 0.01

hypothetical protein JEQ12_012143 −0.51 (−2.55, 1.53) 0.58 (0.17, 0.99),
p < 0.01 −0.13 (−0.74, 0.49) 13.01 (11.65, 14.37),

p < 0.01

(C) p < 0.1 for group:time
interaction Ph1/Ph2 Time Interaction Constant

lumican 0.2 (−1.22, 1.62) 0.35 (0.07, 0.62),
p < 0.05

0.47 (0.06, 0.87),
p < 0.05

6.57 (5.08, 7.02),
p < 0.01

carbonic anhydrase 2 −1.36 (−3.16, 0.43) 0.17 (−0.13, 0.47) 0.39 (−0.06, 0.83),
p < 0.1

9.62 (8.41, 10.83),
p < 0.01

Data are expressed as estimates with 95% confidence interval in brackets.
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Table 3. Protein identification with protein BLAST.

Input in BLAST Identified Protein Accession Number Perc. Identity Query Cover

hypothetical protein
JEQ12_001510 kininogen-1 isoform X2 XP_004003107.2 99.77% 100%

hypothetical protein
JEQ12_002713

primary amine oxidase,
liver isozyme XP_027830273.2 99.86% 100%

hypothetical protein
JEQ12_008126 immunoglobulin mu chain AAA51379.1 99.79% 73%

hypothetical protein
JEQ12_008387

inter-alpha-trypsin
inhibitor heavy chain H4

isoform X2
XP_004018440.3 99.56% 100%

hypothetical protein
JEQ12_005133 haptoglobin isoform X2 XP_004015160.1 99.75% 100%

hypothetical protein
JEQ12_003887 antithrombin-III precursor NP_001009393.1 99.57% 100%

hypothetical protein
JEQ12_012143 hemoglobin subunit alpha EGW10374.1 100% 97%

hypothetical protein
JEQ12_008125 Ig gamma 1 chain CAA49451.1 99.70% 81%
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Figure 5. STRING network analysis. Figure created in STRING Database (STRING Consortium 2022,
www.string-db.org). Abbreviations: LOC101113086: primary amine oxidase, lung isozyme; APOA2:
apolipoprotein A-II; HPX: hemopexin; CP: ceruloplasmin precursor; ENSOARP00000000771: unchar-
acterized protein; ITIH2: inter-alpha-trypsin inhibitor heavy chain H2; HBB: hemoglobin subunit
beta; LUM: lumican; IGJ: immunoglobulin J chain; ENSOARP00000011736: hemoglobin subunit
alpha; CA2: carbonic anhydrase 2; AGT: angiotensinogen; SAA1: serum amyloid A protein; EN-
SOARP00000016410: uncharacterized protein, belongs to serpin family; TTR: transthyretin; PHF21A:
PHD finger protein 21A; APOC3: apolipoprotein CIII; F2: thrombin; ENSOARP00000002890: comple-
ment C4-like isoform X1; GPX3: glutathione peroxidase 3; SERPINC1: antithrombin-III precursor;
KNG1: kininogen-1 isoform X2.

www.string-db.org
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3. Discussion

This is a comprehensive animal model of ovine ARDS phenotypes, in which the
novelty is an observation time of up to 24 h and targeted sampling for protein assessment
to discover a protein signature for differentiation among the two phenotypes.

The discovery of ARDS subphenotypes in the heterogenous critical care population is a
promising new approach to decreasing ARDS mortality with phenotype-specific treatment,
yet it is supported only by retrospectively collated evidence and the underlying biological
processes are poorly understood. In addition, a biomarker signature that can easily and
reliably differentiate among the subphenotypes at bedside is still missing. The similarities
of the ovine and human inflammatory pathways and the possibility to induce an ovine
lung injury, mimicking the features of the human hyperinflammatory ARDS subphenotype,
gave us the opportunity to develop a highly controlled study to further explore the distinct
biological processes in ovine ARDS.

We report five main findings: firstly, in the unsupervised cluster analysis, there were
patterns in proteins emerging over the study observation time, resulting from time-specific
biological processes. Second, protein patterns were slightly more pronounced by the factor
of time than different injury models of ARDS. Third, among the 198 proteins analyzed
using supervised clustering, it was apparent that a signature consisting of 33 proteins was
able to differentiate best among Ph1/2 with a low error rate and good diagnostic accuracy.
Fourth, network analysis showed that specific proteins involved in the inflammatory and
defense response, complement and coagulation cascade, oxygen binding, and regulation of
lipid metabolism were activated over time. Fifth, five proteins, LUM, CA2, AGT, KNG1,
and IGJ, were more expressed in Ph2.

The finding that protein patterns among time points were more pronounced than
among ARDS phenotypes is relatively surprising, as our previous results clearly show
that the two ovine phenotypes are different in their biological responses and cytokine
profiles [27]. The validity of our Ph2 model has been highlighted by a recent preprint [23]
that showed that gene expression in animal LPS models is comparable to that of the
human hyperinflammatory ARDS subphenotype; therefore, similar underlying molecular
pathways are potentially activated.

The STRING interaction enrichment parameters indicate that the input proteins in
the pathway analysis show interactions that are clearly not random but instead at least
partially biologically connected. The most dominant active biological processes in both
ovine ARDS phenotypes were the complement and coagulation cascade, oxygen binding
and carrier activity, negative regulation of catalytic activity, inflammatory and defense
response, as well as the regulation of cholesterol and lipid metabolism. These findings are
in line with previously identified key biological processes in the disease: in particular, the
defense response, inflammation, and coagulation processes are largely intertwined [29] in
a presumably inflammatory disease. In a syndrome where disturbances in gas exchange
are the most important characterizing feature, oxygen binding and carrier activity is
hardly surprising as an involved biological process [30]. The involvement of proteins
of the cholesterol and lipid metabolism in ARDS has been shown previously [31,32] as
active regulators of host immune responses by inhibiting the expression of adhesion
molecules. APOC2 and APOC3 are also able to bind and consecutively neutralize LPS
and endotoxins [32]; however, there was no overexpression detectable in LPS-induced Ph2.
A possible explanation is that proteins of lipid metabolism have been detected in mainly
direct (epithelial) lung injury in human ARDS [31], while both of our phenotypes received
OA, which is known to cause a direct injury to the pulmonary epithelium [33].

Six proteins were clearly more expressed in Ph2 than Ph1, in the LMM and in the
graphical display; five could be identified in the pathway analysis. LUM belongs to the
proteoglycan family and is involved in collagen fibrillogenesis within the extracellular
matrix [34]. In an analysis of alveolar macrophages in sepsis-induced ARDS, among the
10 proteins that were upregulated early in the course of ARDS [35], organizing proteins
of the cytoskeleton were involved as well. CA2 and AGT are both part of the angiotensin-
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activated signaling pathway, thereby involved in hemodynamic processes by the regulation
of arterial blood pressure [36]. Additionally, CA2 is a regulator of homeostatic processes
through the dipeptide transmembrane transport, therefore heavily involved in metabolic
compensation processes. Ph2 animals expressed a higher heart rate during the first few
hours and a higher cardiac index throughout the experiment, pointing towards an increased
need for the regulation of hemodynamic processes. Additionally, Ph2 animals had a
more negative base excess with a higher lactate, indicating a more unstable metabolic
condition and therefore potentially resulting in upregulated activity of CA2 for metabolic
compensation. IGJ links two monomer units of IgM or IgA, and is therefore part of the
humoral and adaptive immune response [37]. The higher levels of IGJ in Ph2 may indicate
that the humoral immune response is more pronounced in Ph2 animals. KNG1 is active
as two proteins: high-molecular-weight kininogen (HMWK) and low-molecular-weight
kininogen (LMWK). Both play an important role in coagulation processes by the inhibition
of platelet aggregation [38]. HMWK participates in inflammatory processes through the
release of bradykinin and consecutively prostaglandins; additionally, it has a direct effect on
the vascular contraction state and permeability. All processes are likely more pronounced
in our Ph2 ARDS model.

Important features of ARDS were first described in animal models, well before its first
official description in humans by Ashbaugh in 1967 [39,40]. Due to important similarities in
pathophysiology regarding pulmonary and circulatory mechanics, as well as inflammatory
pathways, large animal models have helped us to understand and apply now widely used
key concepts in ARDS management: ventilator-induced lung injury [41,42] and prone
positioning [43,44]. Our animal model of ARDS phenotypes, with the Ph2 expressing
similar traits to the human hyperinflammatory subphenotype [23], offers an opportunity to
study biological patterns that are potentially translatable to the human ARDS population.
The next steps in the translation of our results would be (a) to repeat the analysis in more
biological replicates of Ph2 and Ph1 to detect proteins that were potentially masked by high
abundance proteins, (b) to compare protein patterns between plasma and bronchoalveolar
fluid as originating from the location of the injury, and (c) to compare expression profiles
among ovine models to human expression patterns in P1 and P2 to reveal the true extent
of translatability among large animal models and the human ARDS population. There
is a clear trend towards personalized medicine in syndromal diseases in critical care
medicine [25,26,43]. Large animal models sharing key traits with human subphenotypes
might offer a step along the way to a better understanding of specific subgroups and
ultimately towards personalized medicine.

Strengths of this study include the use of an established and reliable model of ovine
ARDS phenotypes [23,27], a controlled setting with a defined injury time point, sampling
over the study observation time, and a randomized animal allocation.

We report several limitations. Firstly, we did not perform albumin depletion; therefore,
the discovery rate of low-abundance proteins may be lower than expected. However, the
total amount of identified proteins is in line with previous reports [31,45–47]. Second, the
sampling time was limited to up to 24 h as we were interested in early differentiation among
phenotypes. We can only hypothesize that there might be more differentially expressed
patterns further down the track. Third, with five and four, respectively, the number of
biological replicates was limited; additionally, we did not have control animals for analysis
due to ethical reasons. Fourth, we did not take blood cultures; therefore, we cannot know if
these animals developed infections over the course of the study that potentially influenced
the results. Fifth, the known limitations of non-targeted proteomics are to be noted [22].
Sixth, both injury models received OA; therefore, we do not know what would be the
protein expression of OA as compared to LPS alone.
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4. Materials and Methods

Animal studies were conducted at the Queensland University of Technology (QUT)
Medical Engineering Facility (MERF) in Brisbane. Animal ethics was approved by the QUT
Office of Research Ethics and Integrity (No. 18-606).

ARDS was induced according to the definition and guidance of Acute Lung Injury in
experimental animal models as provided by the American Thoracic Society (ATS) [48,49].

4.1. Animal Model

Animal experiments were approved by the QUT Office of Research Ethics and Integrity
(No. 18-606), in accordance with the Australian Code of Practice for the Care and Use of
Animals for Scientific Purposes and the Animal care and Protection Act 2001 (QLD).

This study is a secondary analysis of control animals of Ph1 and Ph2 ARDS from a
blinded, randomized, controlled preclinical trial in an ovine model. A total of 9 female
non-pregnant Merino-Dorset crossbreed ewes, aged 1–3 years, mean weight 50 ± 5 kg,
were included in this analysis and randomly assigned to one of the two groups: Ph1 (n = 5)
and Ph2 (n = 4). Randomization was performed using a random number generator.

General anesthesia was induced with a combination of midazolam and propofol
intravenously, and the animal was endotracheally intubated. Animals were further in-
strumented with a jugular central venous line (CVL) and sheath for Swan Ganz catheter,
femoral arterial line, nasogastric tube, urinary catheter, and bilateral pleural drains. Surgi-
cal tracheostomy was performed in all animals and lung-protective ventilation was applied
as according to the EXPRESS trial [50]. After completion of instrumentation, the animal
rested for 1 h, then ARDS was induced as follows: (a) in Ph1: sequential administration
of oleic acid in subsequent 0.03 mL/kg doses (O1008; Sigma-Aldrich, Castle Hill, Aus-
tralia) intravenously (IV) through the distal end of the CVL until a PaO2/FiO2 ratio (PF) of
<150 mmHg was reached, and (b) in Ph2: aforementioned oleic acid IV until PF ratio <150
followed by 0.5 µg/kg of lipopolysaccharide (LPS: E. coli O55:B5, Sigma-Aldrich, Castle
Hill, Australia), dissolved in 50 mL of normal saline and infused over 1 h. A schematic of
the experimental timeline is provided in Figure S5 (Supplementary Materials).

Intra-experimental monitoring, management, and data collection have been reported
in detail before [27].

4.2. Sample Collection and Processing

Arterial blood samples for protein analysis were collected in EDTA blood tubes at
baseline, 2, 6, 12, and 24 h. Samples were centrifuged twice at 3000× g for 15 min at 4 ◦C,
and then plasma was aliquoted and stored at −80 ◦C until batch protein extraction.

Blood samples for full blood count (Mindray Hematology analyzer BC 5000, Nanshan,
China) and biochemistry (IDEXX Laboratories Brisbane, Australia) were collected at base-
line and every 12 h following T0. In-house ELISAs [51] were used to quantify serum
concentrations of inflammatory cytokines (e.g., interleukin (IL) -6, -8, -10).

For histological assessment, lung tissue was collected in 10% neutral buffered formalin
for 24 h and then embedded in paraffin. After sectioning to 5 µm thickness, samples were
stained with hematoxylin and eosin. All slides were assessed by a blinded, independent
veterinary pathologist using the LIS, as recommended by the ATS for experimental ARDS
in animal models [48].

4.3. Protein Digestion Using Filter-Aided Sample Preparation (FASP) Method

Total protein concentrations of plasma samples were quantified by the PierceTM BCA
protein assay kit (Thermo Fisher Scientific Inc., Waltham, MA, USA) as per the manufac-
turer’s protocol. In brief, 12.5 µL of sample was added to 12.5 µL of 1× phosphate-buffered
saline (PBS), mixed with 200 µL of working BCA reagent in a 96-well microplate, and
incubated for 30 min at 37 ◦C. The absorbance was read at 562 nm on a plate reader and
the concentration was calculated against a standard curve ranging from 20 to 2000 µg/mL.
Then, 100 µg of total protein was processed for each sample using the FASP method
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to generate tryptic peptides [52]. Plasma samples were loaded onto spin filter columns
(Vivacon® 500–10 kDa MWCO column; Sartorius AG, Gottingen, Germany) and spun at
14,000× g at 4 ◦C for 15 min. Detergent removal by buffer exchange was performed in four
successive washes with 8 M urea in 0.1 M Tris-HCl pH 8.5 (200 µL/wash) with a 15 min
spin at 14,000× g at 4 ◦C. Afterwards, proteins were reduced using 100 uL of 5 mM DDT in
100 uL of wash buffer and incubated at 56 ◦C for 30 min, followed by alkylation with
25 mM iodoacetamide (IAA) for 30 min in the dark. Excess IAA was quenched by the addi-
tion of 1 µL of 1 M DTT and columns were spun at 14,000× g for 15 min. Protein digestion
was achieved by adding proteomics-grade trypsin (Trypsin Gold, Promega, Madison, WI,
USA) at a 1:25 enzyme to protein ratio in 100 µL of 50 mM ammonium bicarbonate and by
incubating at 37 ◦C overnight. Peptides were recovered by centrifugation and an additional
wash with 50 µL of 0.5 M NaCl (14,000× g for 5 min each).

4.4. Peptide Clean-Up

Digested peptides were then subjected to Zip Tip clean-up (Zip Tip C18, Merck,
Darmstadt, Germany). In short, the Zip Tips were activated by passing through 10 µL
of 80% acetonitrile (ACN) and 0.1% trifluoroacetic acid (TFA) and equilibrated with 10
µL of 1% ACN, 0.1% TFA. The acidified samples were loaded to the Zip Tip, followed
by three subsequent washes with 10 µL of 1% ACN, 0.1%TFA. Samples were eluted with
10 µL of 80% ACN, 0.1% TFA. The eluted peptides were dried using a Speed Vac vacuum
concentrator and reconstituted in 0.1% TFA to a final concentration of 5 µg peptide/100 µL
0.1% TFA. Samples were then frozen at −80 ◦C until mass spectrometric analysis.

4.5. Mass Spectrometry

Liquid chromatography–mass spectrometry (LC–MS/MS) analysis was performed
using a Prominence nanoLC system (Shimadzu) and 5600 Triple-TOF mass spectrometer
with a Nanospray III interface (AB Sciex, Framingham MA, USA). First, 0.5–2 µg peptides
were desalted on an Agilent C18 trap (300 Å pore size, 5 µm particle size, 0.3 mm i.d.
Å~5 mm) at a flow rate of 30 µL/min for 3 min, and then separated on a Vydac EVEREST
reversed-phase C18 high-performance liquid chromatography (HPLC) column (300 Å pore
size, 5 µm particle size, 150 mm × 150 µm i.d. Å~ 150 mm) at a flow rate of 1 µL/min [53].
Separation of peptides was done by using a binary solvent system: gradient of 5–35% buffer
B over 45 min (buffer A: 1% acetonitrile + 0.1% formic acid; buffer B: 80% acetonitrile with
0.1% formic acid). Settings of gas and voltage were adapted as necessary.

An MS-TOF scan at m/z of 350–1800 was performed for 0.5 s, followed by data-
dependent acquisition (DDA) of MS/MS with automated CE selection of the top 20 pep-
tides at m/z of 400–1250 for 0.5 s per spectrum. SWATH-MS was done with LC condi-
tions as before, but with an MS-TOF scan at an m/z of 350–1800 for 0.05 s, followed by
high-sensitivity information-independent acquisition with 26 m/z isolation windows, with
1 m/z window overlap each for 0.1 s across an m/z range of 400–1250.

4.6. Data Processing and Quality Control

A spectral library was generated in ProteinPilot (v5.0, AB Sciex) using the DDA files,
and peptides were identified, searching the UniProt database (downloaded from http://
www.uniprot.org as of 8 October 2021, 162‘326 sequences; accessed on 8 October 2021) with
standard settings: sample type: identification; alkylation: iodoacetamide; digestion: trypsin;
instrument: TripleTOF 5600; special factors: none; ID focus: biological modifications;
search effort: thorough ID; detected protein threshold: >0.05 (10.0%). Determined by a
confidence of >99% and a global FDR rate of <1%, the spectral library contained 5907
peptides corresponding to 226 proteins.

SWATH data were analyzed in PeakView (v2.1, AB Sciex) and transition ion, peptide,
and protein peak areas were extracted and exported for further analysis. Data were
reformatted for statistical analysis as previously described [54].

http://www.uniprot.org
http://www.uniprot.org
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Peak protein intensity areas were further processed with MSstats: after log2 normal-
ization, quality control was performed. Features with one or two measurements across
runs were removed, and log2 intensities under the cutoff of 3.2678 and NA values were
considered as censored missing values. There were 198 proteins consisting of 1–12 peptides
per protein and 1–6 features per peptide available for further analysis.

4.7. Statistical Analysis

Proteins that were expressed in at least 4/5 Ph1 and 3/4 Ph2 samples at each assessed
time point were analyzed for differential abundance among Ph2 and Ph1 and compared
with a Wilcoxon test.

Clusters among subphenotypes and time points were visualized using principal
component analysis (PCA). To detect a protein signature for differentiating between Ph1 and
Ph2, a partial least squares discriminant analysis (PLS-DA) was performed, a supervised
clustering method for predictive and descriptive modeling as well as for discriminative
variable selection.

For proteins that were detected in at least three time points in each animal, linear-
mixed-effects models (LMM) [55,56] were constructed to assess levels of proteins over time
among the two groups. Distribution of data was assessed with QQ and residual plots. The
assessed protein over time was included in the model as the dependent variable. As the
structure of random effects, the individual animal (1 | ID) was used throughout. Fixed
effects were reported as estimates with 95% confidence intervals (CI) for phenotypes, time
(in hours), and interaction phenotype:time.

The STRING database (STRING Consortium 2018; https://www.string-db.org/) was
consulted to analyze protein–protein interaction (PPI) networks. This database displays known
and predicted protein interactions based on direct and indirect (functional) associations.

All hypothesis testing was two-tailed. All statistical analyses were performed with
R Version 4.0.5 (R Foundation for Statistical Computing, Vienna, Austria), using the pack-
ages “MSstats”, “mixOmics”, “ggvenn”, “lmerTest”, and “stargazer”.

5. Conclusions

Among the two phenotypes of ovine ARDS, patterns of proteins known to be involved
in biological processes associated with ARDS emerge over time. Additionally, it is possible
to derive a characteristic protein signature to differentiate between the two phenotypes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12070655/s1, Figure S1: Cytokine levels in plasma among
phenotypes at different time points during observation time, Figure S2: Histopathological assessment
of the lungs at study end, Figure S3: Correlation plot of all samples, Figure S4: PLS-DA: features
per component and initial error rate, Figure S5 Study design and time line, Table S1: Baseline
characteristics, Table S2: Clinical and laboratory parameters at T12 and T24, Table S3: Differentially
expressed proteins among Ph1 and Ph2 at every time point, Table S4: Biological processes and
associated proteins in pathway analysis.
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ACN acetonitrile
AGT angiotensinogen
APOA2 apolipoprotein A-II
APOC3 apolipoprotein C-III
ARDS acute respiratory distress syndrome
ATS American Thoracic Society
AUC area under the curve
BCA bicinchoninic acid
BLAST Basic Local Alignment Search Tool
CA2 carbonic anhydrase 2
COVID-19 coronavirus disease 2019
CP ceruloplasmin precursor
CVL central venous line
DDA data-dependent acquisition
DTT dithiothreitol
ENSOARP00000000771 uncharacterized protein
ENSOARP00000002890 complement C4-like isoform X1
ENSOARP00000011736 hemoglobin subunit alpha
ENSOARP00000016410 uncharacterized protein, belongs to serpin family
F2 thrombin
FDR false discovery rate
FiO2 fraction of inspired oxygen
GPX3 glutathione peroxidase 3
HBB hemoglobin subunit beta
HPLC high-performance liquid chromatography
HPX hemopexin
IAA iodoacetamide
ITIH2 inter-alpha-trypsin inhibitor heavy chain H2
KNG1 kininogen-1 isoform X2
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LC–MS/MS liquid chromatography–mass spectrometry
LIS Lung Injury Score
LMM linear-mixed effects models
LOC101113086 primary amine oxidase, lung isozyme
LPS lipopolysaccharide
LUM lumican
MERF Medical Engineering Research Facility
MS TOF mass spectrometry time-of-flight
MWCO molecular weight cutoff
NHLBI National Health Lung and Blood Institute
OA oleic acid
P1 human hypoinflammatory subphenotype
P2 human hyperinflammatory subphenotype
PaO2 partial pressure of oxygen in arterial blood
PC principal component
PCA principal component analysis
PF ratio PaO2/FiO2 ratio
Ph1 phenotype 1
Ph2 phenotype 2
PHF21A pHD finger protein 21A
PPI protein–protein interaction
PLS-DA partial least squares-discriminant analysis
SAA1 serum amyloid A protein
SERPINC1 antithrombin-III precursor
STRING search tool for the retrieval of interacting genes/proteins
SWATH sequential window acquisition of all theoretical mass spectra
TFA trifluoroacetic acid
TOF time of flight
TTR transthyretin
QUT Queensland University of Technology
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