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Abstract: Endurance training induces several adaptations in substrate metabolism, especially in
relation to glycogen conservation. The study aimed to investigate differences in the metabolism
of lipids, lipid-like substances, and amino acids between highly trained and untrained subjects
using targeted metabolomics. Depending on their maximum relative oxygen uptake (VO2max),
subjects were categorized as either endurance-trained (ET) or untrained (UT). Resting blood was
taken and plasma isolated. It was screened for changes of 345 metabolites, including amino acids and
biogenic amines, acylcarnitines, glycerophosphocholines (GPCs), sphingolipids, hexoses, bile acids,
and polyunsaturated fatty acids (PUFAs) by using liquid chromatography coupled to tandem mass
spectrometry. Acylcarnitine (C14:1, down in ET) and five GPCs (lysoPC a C18:2, up in ET; PC aa C42:0,
up in ET; PC ae C38:2, up in ET; PC aa C38:5, down in ET; lysoPC a C26:0, down in ET) were differently
regulated in ET compared to UT. TCDCA was down-regulated in athletes, while for three ratios of
bile acids CA/CDCA, CA/(GCA+TCA), and DCA/(GDCA+TDCA) an up-regulation was found.
TXB2 and 5,6-EET were down-regulated in the ET group and 18S-HEPE, a PUFA, showed higher
levels in 18S-HEPE in endurance-trained subjects. For PC ae C38:2, TCDCA, and the ratio of cholic
acid to chenodeoxycholic acid, an association with VO2max was found. Numerous phospholipids,
acylcarnitines, glycerophosphocholines, bile acids, and PUFAs are present in varying concentrations
at rest in ET. These results might represent an adaptation of lipid metabolism and account for the
lowered cardiovascular risk profile of endurance athletes.

Keywords: glycerophosphocholines; cardiopulmonary fitness; athletes; bile acids

1. Introduction

Regular training exerts a variety of effects on the metabolism from which the body
not only benefits in terms of health but also with an increase in performance. In particular,
endurance exercise affects metabolic function, which, depending on intensity and duration,
highly challenges the provision of ATP and its re-synthesis by different substrates [1]. When
performed regularly, the training induces long-term adaptation processes for optimized and
economized energy provision. These adaptations become visible at the level of enzymes,
substrate storage, and circulating metabolites [2]. Metabolites are substances that are
formed as intermediates or as degradation products of metabolic processes. Particularly
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during prolonged exertion, lipids and amino acids are increasingly used as substrates for
ATP re-synthesis, thereby protecting athletes’ glycogen reserves [3,4].

As an essential adaptation to long-term training, athletes from endurance sports are
very well adapted to an effective fat metabolism and the catabolic breakdown of amino
acids. The reasons for this adaptation can be found in mechanisms that are initiated to
stepwise preserve the glycogen stores by replacing them with other substrates, mainly by
the mobilization of free fatty acids, after a progressive depletion of the carbohydrate stores
during endurance exercise [4]. Indeed, the ability to conserve glycogen stores through
adaptations of lipid metabolism might be one of the performance-determining factors of
long endurance athletes [5].

Hence, an optimised production and usage of specific lipids would be expected as
an adaptation to regular endurance training. These lipids include phospholipids and
sphingolipids for which previous studies have proven that their concentration in blood
changes after exercise and training [6]. Regarding preventive and therapeutic approaches
to exercise training, the effect of physical activity on these lipids is particularly significant
for the positive effect of physical activity on dyslipidaemia and, through their accumulation
in the muscle, for preventing insulin resistance [2]. The increased energetic demand during
athletic exertion also ensures an increased tricarboxylic cycle (TCA) flux in skeletal muscle,
resulting in the increased formation of acetyl-carnitine. Plasma acylcarnitines attract
interest because they may represent biomarkers of metabolically acquired conditions,
such as diabetes, obesity, insulin resistance, and cardiovascular diseases [7]. Bile acids
synthesized by the liver are responsible for the breakdown of ingested fats. Regarding its
chemical structure, bile acids are steroid carboxylic acids derived from cholesterol. The
primary bile acids are cholic and chenodeoxycholic acids. They are conjugated with glycine
or taurine before they are secreted into the bile fluid. There is evidence that endurance
exercise acutely decreases the concentration of total bile acids in serum, which is interpreted
as a favorable effect of physical exercise for preventing tissue damage [8]. However, the
corresponding data is only limited and the physiological backgrounds are speculative.

Metabolomics as a research approach allows a large amount of low-molecular metabolic
compounds in a biological system to be analyzed in a high-throughput format. Targeted
metabolomics describes the simultaneous identification and quantification of a pre-selected
set of metabolites. Therefore, an assay is used that comprises distinct metabolites of one or
more metabolic pathways of interest. Due to their potential importance in the adaptation
to endurance sports and general health significant amino acids, biogenic amines, acylcar-
nitines, lysophosphatidylcholines, phosphatidylcholines, sphingolipids, polyunsaturated
fatty acids (PUFAs), oxylipins, and bile acids were targeted [9,10].

The aim of the present study was to investigate the metabolic profile of trained
endurance athletes compared to un-trained controls with a focus on lipids, bile acids,
and amino acids. It was considered that the specific dietary habits of athletes might
have a significant influence on the metabolome. Furthermore, associations of individual
metabolites with maximum oxygen uptake were examined to point out possible direct
relationships with cardiopulmonary fitness.

2. Materials and Methods

The present manuscript is based on a previous study of our group investigating
the effects of endurance training status on kinase activity and apoptosis sensitivity in
lymphocytes [11,12]. The plasma samples were obtained from the same subjects. We refer
to this work regarding anthropometric and physiological data, leukocyte cell count, and
lymphocyte subpopulation [11].

2.1. Ethical Approval

The study was carried out in accordance with the Declaration of Helsinki. All ex-
perimental procedures were approved by the local ethics committee of the Justus-Liebig
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-University Giessen (Germany). Before study participation a written declaration of consent
was signed by all subjects.

2.2. Study Design

First, only male subjects were checked for their unrestricted participation in sports,
and the anthropometric data were collected in a mandatory medical examination. Sec-
ond, an endurance exercise capacity test was conducted using a continuous incremental
exercise protocol on the treadmill as previously explained in detail [11]. Participants were
categorized as either endurance-trained (ET; n = 12; VO2max =67.15 ± 1.51 mL/kg × min−1

[Mean ± SEM]; 28.58 ± 1.98 years [Mean ± SEM]) or un-trained (UT; n = 11;
VO2max = 40.43 ± 1.24 [Mean ± SEM]; 30.55 ± 2.41 [Mean ± SEM]) based on their maxi-
mum relative oxygen uptake (VO2max). A detailed presentation of the anthropometric and
physiological data and all inclusion and exclusion criteria has already been published by
our group [11]. Subjects were included in the endurance-trained group if they achieved
a relative VO2max ≥ 59 mL/kg × min−1 and categorized as UT if they had a relative
VO2max ≤ 45 mL/kg × min−1. At least seven days after the exercise testing, a standard-
ized venous blood collection was performed under resting conditions. An overview of
the study course and the methodological workflow of the metabolomic phenotyping is
included in the Results Section.

2.3. Nutritional Status

The subjects recorded the amount of all foods and beverages consumed over a period
of seven days. The additional intake of food supplements was not documented. The
DGExpert Software of the German Nutrition Society (DGE) was used for the analysis of the
average weekly nutrition intake.

2.4. Blood Sampling Procedure

The subjects were instructed to renounce vigorous physical activity 24 h and food
intake six hours prior to blood sampling. The standardized blood collection procedure
from a peripheral vein was always carried out from 8 to 11 a.m. under conditions of
physical rest. The ethylene diamine tetra acetic acid (EDTA) plasma was separated from
cells by centrifugation at 20 ◦C for 10 min at 2500× g. Next, aliquots of 500 µL plasma
were transferred into pre-cooled storage vials for the analysis of endogenous metabolites
and bile acids (Biozym, Biozym Scientific GmbH, Oldendorf, Germany). For the study
of polyunsaturated fatty acids (PUFAs), plasma was aliquoted in sampling tubes with
butylated hydroxytoluene (BHT) (SPI Bio, Bertin Pharma, Montigny-le-Bretonneux, France).
The plasma aliquots were frozen immediately and stored at −80 ◦C until extraction.

2.5. Targeted Metabolomics

Plasma metabolites were extracted by using the following three assays: (1) Biocrates
AbsoluteIDQ p180 kit (BIOCRATES, Life Science AG, Innsbruck, Austria), (2) AbsoluteIDQ
Bile Acids kit (BIOCRATES, as above), and (3) PUFA assay established at the Metabolomics
Core Facility at the Goethe University (Frankfurt am Main, Germany). The AbsoluteIDQ
p180 kit allows the detection of 188 metabolites, including 42 amino acids and biogenic
amines, 40 acylcarnitines, 90 glycerophosphocholines, 15 sphingolipids, and the sum of
hexoses, whereas the AbsoluteIDQ Bile Acids kit includes 20 bile acids. Metabolites were ex-
tracted according to the manufacturer’s protocols. Further, the provided multiple reaction
monitoring (MRM) tables of Biocrates were used for metabolite identification and as previ-
ously described [13,14]. The PUFA assay was performed the following way: Plasma was
mixed with 1 mL of ethyl acetate, samples were shortly vortexed, centrifuged at 15,000× g
for 1 min, and the upper layer was transferred into a clean tube. The extraction step was re-
peated (addition of 1 mL ethyl acetate with 0.1% formic acid) and the two upper layers were
combined. The extracts were vortexed and centrifuged again, and the supernatants were
dried in a vacuum under a nitrogen stream. Last but not least, samples were reconstituted
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in 50 µL of AcN:H2O (1:1, v/v) and transferred to MS glass vials ready to be analyzed by
the mass spectrometer. Negative ionization ESI-LC MS/MS was performed on an Agilent
1290 Infinity LC system (Agilent, Waldbronn, Germany) coupled to a QTrap 5500 mass
spectrometer (Sciex, Darmstadt, Germany). Ion source parameters were as follows: CUR
20 psi, CAD medium, Ion Spray Voltage-4500 V, TEM 525 ◦C, GS1 65 psi, and GS2 70 psi. In
total, 137 oxylipins (all purchased from Cayman Chemical) were included in this targeted
MRM screen. Oxylipins were identified with authentic standards and/or via retention time,
elution order from the column, and 1–2 transitions. Reversed-phase LC separation was
performed by using an Acquity UPLC BEH Shield RP C18 1.7 µm (2.1 × 100 mm) column.
Compounds were eluted with a flow rate of 0.5 mL/min and with the following 8 min
gradient: 0 min 99.9% A, 0–4.5 min 45% A, 4.5–5 min 1% A, 5–5.8 min 1% A, 5.8–5.9 min
99.9% A, and 5.9–7.9 min 99.9% A. Solvent A consisted of H2O:AcN (6:4, v/v) containing
0.02 % acetic acid, and solvent B consisted of AcN: Isopropanol (1:1, v/v). The column
oven temperature was set to 40 ◦C, and the autosampler was set to 4 ◦C. The injection
volume was 8 µL. Additionally, eminent metabolite ratios with known biological functions
were analyzed. Concentrations for most metabolites are given in µM or in ng/mL, if not
mentioned otherwise.

2.6. Statistical Analysis

The analysis of anthropometric and physiological data as well as leukocyte cell count
was performed by SPSS Version 23 (IBM®SPSS Statistics, IBM GmbH, Munich, Germany)
and GraphPad Prism 5.01 (GraphPad Software, La Jolla, CA, USA) [11]. Parts of those
data are now presented in diagrams (Figure 1), which were generated using a newer
software version. As for all other results, too, statistical analyses were performed by using
GraphPad Prism version 8.4.3 (686) (GraphPad Software, LA Jolla, CA, USA) or by the
MetaboAnalyst platform (version 5.0, (https://www.metaboanalyst.ca/MetaboAnalyst/
home.xhtml), which uses an R package (MetaboAnalystR: https://github.com/xia-lab/
MetaboAnalystR) for statistical and functional analyses (all accessed on 4 August 2021).
Details of the selected statistical methods for each displayed figure or table are described in
the accompanying legend.

3. Results
3.1. Study Design and Descriptive Parameters

Participants were enrolled on voluntary basis and had to undergo a medical exam-
ination prior to categorization into both study groups, namely endurance-trained (ET)
athletes or un-trained (UT) individuals (Figure 1A). As already described [11], significant
changes in several anthropometric measures could be detected. Most importantly and
as expected, body weight, body mass index (BMI), and body fat were strongly reduced
in the ET group compared to the individuals of the age- and height-matched UT group
(Figures 1B and S1A). In line with this, endurance exercise testing revealed significant
differences in several parameters, reflecting the intensity of exercise, such as weekly train-
ing sessions as well as training durations and cardio-pulmonary performance as reflected
by the relative VO2max (maximal oxygen uptake) (Figures 1C and S1B). Based on those
criteria with a strong emphasis on relative VO2max, the participants were categorized into
ET athletes with a relative VO2max higher than 59 mL/kg × min−1 or UT individuals
with a relative VO2max less than 45 mL/kg × min−1. At least seven days of rest after
spiroergometry, blood was collected from all participants at resting conditions. The plasma
was separated and stored at −80 ◦C until further processing and metabolomics analyses.
By this approach, the global effect of chronic sustained high intensity endurance exercise
on the plasma metabolome should be observed.

https://www.metaboanalyst.ca/MetaboAnalyst/home.xhtml
https://www.metaboanalyst.ca/MetaboAnalyst/home.xhtml
https://github.com/xia-lab/MetaboAnalystR
https://github.com/xia-lab/MetaboAnalystR
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Figure 1. Study setup and principle. (A) Male volunteers were enrolled and underwent medical 
examination and exercise testing prior to categorization into endurance-trained (ET) athletes or un-
trained (UT) individuals based on relative VO2max. In addition, nutrition diaries using a standardized 
questionnaire had to be provided over a time period of seven days. Blood was taken from all par-
ticipants one week after spiroergometric assessment. Once 14 male subjects per group were success-
fully recruited, samples without outliers due to technical issues were analyzed via targeted metab-
olomics. Finally, software-assisted analyses were conducted to find out significant metabolic differ-
ences between ET athletes and UT participants. (B) Physiological parameters, i.e., body weight, 
body mass index (BMI), and body fat are significantly reduced in ET athletes (n = 12) versus UT 
individuals (n = 11). (C) Data describing the frequency and the intensity of endurance exercise as 
well as the main discriminator, i.e., relative VO2max, are given. Data have been statistically analyzed 
by an unpaired, non-parametric, two-tailed t-test (Mann–Whitney test). ***: p ≤ 0.001; ****: p ≤ 0.0001. 

3.2. Nutritional Status 
To exclude any possible interference by nutritional status, all participants had to pro-

vide a nutrition diary based on a standardized questionnaire that comprised a period of 
seven days. In addition, subjects were not allowed to consume any food six hours prior to 
blood draw. Software assisted calculations allowed the comparison of the energy balance 
for both study groups, which showed significant differences in sugar alcohols and dietary 
fibres (p-values of *: p ≤ 0.05), both of which are slightly enhanced in the ET group (Figure 
2A). In more detail, most significantly deregulated nutrients including dietary fibres, cop-
per, fluoride, magnesium, water, and vitamins display an increased uptake for the ET 
group, except for eicosatrienic acid, the ratio of hexadecenic to palmitoleinic acid, and 
saturated fatty acids. Latter ones are taken up to a larger extent by the UT group (Figure 
2B; p-values of *: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001). These differences need to be considered 
during the interpretation of the upcoming results from the metabolomic analyses as the 

Figure 1. Study setup and principle. (A) Male volunteers were enrolled and underwent medical
examination and exercise testing prior to categorization into endurance-trained (ET) athletes or un-
trained (UT) individuals based on relative VO2max. In addition, nutrition diaries using a standardized
questionnaire had to be provided over a time period of seven days. Blood was taken from all
participants one week after spiroergometric assessment. Once 14 male subjects per group were
successfully recruited, samples without outliers due to technical issues were analyzed via targeted
metabolomics. Finally, software-assisted analyses were conducted to find out significant metabolic
differences between ET athletes and UT participants. (B) Physiological parameters, i.e., body weight,
body mass index (BMI), and body fat are significantly reduced in ET athletes (n = 12) versus UT
individuals (n = 11). (C) Data describing the frequency and the intensity of endurance exercise as well
as the main discriminator, i.e., relative VO2max, are given. Data have been statistically analyzed by an
unpaired, non-parametric, two-tailed t-test (Mann–Whitney test). ***: p ≤ 0.001; ****: p ≤ 0.0001.

3.2. Nutritional Status

To exclude any possible interference by nutritional status, all participants had to
provide a nutrition diary based on a standardized questionnaire that comprised a period
of seven days. In addition, subjects were not allowed to consume any food six hours
prior to blood draw. Software assisted calculations allowed the comparison of the energy
balance for both study groups, which showed significant differences in sugar alcohols and
dietary fibres (p-values of *: p ≤ 0.05), both of which are slightly enhanced in the ET group
(Figure 2A). In more detail, most significantly deregulated nutrients including dietary
fibres, copper, fluoride, magnesium, water, and vitamins display an increased uptake for
the ET group, except for eicosatrienic acid, the ratio of hexadecenic to palmitoleinic acid,
and saturated fatty acids. Latter ones are taken up to a larger extent by the UT group
(Figure 2B; p-values of *: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001). These differences need to
be considered during the interpretation of the upcoming results from the metabolomic
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analyses as the nutritional status can also have, in principle, an impact on the plasma
metabolome composition.
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Figure 2. Nutritional status. (A) Combined presentation of the questionnaire-based nutritional status
with regard to the basic source of energy given in percentages. (B) List of nutrients that were taken
up in significantly different concentrations as calculated by the subjects’ questionnaires. Data have
been statistically analyzed by an unpaired, non-parametric, two-tailed t-test (Mann–Whitney test).
*: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001.

3.3. Targeted Metabolomics Analyses

Plasma levels of distinct metabolites were quantified by LC-MS/MS and computa-
tional analyses. Figures were generated by using the freely accessible MetaboAnalyst
software (Version 5.0). Data were generated in three independently conducted assays: In
the first assay, amino acids (in total 21), biogenic amines (in total 21), hexoses, acylcarnitines
(in total 40), glycerophosphocholines (in total 90), and sphingolipids (in total 15) were
extracted from plasma and quantified by using the AbsoluteIDQ p180 kit (Biocrates). The
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results are summarized in Figures 3 and 4. A two-dimensional PCA scores plot (principal
component analysis; Figure 3A) and a PLSDA plot (partial least squares discriminant
analysis; Figure 3B) revealed a clear separation of both study groups, between ET and UT
individuals. Next, samples were arranged in a heat map (data normalization via median
and log2), according to their group affiliation with increasing relative VO2max, display-
ing the top 30 deregulated metabolites (or their ratio) (Figure 3C). Clusters of increased
metabolites in ET athletes can be detected in the upper left area of the heat map, while
metabolites with decreased plasma concentration are localized at the lower left. Plotting
the log2 fold change (FC; as calculated from the respective group means for each metabo-
lite plasma concentration before data normalization) against the −log10 (p-value) allows
visualization of metabolites that are strongly under-represented in ET (blue labels, 1 to 4)
or over-represented in UT (red labels, 5 to 7) together with the significance of the respective
t-test analyses (visualization via volcano plot, Figure 4A). Figure 4B summarizes significant
concentration differences (in µM) of seven metabolites. Further, a summary of the corre-
sponding analysis, including the identifier in the human metabolome database and general
category of the metabolites, is shown in Table 1. The lipid names indicate the respective
linkage by an ester (i.e., a for acyl), two acyl (i.e., aa for diacyl), or by a combination of an
ester and an ether (i.e., ae for acyl and alkyl). In detail, significant changes were detected
for one sphingomyelin (SM C22:3, down in ET, #2), one acylcarnitine (C14:1, down in ET,
#3), and five glycerophosphocholines (lysoPC a C18:2, up in ET, #5; PC aa C42:0, up in
ET, #6; PC ae C38:2, up in ET, #7; PC aa C38:5, down in ET, #1; lysoPC a C26:0, down in
ET, #4) in endurance-trained athletes compared to un-trained individuals. Nevertheless,
these findings clearly demonstrate that frequent high intensity endurance exercise can also
influence the plasma metabolome when the time point of sampling is independent of any
type of acute physical activity. In the second assay, bile acids (20 x) were extracted from
plasma and quantified by using the AbsoluteIDQ Bile Acids kit (Biocrates). The results are
summarized in Figures 5 and 6. Although both cohorts did not perfectly separate in the 2D
scores plot, the 3D PLSDA plot shows that ET and UT can indeed be distinguished from
each other (Figure 5A,B). However, the overall difference in plasma bile acid composition
is too small to give rise to any cluster formation in the top 30 heat map (Figure 5C). A
final data comparison via volcano plot (same thresholds as before) revealed four signifi-
cantly altered metabolites (or ratios) in ET compared to UT (Figure 6A, highlighted). In
detail, TCDCA (#1) was down-regulated in ET athletes while three ratios (CA/CDCA,
#3; CA/(GCA+TCA), #2; DCA/(GDCA+TDCA), #4) were up-regulated (Figure 6B, box
plots, in µM). Table 2 summarizes the corresponding statistical description and HMDB
IDs. The highest fold changes were detected in the ratios of DCA to GDCA+TDCA, with
more than a 4-fold increase in ET compared to UT. Furthermore, the ratios of CA to CDCA
and CA to GCA+TCA also demonstrated a fold change of 2.65 and 1.92, respectively. In
line with this, the change of TCDCA by 0.38-fold is comparable to the alterations observed
in the case of the deregulated metabolites from the first measurement. In the third assay,
eicosanoids, fatty acids, and PUFAs were extracted from plasma and quantified by using
an established method of the metabolomics facility (see Methods Section for details). The
results are summarized in Figures 7 and 8. Again, the 2D scores plot (Figure 7A) as well as
the PLSDA plot (Figure 7B) clearly showed separation of both study groups, which also
becomes visible in the top 30 heat map (Figure 7C) by the formation of clusters. Metabolites
with enhanced plasma levels in ET athletes compared to UT participants are located in
the upper left area of the heat map, while candidates with a diminished concentration
can be seen in the lower left region. With respect to significance of these alterations, only
three metabolites are of further interest that are highlighted in the volcano plot (Figure 8A).
TXB2 (#1) as well as 5,6-EET (#2) are both eicosanoids and downregulated in the ET group
versus UT and 18S-HEPE (#3), a PUFA, is upregulated (Figure 8B). All descriptive statistical
parameters are shown in Table 3. Most interestingly, TXB2 is reduced 0.11-fold in ET
compared to UT, with a high significance (p = 0.001), while 5,6-EET levels are 0.66-fold
lower. With a fold change of 1.72, 18S-HEPE is strongly upregulated in the group of ET
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athletes. In line with the above-mentioned analyses, it can be concluded that regular intense
endurance training and accompanied cardio-pulmonary fitness leads to adaptations of the
plasma metabolome affecting physiological processes involving fatty acid oxidation, lipid
metabolism, glycemic control, energy expenditure, and immune modulation as well as the
regulation of cardio-pulmonary functions. This confirms and further supports the concept
of the metabolic benefits of exercise.
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Figure 3. Component and heat map analyses of metabolites detected by the Biocrates Absolute IDQ
p180 kit. (A) 2D principal component analysis (PCA) scores plot displaying individual samples from
both groups, i.e., from ET (pink) and UT (green) subjects. (B) 3D multiple component partial least
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squares discriminant analysis (PLSDA) plot showing individual samples from both groups, i.e., from
ET (red) and UT (green) subjects. (C) The heat map only shows the top 30 deregulated metabolites
or ratios as listed on the vertical dimension. Metabolites with high plasma levels are highlighted in
orange to red while under-represented metabolites are colored in light to dark blue. Therefore, raw
data, i.e., metabolites´ concentrations, had to be normalized by their median and log2-transformed
prior horizontal arrangement according to their group affiliation with increasing relative VO2max.
Samples from ET athletes are located on the left side with red labels, and samples from UT subjects
can be identified by their green labels.
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of change between both groups. Therefore, the respective group means for each metabolite plasma 
concentration before data normalization have been used to calculate the fold change as well as the 
log2(FC) for the ratio of ET to UT, which is reflected by the x-axis. Simultaneous presentation of the 
value for -log10(p) value on the y-axis in the volcano plot enables easy detection of strongly and 
significantly deregulated candidates when p ≤ 0.05 during the unpaired, parametric t-test (e.g., -
log10(p) ≥ 1.3). Metabolites that are significantly down-regulated in ET athletes (by a threshold of 1.5 
set as minimum for the fold change) are numbered in blue color (1–4) and the up-regulated are in 
red (5–7), respectively. (B) Box plots allow visualization of plasma metabolite concentrations [µM] 

Figure 4. Volcano and box plots for significant hits as determined by the Biocrates Absolute IDQ p180
kit. (A) An unpaired fold change (FC) analysis was conducted to compare the absolute value of change
between both groups. Therefore, the respective group means for each metabolite plasma concentration
before data normalization have been used to calculate the fold change as well as the log2(FC) for the
ratio of ET to UT, which is reflected by the x-axis. Simultaneous presentation of the value for −log10(p)
value on the y-axis in the volcano plot enables easy detection of strongly and significantly deregulated
candidates when p ≤ 0.05 during the unpaired, parametric t-test (e.g., −log10(p) ≥ 1.3). Metabolites
that are significantly down-regulated in ET athletes (by a threshold of 1.5 set as minimum for the
fold change) are numbered in blue color (1–4) and the up-regulated are in red (5–7), respectively.
(B) Box plots allow visualization of plasma metabolite concentrations [µM] on the single-sample level
(marked with black dots) with the 95% confidence interval around the group’s median indicated by
the notch and by a yellow diamond highlighting the group’s mean.
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Figure 5. Component and heat map analyses of metabolites detected by the Biocrates Bile Acid Kit.
(A) 2D principal component analysis (PCA) scores plot displaying individual samples from both
groups, i.e., from ET (pink) and UT (green) subjects. (B) 3D multiple component partial least squares
discriminant analysis (PLSDA) plot showing individual samples from both groups, i.e., from ET (red)
and UT (green) subjects. (C) The heat map only shows the top 30 deregulated bile acids or ratios as
listed on the vertical dimension. Bile acids (or their ratios) with high plasma levels are highlighted in
orange to red, while the under-represented are colored in light to dark blue. Therefore, raw data, i.e.,
bile acid concentrations, had to be normalized by their median and log2-transformed prior horizontal
arrangement according to their group affiliation, with increasing relative VO2max. Samples from ET
athletes are located on the left side with red labels, and samples from UT subjects can be identified by
their green labels.
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Table 2. Significant changes in bile acids (or their ratio) in endurance-trained athletes compared to 
un-trained individuals. 

Metabolite  
(or Ratio) 

HMDB ID Category FC Log2 (FC) p-Value −Log10(p-
Value) 

ET vs. UT 

TCDCA 0000951 Bile acid 0.381 −1.392 0.002 2.828 Down (1) 

CA/CDCA 0000619/ 
0000518 

Bile acid 2.645 1.403 0.041 1.393 Up (3) 

CA/(GCA+TCA) 
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Bile acid 1.923 0.943 0.031 1.504 Up (2) 

Figure 6. Volcano and box plots for significant hits as determined by the Biocrates Bile Acid Kit.
(A) An unpaired fold change (FC) analysis was conducted to compare the absolute value of change
between both groups. Therefore, the respective group means for each bile acid (or ratio) plasma
concentration before data normalization have been used to calculate the fold change as well as the
log2(FC) for the ratio of ET to UT, which is reflected by the x-axis. Simultaneous presentation of
the value for −log10(p) value on the y-axis in the volcano plot enables easy detection of strongly
and significantly deregulated candidates, when p ≤ 0.05 during the unpaired, parametric t-test (e.g.,
−log10(p) ≥ 1.3). Bile acids (or their ratios), which are significantly down-regulated in ET athletes
(by a threshold of 1.5 set as minimum for the fold change), are numbered in blue color (1) and
the up-regulated in red (2–4), respectively. (B) Box plots allow visualization of plasma bile acids
concentrations [µM] (or their ratios) on the single-sample level (marked with black dots) with the
95% confidence interval around the group’s median indicated by the notch and by a yellow diamond
highlighting the group’s mean.

Table 1. Significant changes in sphingomyelins, acylcarnitines, and glycerophosphocholines in
endurance-trained athletes compared to un-trained individuals.

Metabolite HMDB ID Category FC Log2 (FC) p-Value −Log10
(p-Value) ET vs. UT

SM C22:3 0013468 SM 0.578 −0.791 0.037 1.428 Down (2)
C14:1 0002014 AC 0.602 −0.732 0.038 1.421 Down (3)

lysoPC a C18:2 0010386 GPL 2.157 1.109 0.004 2.428 Up (5)
PC aa C42:0 0008537 GPL 1.604 0.682 0.019 1.731 Up (6)

PC ae C38:2 0013436
0013431 GPL 1.516 0.600 0.029 1.535 Up (7)

PC aa C38:5 0008114 GPL 0.610 −0.714 0.014 1.859 Down (1)
lysoPC a C26:0 0029205 GPL 0.560 −0.835 0.038 1.417 Down (4)
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Figure 7. Component and heat map analyses of metabolites detected by the Biocrates Eicosanoid and
Fatty acids Kit. (A) 2D principal component analysis (PCA) scores plot displaying individual samples
from both groups, i.e., from ET (pink) and UT (green) subjects. (B) 3D multiple component partial
least squares discriminant analysis (PLSDA) plot showing individual samples from both groups,
i.e., from ET (red) and UT (green) subjects. (C) The heat map only shows the top 30 deregulated
bile acids or ratios as listed on the vertical dimension. Bile acids (or their ratios) with high plasma
levels are highlighted in orange to red, while the under-represented are colored in light to dark
blue. Therefore, raw data, i.e., bile acid concentrations, had to be normalized by their median and
log2-transformed prior horizontal arrangement according to their group affiliation, with increasing
relative VO2max. Samples from ET athletes are located on the left side with red labels, and samples
from UT subjects can be identified by their green labels.
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down-regulated in ET athletes (by a threshold of 1.5 set as minimum for the fold change) are num-
bered in blue color (1–2) and the up-regulated in red (3), respectively. (B) Box plots allow visualiza-
tion of plasma eicosanoids, fatty acid, or PUFA concentrations (TXB2 [ng/mL]; 5,6-EET [area ratio]; 
18S-HEPE [ng/mL]) on the single-sample level (marked with black dots), with the 95% confidence 
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Table 3. Significant changes in eicosanoids and polyunsaturated fatty acids in endurance-trained 
athletes compared to un-trained individuals. 

Metabolite HMDB ID Category FC Log2 (FC) p-Value −Log10(p-
Value) 

ET vs. UT 

TXB2 0003252 Eicosanoid 0.107 −3.212 0.001 3.922 Down (1) 
5,6-EET 0246887 Eicosanoid 0.660 −0.600 0.040 1.398 Down (2) 

18S-HEPE 0257623  
(S-Enantiomer) PUFA 1.718 0.781 0.037 1.437 Up (3) 

3.4. Correlation between Plasma Metabolites and Endurance Performance 

Figure 8. Volcano and box plots for significant hits as determined by the Biocrates Eicosanoid
and Fatty acids Kit. (A) An unpaired fold change (FC) analysis was conducted to compare the
absolute value of change between both groups. Therefore, the respective group means for each
eicosanoid, fatty acid or PUFA plasma concentration before data normalization have been used to
calculate the fold change as well as the log2(FC) for the ratio of ET to UT, which is reflected by the
x-axis. Simultaneous presentation of the value for −log10(p) value on the y-axis in the volcano plot
enables easy detection of strongly and significantly deregulated candidates when p ≤ 0.05 during
the unpaired, parametric t-test (e.g., −log10(p) ≥ 1.3). Eicosanoids, fatty acids, or PUFAs which are
significantly down-regulated in ET athletes (by a threshold of 1.5 set as minimum for the fold change)
are numbered in blue color (1–2) and the up-regulated in red (3), respectively. (B) Box plots allow
visualization of plasma eicosanoids, fatty acid, or PUFA concentrations (TXB2 [ng/mL]; 5,6-EET
[area ratio]; 18S-HEPE [ng/mL]) on the single-sample level (marked with black dots), with the 95%
confidence interval around the groups´ median indicated by the notch and by a yellow diamond
highlighting the group’s mean.

Table 2. Significant changes in bile acids (or their ratio) in endurance-trained athletes compared to
un-trained individuals.

Metabolite
(or Ratio) HMDB ID Category FC Log2 (FC) p-Value −Log10

(p-Value) ET vs. UT

TCDCA 0000951 Bile acid 0.381 −1.392 0.002 2.828 Down (1)

CA/CDCA 0000619/
0000518 Bile acid 2.645 1.403 0.041 1.393 Up (3)

CA/(GCA+TCA)
0000619/

(0000138 +
0000036)

Bile acid 1.923 0.943 0.031 1.504 Up (2)

DCA/(GDCA+TDCA)
0000626/

(0252868 +
0000896)

Bile acid 4.175 2.062 0.048 1.321 Up (4)
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Table 3. Significant changes in eicosanoids and polyunsaturated fatty acids in endurance-trained
athletes compared to un-trained individuals.

Metabolite HMDB ID Category FC Log2 (FC) p-Value −Log10
(p-Value) ET vs. UT

TXB2 0003252 Eicosanoid 0.107 −3.212 0.001 3.922 Down (1)

5,6-EET 0246887 Eicosanoid 0.660 −0.600 0.040 1.398 Down (2)

18S-HEPE 0257623
(S-Enantiomer) PUFA 1.718 0.781 0.037 1.437 Up (3)

3.4. Correlation between Plasma Metabolites and Endurance Performance

In this study, the enrollment of participants into the group of ET athletes is based on
their relative VO2max, which must be greater than 59 mL/kg × min−1, while a value of less
than 45 mL/kg × min−1 was used to categorize persons into the group of UT individu-
als. This physiological parameter was obtained during spiroergometry, as previously de-
scribed [11]. It is used as an indicator for cardio-pulmonary fitness. In our aforementioned
analyses, the focus was solely on the overall difference in plasma metabolite concentrations
between those two groups independently from the individual relative VO2max, i.e., the per-
sonal endurance performance. Following that, correlation analyses between all metabolites
and the individual relative VO2max values regardless of the participants´ group affiliation
were conducted. In detail, metabolites from all three above-mentioned assays have been
investigated for their direct association with individual relative VO2max values. For this
purpose, raw data from all metabolite concentration underwent a correlation analysis with
all 23 individuals relative VO2max values. Assuming a Gaussian distribution, a statistical
two-tailed t-test was applied and the Pearson correlation coefficient was computed for each
metabolite data point versus the respective participant´s individual relative VO2max value.
Only significant correlation results are displayed (Table 4), including HMDB ID, category,
and statistical parameters. The amino acids aspartate and glutamate showed a negative
correlation with relative VO2max, while the ratio of citrulline/ornithine demonstrated a pos-
itive correlation. The two biogenic amines, α-AAA and taurine, are negatively associated
with relative VO2max, and this similarly holds true for two sphingomyelins (SM C18:0, SM
C18:1) as well as for one acylcarnitine (C16). Within the group of glycerophosphocholines,
a mixed pattern of correlation has been obtained. For the phosphatidylcholine PC aa
C38:4, an inverse correlation with relative VO2max was shown. For PC ae C38:2, PC ae
C42:2, lysoPC a C18:1, and for the ratio of lysoPCtotal to PCtotal, their plasma concentrations
positively correlated with the relative VO2max values. Two bile acids, namely GCDCA and
TCDCA, both showed a clear negative correlation, while the ratio of CA to CDCA as well
as both PUFAs (LXA4 and 18-HEPE) are positive correlators with relative VO2max. These
analyses clearly demonstrate that there are changes of certain plasma metabolites even at
resting conditions that are directly linked to the endurance performance regardless of any
other physiological parameter and without a pre-classification into an endurance-trained
athlete or an un-trained participant. This means that there might be metabolites that con-
tinuously circulate in the plasma, which could be used as easily accessible indicators of
cardio-pulmonary fitness as acquired by frequent high intense endurance exercise sessions.
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Table 4. Correlation between different metabolites (or their ratios) and individual relative VO2max

including corresponding levels of significance, i.e. p-values of *: p ≤ 0.05; **: p ≤ 0.01.

Metabolite HMDB ID Category Pearson R 95% CI R Squared p Value Sig. Level

Asp 0000191 AA −0.5046 −0.7589 to
−0.1167 0.2546 0.0141 *

Glu 0000148 AA −0.5268 −0.7715 to
−0.1464 0.2776 0.0098 **

Cit/Orn Cit: 0000904
Orn: 0000214 AA 0.5518 0.1808 to

0.7854 0.3045 0.0063 **

α-AAA 0000510 BA −0.4722 −0.7403 to
−0.07449 0.223 0.0229 *

Taurine 0000251 BA −0.4512 −0.7280 to
−0.04785 0.2035 0.0307 *

SM C18:0 0001348 SM −0.421 −0.7100 to
−0.01066 0.1773 0.0454 *

SM C18:1 0012101 SM −0.5023 −0.7576 to
−0.1136 0.2523 0.0146 *

C16 0000222 AC −0.4414 −0.7222 to
−0.03565 0.1948 0.035 *

PC aa C38:4 0008048 GPL −0.4283 −0.7144 to
−0.01958 0.1835 0.0414 *

PC ae C38:2 0013431
0013436 GPL 0.5011 0.1121 to

0.7570 0.2511 0.0149 *

PC ae C42:2 0013438 GPL 0.4517 0.0485 to
0.7283 0.204 0.0305 *

lysoPC a C18:1
0010385
0010408
0002815

GPL 0.4914 0.0993 to
0.7514 0.2415 0.0173 *

lysoPCtotal/PCtotal GPL 0.5409 0.1657 to
0.7794 0.2926 0.0077 **

GCDCA 0000637 Bile acid −0.4482 −0.7262 to
−0.04413 0.2009 0.032 *

TCDCA 0000951 Bile acid −0.462 −0.7343 to
−0.06148 0.2134 0.0265 *

CA/CDCA CA: 0000619
CDCA: 000518 Bile acid 0.5383 0.1620 to

0.7779 0.2898 0.0081 **

LXA4 0004385 PUFA 0.4313 0.0232 to
0.7161 0.186 0.0399 *

18-HEPE 0257623 PUFA 0.466 0.0552 to
0.7419 0.2171 0.0288 *

3.5. Identification of Biomarkers for Cardio-Pulmonary Fitness

Targeted metabolomic analyses revealed a substantial number of different metabolites
that are deregulated in the group of ET athletes compared to UT participants or that
are direct correlators with the marker of endurance performance, i.e., relative VO2max,
both at resting conditions. Finally, it would be of interest to identify candidates that
fulfill both criteria by demonstrating a significant change in its plasma concentration
between ET versus UT on the one hand and which are directly associated with cardio-
pulmonary fitness. By comparing the lists of deregulated metabolites between the two
participant groups (ET versus UT) (Tables 1–3) with the list of direct relative VO2max
correlators (Table 4), two metabolites and one ratio of bile acids were found to meet
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both criteria. The phosphatidylcholine PC ae C38:2, the bile acid taurochenodeoxycholic
acid (TCDCA), and the ratio of cholic acid to chenodeoxycholic acid (CA/CDCA) are
differentially regulated in ET athletes compared to UT individuals and their concentrations
are closely linked to the respective relative VO2max value. Raw data plasma levels for
each of these metabolites (Figure 9A,B) as well as for the ratio of the given bile acids
(Figure 9C) allow an easy estimation of the mathematical relationship, as indicated by
the linear regression calculation. In addition, the correlation matrix provides the Pearson
r correlation coefficients and significance levels for the correlation amongst the three
metabolites (Figure 9D). Interestingly, there exists a significant relationship in each case
of correlation only with the exception for the comparison of TCDCA and CA/CDCA.
Nevertheless, the fact that a set of metabolites with different biological origin and function
directly correlate with the same physiological parameter, i.e., relative VO2max, demonstrates
that these candidates should be considered as plasma biomarkers of cardio-pulmonary
fitness, especially when measured in a combined mode.
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for three ratios of bile acids namely CA/CDCA, CA/(GCA + TCA), and DCA/(GDCA + 
TDCA) an up-regulation was found. Within these metabolites, PC ae C38:2, TCDCA, and 
the ratio of cholic acid to chenodeoxycholic acid (CA/CDCA) showed an association with 
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Figure 9. Correlation analyses to identify markers of cardio-pulmonary fitness. (A–C) Graphs display
the relationship between relative VO2max (x-axis) and the plasma concentration (y-axis) of distinct
metabolites (or ratio) that fulfill two criteria: Firstly, they are deregulated between both study groups
(Figure 4B, Figure 6B, and Figure 8B) and secondly, at the same time, they show a direct correlation
with relative VO2max regardless of their group affiliation (Tables 1–3). Correlation analyses were
performed by a simple linear regression model computing the Pearson r correlation coefficient, R
squared as well as the equation for the linear (filled line) slope, including the respective standard
error of the mean (dotted line). Samples from the ET group are marked in red while UT subjects are
colored in green. (D) The Pearson r correlation matrix represents the relationship between the above
depicted metabolites (or ratio) amongst each other in addition to their previously stated correlation to
relative VO2max. Statistical analyses of the two-tailed test assumes a Gaussian distribution revealing
the color-coded Pearson r correlation coefficient as well as its significance level. ns: not significant;
*: p ≤ 0.05; **: p ≤ 0.01.
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4. Discussion

The aim of the present study was to investigate the metabolic profile of endurance
athletes compared to un-trained individuals based on selected metabolites from lipid and
amino acid metabolism by means of a targeted metabolomics analysis. Despite a relatively
low number of subjects, we could demonstrate that there are metabolites significantly
reduced in endurance athletes or increased, respectively, and/or even associated with
VO2max across both groups. While SM C22:3, C14:1, PC aa C38:5, and lysoPC a C26:0 were
found reduced in athletes, lysoPC a C18:2, PC aa C42:0, PC ae C38:2, and 18S-HEPE were
increased in serum. Regarding bile acids, TCDCA was down-regulated in athletes, while
for three ratios of bile acids namely CA/CDCA, CA/(GCA + TCA), and DCA/(GDCA
+ TDCA) an up-regulation was found. Within these metabolites, PC ae C38:2, TCDCA,
and the ratio of cholic acid to chenodeoxycholic acid (CA/CDCA) showed an association
with VO2max across groups, implicating their potential as biomarkers for cardiopulmonary
fitness in healthy individuals. This metabolic adaptation is most likely related to the
adjustments of energy metabolism in endurance athletes, reflecting the substrate utilization
for repetitive prolonged bouts of exercise. In these contexts, one major adaptive factor
known as mobilization and metabolization of lipids, lipid-like molecules, and amino acids
appears to increase. This may also be associated with positive health outcomes, which is
confirmed by the fact that endurance athletes have a rather low cardiovascular risk. For
some of the metabolites analyzed here, however, an increase in the resting concentration in
the blood could also be an indication of an increased cardiovascular risk; so, we can expect
a downregulation in endurance athletes [15].

There are many different molecules of the above-mentioned types in human blood, so
it was expected that a specific profile of these metabolites might reflect the difference in
training status. Since a key differentiator between the UT and the ET group is cardiopul-
monary fitness, we hypothesised that there would also be cross-group associations with
fitness. In accordance with these assumptions, group distinctions were first determined
within phospholipids, acylcarnitines, and glycerophosphocholines. Sphingomyelins repre-
sent one of the major components of cell membranes, and they are synthesized through
the transfer of a phosphorylcholine head group from phosphatidylcholine to ceramide. It
was previously shown that plasma SMs are associated with cardiovascular and metabolic
diseases [16]. In coherence with these data, negative associations with the level of cardio-
vascular fitness have already been found for some SMs, which correlates with our findings
for SM C22:3 [17].

PCs represent a group of phospholipids that have already been associated with car-
diorespiratory fitness. However, this was mainly in the elderly or specific patient groups,
and it often also served to assess the cardiovascular risk profile [18]. For example, for PC
C38:2, an inverse correlation with a waist gaining phenotype in women was shown, which
might indicate a relation to the capacity of energy storage [19]. If weight gain is positively
associated with this metabolite, the high energy turnover could possibly be explained by a
negative regulation of this PC.

LysoPC a C18:2 represents a lysophosphatidylcholine in which the single acyl group
contains 18 carbons and 2 double bonds. An increase of this metabolite has already been
shown for endurance athletes compared to control subjects and strength athletes [20].
Regarding acute endurance exercise, lysoPC a C18:2 was found to be elevated after a
marathon race in subjects with a high VO2max [21]. Therefore, an increase of this metabolite
might indicate a condition of challenges in metabolic performance. An association with
cardiopulmonary fitness levels is supported by findings from patients with heart failure,
where lysoPC a C18:2 was found to be lower compared to healthy controls. A metabolic
stimulus is probably missing here, as these patients are usually very inactive [22]. An
association of PC aa C42:0 with cardiopulmonary fitness has already been shown for
women in the KarMeN Study [23], which strengthens the assumption that it is a cross-
gender marker of cardiopulmonary fitness.
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Acylcarnitines serve as transport carriers for fatty acids when they are transferred
into mitochondria. Here, the metabolization of fatty acids takes place via β-oxidation.
Without the transport molecule, i.e., carnitine, the outer mitochondrial membrane would
be impassable for the fatty acids. Our data indicate that C14:1 was reduced in the blood
of athletes. This is quite surprising as C14:1 is involved in β-oxidation of long-chain fatty
acids. A recently published study showed that the C14:1 level significantly increased in
plasma in response to acute endurance exercise. This rise was even more pronounced in
endurance athletes than in controls or strength athletes [20]. Since we did not study acute
exercise but the resting state of endurance athletes, we cannot find a clear association with
our data.

Bile acids are involved in intestinal nutrient absorption and biliary secretion of lipids.
They also represent signaling molecules and metabolic regulators of hepatic lipid, glucose,
and energy homeostasis [24]. There is little data on bile acids and exercise, and some of
the results are even contradictory. For TCDCA, no response was found to acute strength
training, while some studies report an increase, others report a slight decrease after acute
endurance exercise [8,25]. TCDCA represents one of the main effective components of bile
acids, which has shown an involvement in the regulation of inflammation via a dynamic
interaction with NF-κB. Since any intense acute physical stress is a pro-inflammatory stim-
ulus with an anti-inflammatory counter-regulation, this could explain the downregulation
of this bile acid in athletes [26]. The regulation of cAMP is also linked to this bile acid,
so that regular energetic stress could also influence the release of TCDCA [27]. CA and
CDCA represent primary bile acids, which are synthesized from cholesterol in the liver,
and they are converted to secondary bile acids (DCA and TCA) in the intestine [28]. Both
bile acids showed a reduction after acute exercise, including after a half-marathon [8,25].
CA drops particularly sharply here, which may explain the reduced quotients. This makes
sense against the background that increased levels, including serum concentrations, of
numerous bile acids increase the risk of diseases of the GI tract, and endurance training
could counteract this. We can only speculate about the physiological causes of the reduction
in bile acids. The lower serum concentrations of cholesterol could reduce the effective
synthesis of bile acids. Especially, the synthesis of non-conjugated bile acids could be
affected, while others, such as TCDCA and GDCA, were not reduced in other exercise
studies [8]. Another cause may be a difference in the gut microbiome of athletes. Some of
the bile acids are regulated by bacteria in the microbiome. Some studies show that athletes
have an increased α-diversity in the microbiome and that some bacteria are more abundant
in athletes, such as bifidobacterium, bacteroides or veillonella [29]. The study of the athlete
microbiome in relation to the blood metabolome is a focus of future research projects.

TXB2 as well as 5,6-EET represent PUFAs that were found to be reduced in athletes.
These metabolites are currently being discussed in the context of sports activities as lipid
mediators that are part of the exercise-induced immune response. Accordingly, it could be
shown for TXB2, for example, that acute sporting activities lead to upregulation and also to
increased platelet activation [30]. However, the reduced concentrations in athletes at rest
could be the result of pro-resolution functions, following acute inflammation. The decreased
levels of TXB2 might also reflect a lower synthesis of its precursor, thromboxane A2, which
is involved in platelet activation and aggregation [31]. Accordingly, this could reflect the
improved fibrinolytic profile induced by regular training [32]. We further demonstrated
that 18-HEPE was found at higher concentrations in the plasma of athletes. 18-HEPE is
produced by non-enzymatic oxidation of eicosapentaenoic acid (EPA), and it represents an
anti-inflammatory and anti-fibrotic metabolite. The reason 18-HEPE circulates in elevated
concentrations in athletes relative to inactive persons cannot be deduced from the current
data. However, it has been recently reported that the regression of human coronary artery
plaques is associated with a high ratio of 18-HEPE + resolvin E1 to leukotriene B4 [33],
which further supports the hypothesis of an anti-inflammatory environment induced by
exercise. As with the other lipids and the bile acids, we cannot rule out the possibility
that the different dietary habits of the athletes are responsible for some of the differences.
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Thus, the analysis of food intake revealed that the athletes showed significant deviations
in food intake. In particular, lipid fractions showed very differentiated deviations, which
could be an influencing factor for both namely increased and reduced metabolites, such
as phospholipids, glycerophosphocholines, eicosanoids, or bile acids. Accordingly, in
addition to physiological adaptations, this can also be an explanation for the different
concentrations [34,35].

In summary, we have shown that numerous phospholipids, acylcarnitines, glyc-
erophosphocholines, bile acids, and eicosanoids are present in varying concentrations at
rest in subjects with high cardiovascular fitness. This seems to be mainly due to the regular
metabolic stress and the different substrate utilization that takes place during endurance
exercise. In addition to reflecting these group differences, some of these correlations with
cardiopulmonary fitness as determined by VO2max also show up across both groups. Fu-
ture studies in larger collectives/cohorts would have to re-examine the extent to which
individual metabolites can be used as biomarkers for diagnosing cardiopulmonary fitness
and thus for also estimating possible cardiopulmonary or metabolic risks.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo12070658/s1.

Author Contributions: Conceptualization, A.W., K.A., F.-C.M. and K.K.; methodology, A.W., K.A.,
S.K., S.Z. and T.F.; software: A.W.; data curation, A.W., K.A., S.K. and K.K.; writing—original draft
preparation, A.W., K.A. and K.K.; writing—reviewing and editing, A.W., K.A., S.K., S.Z., R.S., T.F.,
F.-C.M. and K.K.; supervision, A.W., R.S. and K.K.; project administration, A.W., K.A., F.-C.M. and
K.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by Local Ethics Committee.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: All data are contained in the article and Supplementary Materials.
Original data can be obtained upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

18-HEPE hydroxyeicosapentaenoic acid
5,6-EET 5,6-epoxyeicosatrienoic acid
BMI body mass index
CA cholic acid
CDCA chenodeoxycholic acid
DGE German Nutrition Society (DGE)
EDTA ethylene diamine tetra acetic acid
EPA eicosapentaenoic acid
ET endurance-trained
FC fold change
GPCs glycerophosphocholines
LysoPC lysophosphatidylcholine
PCA principal component analysis
PLSDA partial least squares discriminant analysis
PUFAs polyunsaturated fatty acids
SM sphingomyelin
TCA tricarboxylic cycle
TCDCA taurochenodeoxycholic acid
TXB2 thromboxane B2
UT untrained
VO2max maximum relative oxygen uptake

https://www.mdpi.com/article/10.3390/metabo12070658/s1
https://www.mdpi.com/article/10.3390/metabo12070658/s1


Metabolites 2022, 12, 658 20 of 21

References
1. Hawley, J.A.; Hargreaves, M.; Joyner, M.J.; Zierath, J.R. Integrative Biology of Exercise. Cell 2014, 159, 738–749. [CrossRef]

[PubMed]
2. Savikj, M.; Zierath, J.R. Train Like an Athlete: Applying Exercise Interventions to Manage Type 2 Diabetes. Diabetologia 2020, 63,

1491–1499. [CrossRef] [PubMed]
3. Klapcinska, B.; Waskiewicz, Z.; Chrapusta, S.J.; Sadowska-Krepa, E.; Czuba, M.; Langfort, J. Metabolic Responses to a 48-H

Ultra-Marathon Run in Middle-Aged Male Amateur Runners. Eur. J. Appl. Physiol. 2013, 113, 2781–2793. [CrossRef] [PubMed]
4. Kobayashi, Y.; Takeuchi, T.; Hosoi, T.; Yoshizaki, H.; Loeppky, J.A. Effect of a Marathon Run on Serum Lipoproteins, Creatine

Kinase, and Lactate Dehydrogenase in Recreational Runners. Res. Q. Exerc. Sport 2005, 76, 450–455. [CrossRef]
5. Murray, B.; Rosenbloom, C. Fundamentals of Glycogen Metabolism for Coaches and Athletes. Nutr. Rev. 2018, 76, 243–259.

[CrossRef]
6. Hodun, K.; Chabowski, A.; Baranowski, M. Sphingosine-1-Phosphate in Acute Exercise and Training. Scand. J. Med. Sci. Sports

2021, 31, 945–955. [CrossRef]
7. Mendham, A.E.; Goedecke, J.H.; Zeng, Y.; Larsen, S.; George, C.; Hauksson, J.; Smidt, M.C.F.; Chibalin, A.V.; Olsson, T.; Chorell, E.

Exercise Training Improves Mitochondrial Respiration and Is Associated with an Altered Intramuscular Phospholipid Signature
in Women with Obesity. Diabetologia 2021, 64, 1642–1659. [CrossRef]

8. Danese, E.; Salvagno, G.L.; Tarperi, C.; Negrini, D.; Montagnana, M.; Festa, L.; Sanchis-Gomar, F.; Schena, F.; Lippi, G. Middle-
Distance Running Acutely Influences the Concentration and Composition of Serum Bile Acids: Potential Implications for Cancer
Risk? Oncotarget 2017, 8, 52775–52782. [CrossRef]

9. Nix, C.; Hemmati, M.; Cobraiville, G.; Servais, A.C.; Fillet, M. Blood Microsampling to Monitor Metabolic Profiles during Physical
Exercise. Front. Mol. Biosci. 2021, 8, 681400. [CrossRef]

10. Hammond, K.A.; Diamond, J. Maximal Sustained Energy Budgets in Humans and Animals. Nature 1997, 386, 457–462. [CrossRef]
11. Alack, K.; Kruger, K.; Weiss, A.; Schermuly, R.; Frech, T.; Eggert, M.; Mooren, F.C. Aerobic Endurance Training Status Affects

Lymphocyte Apoptosis Sensitivity by Induction of Molecular Genetic Adaptations. Brain Behav. Immun. 2019, 75, 251–257.
[CrossRef] [PubMed]

12. Alack, K.; Weiss, A.; Kruger, K.; Horet, M.; Schermuly, R.; Frech, T.; Eggert, M.; Mooren, F.C. Profiling of Human Lymphocytes
Reveals a Specific Network of Protein Kinases Modulated by Endurance Training Status. Sci. Rep. 2020, 10, 888. [CrossRef]
[PubMed]

13. Zukunft, S.; Prehn, C.; Rohring, C.; Moller, G.; de Angelis, M.H.; Adamski, J.; Tokarz, J. High-Throughput Extraction and
Quantification Method for Targeted Metabolomics in Murine Tissues. Metabolomics 2018, 14, 18. [CrossRef] [PubMed]

14. Mamazhakypov, A.; Weiss, A.; Zukunft, S.; Sydykov, A.; Kojonazarov, B.; Wilhelm, J.; Vroom, C.; Petrovic, A.; Kosanovic, D.;
Weissmann, N.; et al. Effects of Macitentan and Tadalafil Monotherapy or Their Combination on the Right Ventricle and Plasma
Metabolites in Pulmonary Hypertensive Rats. Pulm. Circ. 2020, 10, 2045894020947283. [CrossRef] [PubMed]

15. Parry-Williams, G.; Sharma, S. The Effects of Endurance Exercise on the Heart: Panacea or Poison? Nat. Rev. Cardiol. 2020, 17,
402–412. [CrossRef]

16. Hanamatsu, H.; Ohnishi, S.; Sakai, S.; Yuyama, K.; Mitsutake, S.; Takeda, H.; Hashino, S.; Igarashi, Y. Altered Levels of Serum
Sphingomyelin and Ceramide Containing Distinct Acyl Chains in Young Obese Adults. Nutr. Diabetes 2014, 4, e141. [CrossRef]

17. Saleem, M.; Herrmann, N.; Dinoff, A.; Marzolini, S.; Mielke, M.M.; Andreazza, A.; Oh, P.I.; Venkata, S.L.V.; Haughey, N.J.;
Lanctot, K.L. Association between Sphingolipids and Cardiopulmonary Fitness in Coronary Artery Disease Patients Undertaking
Cardiac Rehabilitation. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 671–679. [CrossRef]

18. Sigruener, A.; Kleber, M.E.; Heimerl, S.; Liebisch, G.; Schmitz, G.; Maerz, W. Glycerophospholipid and Sphingolipid Species and
Mortality: The Ludwigshafen Risk and Cardiovascular Health (Luric) Study. PLoS ONE 2014, 9, e85724. [CrossRef]

19. Merz, B.; Nothlings, U.; Wahl, S.; Haftenberger, M.; Schienkiewitz, A.; Adamski, J.; Suhre, K.; Wang-Sattler, R.; Grallert, H.;
Thorand, B.; et al. Specific Metabolic Markers Are Associated with Future Waist-Gaining Phenotype in Women. PLoS ONE 2016,
11, e0157733. [CrossRef]

20. Schranner, D.; Schonfelder, M.; Romisch-Margl, W.; Scherr, J.; Schlegel, J.; Zelger, O.; Riermeier, A.; Kaps, S.; Prehn, C.; Adamski, J.;
et al. Physiological Extremes of the Human Blood Metabolome: A Metabolomics Analysis of Highly Glycolytic, Oxidative, and
Anabolic Athletes. Physiol. Rep. 2021, 9, e14885. [CrossRef]

21. Schader, J.F.; Haid, M.; Cecil, A.; Schoenfeld, J.; Halle, M.; Pfeufer, A.; Prehn, C.; Adamski, J.; Nieman, D.C.; Scherr, J. Metabolite
Shifts Induced by Marathon Race Competition Differ between Athletes Based on Level of Fitness and Performance: A Substudy
of the Enzy-MagIC Study. Metabolites 2020, 10, 87. [CrossRef] [PubMed]

22. Marcinkiewicz-Siemion, M.; Ciborowski, M.; Ptaszynska-Kopczynska, K.; Szpakowicz, A.; Lisowska, A.; Jasiewicz, M.;
Waszkiewicz, E.; Kretowski, A.; Musial, W.J.; Kaminski, K.A. Lc-Ms-Based Serum Fingerprinting Reveals Significant
Dysregulation of Phospholipids in Chronic Heart Failure. J. Pharm. Biomed. Anal. 2018, 154, 354–363. [CrossRef] [PubMed]

23. Kistner, S.; Doring, M.; Kruger, R.; Rist, M.J.; Weinert, C.H.; Bunzel, D.; Merz, B.; Radloff, K.; Neumann, R.; Hartel, S.; et al.
Sex-Specific Relationship between the Cardiorespiratory Fitness and Plasma Metabolite Patterns in Healthy Humans-Results of
the Karmen Study. Metabolites 2021, 11, 463. [CrossRef] [PubMed]

24. Chiang, J.Y. Bile Acid Metabolism and Signaling. Compr. Physiol. 2013, 3, 1191–1212. [PubMed]

http://doi.org/10.1016/j.cell.2014.10.029
http://www.ncbi.nlm.nih.gov/pubmed/25417152
http://doi.org/10.1007/s00125-020-05166-9
http://www.ncbi.nlm.nih.gov/pubmed/32529411
http://doi.org/10.1007/s00421-013-2714-8
http://www.ncbi.nlm.nih.gov/pubmed/24002469
http://doi.org/10.1080/02701367.2005.10599318
http://doi.org/10.1093/nutrit/nuy001
http://doi.org/10.1111/sms.13907
http://doi.org/10.1007/s00125-021-05430-6
http://doi.org/10.18632/oncotarget.17188
http://doi.org/10.3389/fmolb.2021.681400
http://doi.org/10.1038/386457a0
http://doi.org/10.1016/j.bbi.2018.10.001
http://www.ncbi.nlm.nih.gov/pubmed/30790541
http://doi.org/10.1038/s41598-020-57676-6
http://www.ncbi.nlm.nih.gov/pubmed/31964936
http://doi.org/10.1007/s11306-017-1312-x
http://www.ncbi.nlm.nih.gov/pubmed/29354024
http://doi.org/10.1177/2045894020947283
http://www.ncbi.nlm.nih.gov/pubmed/33240483
http://doi.org/10.1038/s41569-020-0354-3
http://doi.org/10.1038/nutd.2014.38
http://doi.org/10.1093/gerona/gly273
http://doi.org/10.1371/journal.pone.0085724
http://doi.org/10.1371/journal.pone.0157733
http://doi.org/10.14814/phy2.14885
http://doi.org/10.3390/metabo10030087
http://www.ncbi.nlm.nih.gov/pubmed/32121570
http://doi.org/10.1016/j.jpba.2018.03.027
http://www.ncbi.nlm.nih.gov/pubmed/29571133
http://doi.org/10.3390/metabo11070463
http://www.ncbi.nlm.nih.gov/pubmed/34357357
http://www.ncbi.nlm.nih.gov/pubmed/23897684


Metabolites 2022, 12, 658 21 of 21

25. Morville, T.; Sahl, R.E.; Trammell, S.A.; Svenningsen, J.S.; Gillum, M.P.; Helge, J.W.; Clemmensen, C. Divergent Effects of
Resistance and Endurance Exercise on Plasma Bile Acids, Fgf19, and Fgf21 in Humans. JCI Insight 2018, 3, e122737. [CrossRef]

26. Bao, L.; Hao, D.; Wang, X.; He, X.; Mao, W.; Li, P. Transcriptome Investigation of Anti-Inflammation and Immuno-Regulation
Mechanism of Taurochenodeoxycholic Acid. BMC Pharmacol. Toxicol. 2021, 22, 23. [CrossRef] [PubMed]

27. Qi, Y.C.; Duan, G.Z.; Mao, W.; Liu, Q.; Zhang, Y.L.; Li, P.F. Taurochenodeoxycholic Acid Mediates Camp-Pka-Creb Signaling
Pathway. Chin. J. Nat. Med. 2020, 18, 898–906. [CrossRef]

28. Anwer, M.S. Intracellular Signaling by Bile Acids. J. Biosci. 2012, 20, 1–23. [CrossRef]
29. Mohr, A.E.; Jager, R.; Carpenter, K.C.; Kerksick, C.M.; Purpura, M.; Townsend, J.R.; West, N.P.; Black, K.; Gleeson, M.; Pyne, D.B.;

et al. The Athletic Gut Microbiota. J. Int. Soc. Sports Nutr. 2020, 17, 24. [CrossRef]
30. Todd, M.K.; Goldfarb, A.H.; Boyer, B.T. Effect of Exercise Intensity on 6-Keto-Pgf1 Alpha, Txb2, and 6-Keto-Pgf1 Alpha/Txb2

Ratios. Thromb. Res. 1992, 65, 487–493. [CrossRef]
31. Petroni, A.; Blasevich, M.; Salami, M.; Papini, N.; Montedoro, G.F.; Galli, C. Inhibition of Platelet Aggregation and Eicosanoid

Production by Phenolic Components of Olive Oil. Thromb Res. 1995, 78, 151–160. [CrossRef]
32. Patelis, N.; Karaolanis, G.; Kouvelos, G.N.; Hart, C.; Metheiken, S. The Effect of Exercise on Coagulation and Fibrinolysis Factors

in Patients with Peripheral Arterial Disease. Exp. Biol. Med. 2016, 241, 1699–1707. [CrossRef] [PubMed]
33. Welty, F.K.; Schulte, F.; Alfaddagh, A.; Elajami, T.K.; Bistrian, B.R.; Hardt, M. Regression of Human Coronary Artery Plaque Is

Associated with a High Ratio of (18-Hydroxy-Eicosapentaenoic Acid + Resolvin E1) to Leukotriene B4. FASEB J. 2021, 35, e21448.
[CrossRef] [PubMed]

34. Alshahawy, R.; Habachi, N.E.; Allam, E.; Jerneren, F.; Refsum, H.; Elshorbagy, A. Changes in Plasma Fatty Acids and Related
Biomarkers During Transition to an Exclusively Plant- and Fish-Based Diet in Healthy Adults. Nutrition 2021, 90, 111306.
[CrossRef] [PubMed]

35. Chiang, J.Y.L.; Ferrell, J.M. Bile Acids as Metabolic Regulators and Nutrient Sensors. Annu. Rev. Nutr. 2019, 39, 175–200.
[CrossRef] [PubMed]

http://doi.org/10.1172/jci.insight.122737
http://doi.org/10.1186/s40360-021-00491-0
http://www.ncbi.nlm.nih.gov/pubmed/33926569
http://doi.org/10.1016/S1875-5364(20)60033-4
http://doi.org/10.3329/jbs.v20i0.17647
http://doi.org/10.1186/s12970-020-00353-w
http://doi.org/10.1016/0049-3848(92)90200-T
http://doi.org/10.1016/0049-3848(95)00043-7
http://doi.org/10.1177/1535370216660215
http://www.ncbi.nlm.nih.gov/pubmed/27444152
http://doi.org/10.1096/fj.202002471R
http://www.ncbi.nlm.nih.gov/pubmed/33749913
http://doi.org/10.1016/j.nut.2021.111306
http://www.ncbi.nlm.nih.gov/pubmed/34166896
http://doi.org/10.1146/annurev-nutr-082018-124344
http://www.ncbi.nlm.nih.gov/pubmed/31018107

	Introduction 
	Materials and Methods 
	Ethical Approval 
	Study Design 
	Nutritional Status 
	Blood Sampling Procedure 
	Targeted Metabolomics 
	Statistical Analysis 

	Results 
	Study Design and Descriptive Parameters 
	Nutritional Status 
	Targeted Metabolomics Analyses 
	Correlation between Plasma Metabolites and Endurance Performance 
	Identification of Biomarkers for Cardio-Pulmonary Fitness 

	Discussion 
	References

