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Abstract: Disturbances in the circadian rhythm alter the normal sleep-wake cycle, which increases
vulnerability to drug abuse. Drug abuse can disrupt several homeostatic processes regulated by the
circadian rhythm and influence addiction paradigms, including cravings for cocaine. The relationship
between circadian rhythm and cocaine abuse is complex and bidirectional, and disruption impacts
both brain function and metabolic profiles. Therefore, elucidating the impact of circadian rhythm
changes and cocaine abuse on the human metabolome may provide new insights into identifying
potential biomarkers. We examine the effect of cocaine administration with and without circadian
rhythm sleep disruption (CRSD) on metabolite levels and compare these to healthy controls in an
in vivo study. A metabolomics analysis is performed on the control, CRSD, cocaine, and CRSD
with cocaine groups. Plasma metabolite concentrations are analyzed using a liquid chromatography
electrochemical array platform. We identify 242 known metabolites compared to the control; 26 in
the CRSD with cocaine group, 4 in the CRSD group, and 22 in the cocaine group are significantly
differentially expressed. Intriguingly, in the CRSD with cocaine treatment group, the expression levels
of uridine monophosphate (p < 0.008), adenosine 5′-diphosphate (p < 0.044), and inosine (p < 0.019)
are significantly altered compared with those in the cocaine group. In summary, alterations in purine
and pyrimidine metabolism provide clues regarding changes in the energy profile and metabolic
pathways associated with chronic exposure to cocaine and CRSD.

Keywords: circadian rhythm; sleep disruption; cocaine abuse; metabolism; metabolomics; bioinformatics

1. Introduction

Circadian rhythm is an internal clock that is essential in maintaining day and night
cycles and plays a role in the day-to-day physiological, behavioral, and metabolic regu-
lation functions. This internal clock exists in the superchiasmatic nucleus (SCN) of the
hypothalamus of the brain. The SCN uses environmental signals, such as day length,
food availability, and temperature, and adapts and aligns the circadian rhythm to these
changes [1]. If any alterations occur in the circadian clock, then sleep patterns are disturbed,
causing circadian rhythm sleep disorders (CRSDs) and ultimately leading to mutation and
polymorphic changes in certain clock genes [2,3].

Drugs of abuse have been shown to have disruptive effects on the sleep-wake cycle
and sleep quality, which eventually lead to the possibility of sleep disorders such as
insomnia [4,5]. Additionally, insufficient sleep may also increase the risk of drug abuse,
including cocaine addiction [6]. Changes in circadian rhythm mainly influence the brain’s
ventral striatum and limbic forebrain regions [7]. In mammals, the circadian clock exists
in nearly all cells of the body. Alterations in the circadian rhythm may be reflected in
changes to the metabolism, breakdown and storage of fats and sugars, and the functions
of individual metabolic pathways [7]. Moreover, cocaine abuse has been shown to cause
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both acute (short-term) and chronic (long-term) sleep dysfunction [8]. Cocaine abuse can
negatively affect the brain pathways involved in maintaining circadian rhythms and may
also influence drug use by triggering potential relapses [2,3]. The relationship between
drugs of abuse and sleep disruption is bidirectional and complex. Sleep disruption leads to
an increased risk of drug abuse, and conversely, drug abuse may cause CRSDs and has also
been associated with neurodegenerative diseases [4,9,10]. Previous studies have reported
that drug addiction or drug abuse is associated with an increased risk of heart, liver, lung,
and brain disorders and psychological complications [11]. Neurobiological dysfunction
connecting oscillations of the circadian rhythm with sleep disturbance has been linked to
psychostimulant cocaine use-altered metabolic profiles [12–14].

Advances in metabolomics and analytical techniques have enabled the detection of
hundreds of metabolites in body fluids and excreta that can be used to define biochemical
profiles of drug abuse and addiction [4]. Metabolomics studies have been known to be used
for the discovery of potential diagnostic, prognostic, and therapeutic biomarkers [15,16].
We utilized liquid chromatography–mass spectrometry (LC–MS) as a metabolomics anal-
ysis technique to investigate the effect of circadian rhythm sleep disruption with and
without cocaine treatment on mouse plasma metabolite levels, which regulate various
metabolic processes. Our investigations may also contribute insights into sleep disorders
such as bruxism, thought to be mediated by neurological, dental, and genetic disorder
components [17–19].

This study aimed to understand the impact of metabolite changes due to CRSD with
and without cocaine exposure on metabolic processes. In the present work, we focused
on identifying additional metabolic changes and altered metabolic pathways in cocaine-
exposed CRSD for comparison of the differences with cocaine-exposed mice. To extend
the coverage of the variable concentrations of metabolites, we chose an untargeted method
based on plasma LC–MS/MS metabolite profiling. This multiplexed targeted LC–MS/MS
approach has been shown to be quite robust and versatile in various biomarker and systems
biology studies [16,20,21]. Several significant changes in various essential and energy
metabolism-related metabolic pathways were observed in the present work. Utilizing
multivariate statistical analysis, we combined the top-performing metabolite biomarkers
into a model that distinguished between the control and cocaine-exposed groups and the
CRSD with the cocaine-exposed group with excellent performance. Monitoring metabolites
in cocaine-exposed CRSD mice with cocaine-exposed mice may improve the identification
of metabolites that can act as specific biomarkers.

2. Materials and Methods
2.1. Animal Model

The 10- to 12-week-old C57BL/6J mice (both male and female procured from the
Jackson Laboratory, Bar Harbor, Maine) used in the study were housed and acclimatized in
polycarbonate cages at the vivarium. The optimum temperature of 23 ◦C was maintained
under 12 h L/D photo cycles, and the mice were provided food and water ad libitum.
Zeitgeber time 0 (ZT0) indicates the subjective start time of the day, and ZT12 is the
subjective start time of the night under constant dark conditions over 24 h.

2.2. Treatment Schedule and Method

Animals were randomly assigned to 4 groups as follows: group 1: control (nor-
mal 12 h L/D cycle; group 2: circadian rhythm disruption (CRSD) (animals subjected
to a 6 h phase advance every six days for eight cycles); group 3: cocaine (11 doses of
10 mg/kg/d, s.c. on alternate days for 22 days (12 h L/D cycle); group 4: CRSD with
cocaine treatment (cocaine + CRSD) (circadian-disturbed animals treated with 11 doses of
cocaine (10 mg/kg/d, s.c.) on alternate days for 22 days). Control animals were given
saline alone (no drug). Five animals were assigned to each group (n = 5). The average
weight of mice in each group was approximately 30 g. The body weight of each animal
was checked weekly. We did not see any significant difference in weight changes between
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these groups (Supplementary Table S1). The final established optimum concentration and
time response were used in subsequent experiments. Finally, the animals were decapitated
to collect plasma for further analyses. All experiments were performed in compliance with
protocols approved by the local committee for Animal Care and Texas A&M University
Animal Use Committee and conducted according to the 2011 NIH Guide for the Care and
Use of Laboratory Animals.

2.3. Circadian Rhythm Sleep Disruption Method

Animals were randomly assigned to 4 groups as follows: group 1: control (normal
12 h L/D cycle; group 2: circadian rhythm disruption (CRSD) (animals subjected to a 6 h
phase advance every six days for eight cycles); group 3: cocaine (11 doses of 10 mg/kg/d,
s.c. on alternate days for 22 days (12 h L/D cycle); group 4: CRSD with cocaine treatment
(cocaine + CRSD). In order to disrupt the circadian rhythm in mice, five animals were
subjected to a 6 h phase advance cycle before the end of normal 12 h L/D cycle. Once
we subjected mice to phase advance cycle, we maintained these CRSD group mice in that
phase for six days. After six days of that particular 12 h L/D cycle, we again subjected
animals to another 6 h phase advance cycle before the end of previous 12 h L/D cycle. We
followed this procedure every six days for eight cycles. We monitored circadian rhythm
changes by recording wheel-running activities in CRSD group mice.

2.4. Plasma Sample Preparation

HPLC grade methanol (50 mL) was kept at −80 ◦C overnight. Then, the samples
were centrifuged at 14,000× g for 10 min in a cold room (4–8 ◦C), and the supernatant was
transferred to a new 1.5-mL microcentrifuge tube. We added enough methanol (cooled to
−80 ◦C) to the supernatant to make a final 80% (vol/vol) methanol solution. For a 100 µL
sample, 400 µL methanol was added, followed by vertexing for 1 min and incubating for
30 min at −80 ◦C. The samples were then centrifuged at 14,000× g for 10 min (4–8 ◦C). The
supernatant was transferred to a new 1.5-mL microcentrifuge tube, and the samples were
filtered through Target2™ PVDF syringe filters and then lyophilized to a pellet without
heating. The dried metabolite samples can be stored at −80 ◦C for several weeks.

2.5. Mass Spectrometric Analyses

Mass spectrometric analyses were performed on a Sciex TripleTOF 6600 system (AB
SCIEX, Framingham, MA, USA) equipped with an electrospray ionization (ESI) source
used in positive and negative ionization modes. The ESI source conditions were as follows:
nebulizer (Gas 1), 50 psi; heater (Gas 2), 45 psi; curtain gas flow, 30 psi; source temperature,
550 ◦C; ion spray voltage floating, +5500 V (+) and −4500 V (−).

Time-of-flight–mass spectrometry (TOF–MS) mode (full scan) and information-
dependent acquisition (IDA) mode (product ion scan) were utilized for collecting MS and
MS/MS data. For the TOF–MS scan, the mass range was from m/z 70 to 1000, and for
the product ion scan, the mass range was from m/z 30 to 1000. The collision energy (CE)
was set to 30 V (+) or −30 V (−), and the collision energy spread (CES) was ±15 V. The
accumulation time was set to 0.25 sec for the TOF–MS scan and 0.05 sec for the product
ion scan.

The MS instrument was automatically calibrated using a calibration delivery system
injected with APCI positive and negative calibration solutions after every 5 samples. The
system was controlled by Analyst TF 1.7.1 software (Sciex). Data were processed by Sciex
OS software version 2.0.1. The metabolites were identified using their retention time and
exact mass, and matching of the unknown MS/MS spectra with a spectrum from the
standard MS/MS library led to the identification of 350 metabolites.

2.6. Chromatography Conditions

The mass spectrometer was coupled to a Shimadzu HPLC (Nexera X2 LC-30AD).
Chromatography was performed under HILIC conditions using a SeQuant® ZIC®-pHILIC
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5 µm polymeric 150 × 2.1 mm PEEK-coated HPLC column from MilliporeSigma, USA.
The column temperature, sample injection volume, and flow rate were set to 45 ◦C, 5 µL,
and 0.15 mL/min, respectively. The HPLC conditions were as follows: Solvent A: 20 mM
ammonium carbonate including 0.1% ammonium hydroxide, and Solvent B: acetonitrile.
The gradient conditions were as follows: 0 min: 80% B, 20 min: 20% B, 21 min: 80% B, and
34 min: 80% B. The total run time was 34 min.

2.7. Statistical Analysis

Statistical analyses were carried out using GraphPad Prism 9 Statistical Software
Package (GraphPad Software Inc., La Jolla, CA, USA). The interactive effect of either
cocaine or cocaine in combination with circadian disruption compared with control animals
was calculated using analysis of variance and Student’s t test as well as the nonparametric
Mann–Whitney U test. Significance of comparisons between the control and cocaine
exposure with CRSD is denoted by p < 0.05. We used the following equations to calculate
metabolite concentration:

1. Mass-to-charge ratio- m/z represents mass divided by charge number and the hori-
zontal axis in a mass spectrum is expressed in units of m/z;

2. (STDEV (five replicates of peak area for each metabolite)/AVERAGE (five replicates
peak area for each metabolite)) ∗ 100.

3. Results
3.1. Extraction and Preprocessing

The detailed pictorial diagram depicts the overall workflow of the untargeted mass
spectrometry (MS)-based metabolomics analysis that is focused on the global detection
and relative quantification of metabolites in a biological sample, such as plasma, using
the TripleTOF® 6600 System from Sciex (Figure 1A–C). We utilized this approach for
biomarker discovery and metabolic pathway perturbance identification caused by cocaine
treatment and circadian rhythm changes. Blood samples were collected from the following
treatment groups of 10- to 12-week-old mice (5 in each group): control, cocaine-treated,
circadian wake-dependent modulated, and circadian wake-dependent modulated with
cocaine treatment. The control and cocaine-treated mice were subjected to a normal
12 h light/12 h dark (12 h L/D) cycle. In contrast, mice with CRSD were subjected to
a 6 h phase advance every six days for eight cycles, with or without cocaine treatment.
Plasma samples were centrifuged and mixed with methanol to a final concentration of 80%
(vol/vol). Finally, these solutions were lyophilized and processed for untargeted MS-based
metabolomics analysis using the TripleTOF® 6600 system (Figure 1A–C). The plasma polar
and nonpolar metabolites in the control, cocaine, CRSD, and cocaine + CRSD samples
were investigated (Figure 1A–C). The final dataset of 243 metabolites was identified across
all sample groups based on their accurate mass and coelution with authentic metabolite
standards, as shown in Table 1. We assessed the proportions of plasma metabolites in the
targeted and untargeted matrices. Good instrumental stability was observed, as indicated
by the 13–20% coefficient of variation (CV) values for the metabolites in the quality control
samples. Untargeted analysis was performed in MRM mode and 243 (peaks (mz/rt))
data matrices, i.e., metabolites detected reliably in all plasma samples, were detected
(Supplementary File S1). We identified 279 metabolites in positive ion mode and 324
in negative ion mode. The implemented normalization procedures were grouped into
four categories. Sample-specific normalization allowed us to manually adjust sample
concentrations based on biological inputs. Row-wise normalization allowed general-
purpose adjustment for differences among samples, and data transformation and scaling
were two different approaches to make the features more comparable. Figure 1D shows the
data distribution before and after normalization. Moreover, the plots and kernel densities
for 50 metabolites after normalization are shown in Figure 2A.



Metabolites 2022, 12, 869 5 of 16

Figure 1. Workflow of the metabolomic data analysis of the plasma samples. (A–C) Schematic
representation of the untargeted metabolome data workflow regarding quantification, annotation,
and identification of metabolites in the control, circadian disruption (CRSD), cocaine, and CRSD with
cocaine treatment groups. (D) Metabolite data analysis before and after normalization.

Table 1. Summary of data processing results for all samples.

Samples Features (Positive) Missing/Zero Features (Processed)

A2-CIR-1 243 0 242
A2-CIR-2 243 0 242
A2-CIR-3 243 0 242
A2-CIR-4 243 0 242
A2-CIR-5 243 0 242

A3-COC-CIR-1 243 0 242
A3-COC-CIR-2 243 0 242
A3-COC-CIR-3 243 0 242
A3-COC-CIR-4 243 0 242
A3-COC-CIR-5 243 0 242

I4-Control-1 243 0 242
I4-Control-2 243 0 242
I4-Control-3 243 0 242
I4-Control-4 243 0 242
I4-Control-5 243 0 242

I5-COCAINE-1 243 0 242
I5-COCAINE-2 243 0 242
I5-COCAINE-3 243 0 242
I5-COCAIN-4 243 0 242
I5-COCAIN-5 243 0 242
QC-start-run-1 243 0 242
QC-start-run-2 243 0 242
QC-start-run-3 243 0 242
QC-end-run-1 243 0 242
QC-end-run-2 243 0 242
QC-end-run-3 243 0 242
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Figure 2. Data processing and normalization the metabolomic data from plasma samples. (A) Box-
plots and kernel density plots before and after normalization. The boxplots show at most 50 features
due to space limitations. The density plots are based on all samples. Selected methods: row-wise
normalization: N/A; data transformation: N/A; data scaling: autoscaling. (B) Important features
selected by ANOVA with a p value threshold 0.05. (C) Score plot between the selected PCs. The
explained variances are shown in brackets. (D) Important features identified by PLS-DA. The colored
boxes on the right indicate the relative concentrations of the corresponding metabolites in each group
under study.

3.2. Analysis

Fisher’s least significant difference method (Fisher’s LSD) and Tukey’s honestly signif-
icant difference (Tukey’s HSD) in MetaboAnalyst were used for univariate analyses, which
provided a preliminary overview of the comparisons between the different levels that were
significant given the p value threshold (Figure 2B). Principal component analysis (PCA)
explains the directions that best describe the variance in a dataset (X) without referring to
class labels (Y). The data were summarized into far fewer variables called scores, which
were weighted averages of the original variables. Figure 2C shows the 2-D score plot
between the selected principal components (PCs). To assess the significance of class dis-
crimination, a permutation test was performed. In each permutation, a PLS-DA model was
built between the data (X) and the permuted class label (Y) using the optimal number of
components determined by model cross-validation based on the original class assignment.

There are two variable importance measures in PLS-DA. The first, variable importance
in projection (VIP), is a weighted sum of the squares of the PLS loadings considering the
amount of explained Y variation in each dimension. The other important measure is based
on the weighted sum of PLS regression. Figure 2D shows the permutation test results for
model validation, which identified important features by PLS-DA. The metabolite itaconate
showed the highest VIP score among all groups (Figure 2D). Moreover, 2-hydroxyglutamate
and citramalate also showed high VIP scores in all groups (Figure 2D). To maximize the
sampling differences between the study groups and explore the metabolites most relevant
to circadian rhythm and cocaine treatment, metabolites with a VIP > 1.5 were selected
(Figure 2D). PLS-DA determined the VIP plot. The higher the VIP value is, the better the
contribution of that metabolite to the separation of the groups. We compared the treat-
ment groups with the control group to identify the significant metabolites expressed in the
treatment groups for further analysis. We performed multiple t test analyses to visualize
the data in a volcano plot by plotting the negative logarithm of the p value on the Y-axis
(usually base 10). First, we compared the cocaine group with the control (Figure 3A). The
volcano plot shows highly significant metabolites with a low p value at the top right (upreg-
ulated) and top left (downregulated). We observed that beta-glycerophosphate (BGP) and
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adenosine monophosphate (AMP) were significantly upregulated, while D-alanine (D-Ala)
and O-acetylserine (OAS) were downregulated (Figure 3A). Moreover, when we com-
pared CRSD to the control group, the volcano plot showed that trans-4-hydroxy-L-proline
was significantly downregulated while AMP expression was significantly upregulated
(Figure 3B). Interestingly, the volcano plot depicting the comparison between the con-
trol and cocaine + CRSD groups demonstrated that two metabolites, AMP, and inosine
monophosphate (IMP), were significantly upregulated (Figure 3C). Furthermore, we com-
pared the predominantly expressed metabolites from all the following three comparison
groups: control vs. cocaine, control vs. CRSD, and control vs. cocaine + CRSD. The
resulting analysis revealed 17 common metabolites, as shown in Figure 3D.

Figure 3. Summary of metabolite changes in the mouse plasma samples of the circadian disruption
(CRSD), cocaine, CRSD, and control groups. (A) Volcano plot presenting the differential expression
of metabolites in the cocaine group compared to the control. The X-axis corresponds to fold changes
(FCs) of −2 (downregulation) and +2 (upregulation). The Y-axis represents the −log10(p value). The
red and green points on the plot represent the significantly differentially expressed (DE) metabolites.
(B) Volcano plot presenting the differential expression of metabolites in the CRSD group compared
to the control. The X-axis corresponds to FCs of −2 (downregulation) and +2 (upregulation). The
Y-axis represents the −log10(p value). The red and green points in the plot represent the signifi-
cantly DE metabolites. (C) Volcano plot presenting the differential expression of metabolites in the
cocaine + CRSD group compared to the control. The X-axis corresponds to FCs of −2 (downregu-
lation) and +2 (upregulation). The Y-axis represents the −log10(p value). The red and green points
in the plot represent the significantly DE metabolites. (D) Venn diagram showing the 17 common
identified metabolites among the control vs. cocaine, control vs. CRSD and control vs. cocaine +
CRSD groups.

The metabolomic profiling of the plasma was performed, identifying metabolites based
on their ionization efficiencies. We observed that some of these metabolites showed better
sensitivity in negative ion mode than in positive ion mode. We identified 304 metabolites
in negative ion mode while 279 metabolites in positive ion mode, as shown in Figure 4A
(Supplementary File S2). Next, to better characterize the changes in the circadian rhythm
and cocaine treatment on the metabolome of mice, we compared the total peak intensity (the
following scaling) of the identified metabolites across comparison groups (Supplementary
File S3). We observed that the cocaine + CRSD, CRSD, and cocaine groups showed lower
total peak intensity compared to the control group (Figure 4B). This approach led to
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the detection and identification of a total of 243 metabolites across all samples. These
samples belonged to mainly a superclass of Organic acids with 53% of total metabolites
(Supplementary File S4). Other metabolites belonged to various super classes such as 19%
nucleic acids, 10% carbohydrates, 3% Benzenoids, 3% Glycerolipids, and 3% of fatty acyls
(Figure 4C) (Supplementary File S5). We further divided the metabolites into superclasses
and arranged them based on their expression, such as upregulation and downregulation
at each comparison with the control (cocaine + CRSD, CRSD, and cocaine groups) as
shown in Figure 4D (see also Supplementary Files S6 and S7). Furthermore, we analyzed
the subclasses of superclasses to which all these metabolites belong. We observed that
these metabolites belong to subclasses of carbohydrates such as oligosaccharides, glycosyl
compounds, and monosaccharides. Moreover, metabolites were classified into purines,
pyrimidines, and nicotinamide subclasses of nucleic acids. Finally, a total of 80 metabolites
were found to belong to subclasses including amino acids and peptides, TCA acids, and
phosphate esters of the superclass of organic acids (Figure 4E).

Figure 4. Overview of effect of cocaine and CRSD on metabolomic changes. (A) Pie chart showing
the total of 304 metabolites and 279 metabolites identified by using positive and negative ion mode
of untargeted liquid chromatography-tandem mass spectroscopy, respectively. (B) The bar diagram
representing the total peak intensities across control, cocaine + CRSD, CRSD, and cocaine groups.
(C) The pie chart representing the percentage of metabolites belong to superclass of metabolites.
(D) The stack bar diagram representing the total number of metabolites upregulated and downregu-
lated at each comparison groups (Cocaine vs. Control, Cocaine + CRSD vs. Control, Cocaine + CRSD
vs. Cocaine, and Cocaine + CRSD vs. CRSD) and distribution of the metabolites per superclass
of metabolites. (E) The stack bar diagram representing the number of metabolites divided on the
basis of subclasses under the superclass. * and ** represent the levels of significance at 10% and
5%, respectively.

Additionally, we obtained extracted ion chromatograms (XICs) for the metabolites
that were significantly altered in cocaine-treated and CRSD-changed mouse plasma sam-
ples compared to the control; these chromatograms demonstrated good peak shapes. The
metabolite inosine showed a peak area (PA) of 4.891 × 106 with a retention time (RT)
of 5.33 min in negative mode (Figure 5A). Similarly, we identified metabolites such as
10-hydroxydecanoate (negative mode; PA = 2.837 × 105, RT = 1.86 min), adenosine 5′-
diphosphate (positive mode; PA= 2.914 × 105, RT = 9.23 min), uridine monophosphate
(positive mode; PA = 3.524× 105, RT = 8.54 min), xanthine (positive mode; PA = 2.963 × 105,
RT = 6.95 min), and cortisol (positive mode; PA = 4.142 × 105, RT = 1.89 min), as shown
in Figure 5B–F. We utilized these 17 common metabolites for metabolite set enrichment
analysis (MSEA), which was performed with the MetaboAnalyst tool. MSEA contains
human, mammalian, and chemical class metabolite sets. This module accepts a list of
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compound names, compound names with concentrations, or a concentration table. The
analysis is based on several libraries containing ~9000 biologically meaningful metabo-
lite sets collected primarily from human studies, including >1500 chemical classes. The
MSEA depicted the top 25 enriched pathways with significant p values and enrichment
ratios. Cardiolipin biosynthesis, phosphatidylcholine biosynthesis, purine metabolism,
pyrimidine metabolism, and methyl histidine metabolism were the most upregulated and
distinct pathways among the 25 top pathways (Figure 6A). Similarly, the p values of the
top 25 pathways were transformed into the negative logarithm of the p value to plot on
the Y-axis (base 10) and were thus depicted in a logarithmic fashion (Figure 6B). We also
investigated the significance and contribution of these metabolites to illustrate the impact
of these pathways. We observed that purine and pyrimidine metabolism were the most im-
pacted, with significant −log10(p values) (Figure 6C). Moreover, we calculated the average
normalized peak areas for the replicates and each sample group and then compared these
values using a heatmap. Figure 6D displays the heatmap, which shows the expression of the
metabolites in each sample group. Metabolites such as inosine, hypoxanthine, xanthosine,
NAD+, beta-nicotinamide, adenine dinucleotide, palmitoyl carnitine, 3-(2-hydroxyphenyl)
propanoate, and glycerate showed higher expression in the cocaine and CRSD groups than
in the control group. Intriguingly, 4-guanidinobutanoate, lauroyl carnitine, methionine,
and palmitoyl carnitine expression were upregulated in the cocaine + CRSD group com-
pared to the control. We utilized the 16 common metabolites for pathway analysis in the
next analyses. The MetaboAnalyst tool performs metabolic pathway analysis (integrating
pathway enrichment analysis and pathway topology analysis) and visualizes human and
mouse genome pathways. Interestingly, this tool can also simultaneously analyze genes
and metabolites of interest within the context of metabolic pathways. We used this tool to
integrate evidence from cocaine exposure transcriptomics data into central nervous system
(CNS) cells and metabolomics data from plasma samples. The resulting analysis revealed
the metabolite-gene-disease interaction network (Figure 7A). This network showed signif-
icant interactions of metabolites, such as hippuric acid, with various diseases, including
phenylketonuria, schizophrenia, propionic acidemia, and tyrosinemia type I. In-depth
analysis of the metabolite-to-metabolite interactions revealed that N-acetyl galactosamine,
glycerol-3-phosphate (G3P), cytidine monophosphate, and adenine were mainly affected
by cocaine + CRSD treatment (Figure 7B). The final investigation revealed that metabolites
such as N-acetyl galactosamine, G3P, cytidine monophosphate, and adenine mainly inter-
acted with FAD, glycerol, NADH, citric acid, adenosine triphosphate (ATP), and uridine,
which are primarily involved in energy metabolism processes (Figure 7B).
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Figure 5. Extracted ion chromatograms of the significantly expressed metabolites. Extracted ion
chromatograms from LC–MS/MS analysis of the plasma metabolites (blue line) and their deuter-
ated internal standards (red line). The data were obtained from a pooled plasma sample. The
chromatograms demonstrate clear retention time and peak area overlap with the deuterated inter-
nal standards.

Figure 6. Cont.
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Figure 6. Functional analysis of the common significantly altered metabolites. (A) The involvement of
metabolites in various pathways were investigated using enrichment pathway analysis. A list of the
most enriched pathways in which these metabolites are involved is shown based on the enrichment
ratio. (B) The involvement of metabolites in various pathways was investigated using enrichment
pathway analysis. A list of the most enriched pathways in which these metabolites are involved
is shown based on −log10(p value). (C) The pathway impact is shown based on −log10(p value).
(D) Heatmap showing the top upregulated metabolites (red) and downregulated metabolites (blue)
across the control, circadian disruption (CRSD), cocaine, and CRSD with cocaine treatment groups.

Figure 7. Cont.
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Figure 7. Metabolite interaction network. (A) Metabolite-gene-disease interaction network analysis
of the annotated significantly differentially accumulated metabolites. The square blue boxes represent
diseases, and significant metabolites are shown in red. (B) Metabolite–metabolite interaction network
analysis of the annotated significantly differentially accumulated metabolites. The metabolites are
represented as nodes (circles), and enzymes are represented as edges (lines). Metabolites with higher
importance are highlighted in red followed by pink and blue. The size of the node indicates the node
degree (the number of links a particular node has to other nodes).

4. Discussion

Cocaine is a powerful psychostimulant, and users feel euphoric, energetic, and men-
tally alert after a short exposure time. However, the long-term effects of cocaine use include
addiction, irritability and mood disturbances, restlessness, paranoia, and auditory halluci-
nations [22]. Cocaine use can further influence the brain’s reward system by disturbing
the circadian clock and chemical transmission, leading to addiction. Cocaine overuse leads
to heightened pleasure and addiction mediated by the release of dopamine in the brain.
When euphoric, it is normal for the individual to experience sleep disturbances triggered
by the drastic drug-induced energy spike.

In contrast, sleep-deprived individuals experience hypersomnia during withdrawal.
These substance-induced sleep disturbances may harm their mood, resulting in relapse.
Substance-induced insomnia can affect the body’s ability to heal and the mind’s ability to
rejuvenate. Sleep and circadian rhythm are intricately connected to various hormonal and
metabolic processes that maintain metabolic homeostasis. Research shows that sleep depri-
vation and sleep disorders may have profound metabolic and cardiovascular implications
through multiple pathways involving sympathetic overstimulation, hormonal imbalance,
and subclinical inflammation [23]. In parallel, the neurochemistry of drugs of abuse is
different, and the question is whether each has a different effect on sleep.

Several clinical studies with various cohorts have reported that circadian rhythm
disturbance can accelerate drug addiction [4]. Conversely, clinical studies have also demon-
strated that illicit drug use is associated with sleep disorders and impairs both immune and
neuronal functions [24]. Changes in the concentrations of metabolites are acute compared
to changes in the expression levels of a gene or a protein, making measuring metabolites
a relatively easy and sensitive method to determine the biological status. The changes in
endogenous metabolites are attributed to the pathogenesis of several major diseases, as they
seem to interrupt specific cellular pathways of the disease in question. Thus, metabolomics
is crucial for deducing pathophysiological mechanisms and developing novel therapeu-
tics [4,24,25]. The great advancements in technology and instrumentation have fostered
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the growth of nanoscale measurements of biological signatures present in urine, plasma,
and blood [20]. Therefore, it is both imperative and informative to investigate the effects
of cocaine treatment and changes in circadian rhythm at the metabolite level in plasma
extracted from the blood of euthanized mice. A detailed characterization of the metabolic
processes that are impacted by sleep disturbances is required to better understand the
increased risk of the adverse metabolic effects observed in individuals that use drugs.
Herein, we used an in vivo untargeted metabolomics approach to determine the impact of
circadian rhythm changes and cocaine treatment on circulating metabolite levels in plasma.

The untargeted metabolomics approach identified 17 commonly significantly altered
metabolites. Among these, uridine diphosphate, glycerol-2-phosphate, hippurate, G3P, uri-
dine monophosphate, S-adenosylmethionine, AMP, BGP, and galactosamine were the main
metabolites altered due to cocaine use and circadian rhythm changes. Uridine monophos-
phate and uridine diphosphate are esters of phosphoric acid with the nucleoside uridine,
both of which were upregulated in cocaine-administered and circadian rhythm-changed
mice [26]. In humans, the function of orotidylate decarboxylase is carried out by the
protein UMP synthase. Defective UMP synthase can result in the metabolic disorder of
orotic aciduria [27]. A previous in vivo model study demonstrated that uridine alters
dopaminergic activity and the related behavioral impairments. The administration of
uridine blunted the amphetamine-induced increase in striatal dopamine. These observa-
tions were interpreted as indications that chronic uridine modulates the stimulant-induced
release of dopamine [28]. Additionally, another study showed that uridine administration
for five consecutive days prevents REM sleep deprivation-induced deficits in learning and
memory associated with neurocognitive function [29]. These previous reports suggest
that sleep deprivation and neurochemical changes due to cocaine and circadian rhythm
changes in mice may affect metabolic processes and induce uridine-associated metabolites
to nullify the effects of the treatments. Metabolites such as S-adenosylmethionine AMP
are derivatives of adenosine [30]. Adenosine is mainly derived from ATP via AMP and
various enzymatic reactions [26]. Research studies have shown that cocaine increases the
cerebral extracellular levels of adenosine, an endogenous purine nucleoside that modulates
dopaminergic neurotransmission, which further induces adenosine A2A receptor (A2AR)
stimulation [31–34]. Our metabolomics analysis showed that adenosine metabolites were
significantly upregulated, pointing toward ATP-AMPK energy-associated pathways. Our
previous research reports showed that cocaine influences energy metabolism in vitro and
in vivo through epigenetic modulation [35–37]. G3P, glycerol-2-phosphate, and BGP are
phosphoric esters of glycerol, which is a component of glycerophospholipids [38]. These
metabolites are synthesized by reducing dihydroxyacetone phosphate (DHAP), a glycolysis
intermediate, with G3P dehydrogenase. DHAP and thus G3P can also be synthesized from
amino acids and citric acid cycle intermediates via the glyeroneogenesis pathway [38]. G3P
dehydrogenases can be localized in the cytosol and the inner membrane of the mitochon-
dria. G3P and DHAP can move across the mitochondrial outer membrane through porins
and shuttle between two dehydrogenases due to their small size. This movement across
membranes leads to NADH generation from cytosolic cellular mechanisms. For example,
in glycolysis, DHAP is reduced to G3P due to NAD+ reoxidation, and the reducing coun-
terpart generates a proton gradient across the inner membrane of the mitochondria via G3P
oxidation and quinone reduction [39].

Moreover, our analysis demonstrated that these intermediate glycolysis metabolites
were significantly altered in cocaine-treated mice and circadian rhythm-changed mice.
Altered pathways included changes in cardiolipin biosynthesis, purine and pyrimidine
metabolism, biosynthesis, degradation (glutamine, lysine, carnitine, methionine, and histi-
dine), glycolysis (lactate and glucose), triglyceride biosynthesis, glycerol phosphate shuttle,
and tricarboxylic acid (TCA) cycle (citrate cycle). Energy metabolism, the mitochondrial
electron transport chain, and purine-pyrimidine metabolism dominate the altered biochem-
istry after cocaine treatment and circadian rhythm changes in mice. The accumulation
of lactate and glucose, which is common in many diseases, comes with higher energy
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demands [40]. The increase in carnitine indicated increased carnitine, lysine, and glutamine
biosynthesis activity connected with the TCA cycle via lactate accumulation, again in
response to the higher energy demand [41].

Importantly, while it was beyond the scope of the current work, it remains a limitation
of this study that we did not pursue further investigation of the identified metabolites in the
untargeted mass spectrometry (MS)-based metabolomics analysis. Further investigation is
needed to understand the involvement of purine and pyrimidine metabolites in the CRSD
and cocaine-affected brain energy metabolism.

5. Conclusions and Future Direction

In conclusion, our results provide insight into the effects of chronic cocaine exposure
and circadian rhythm changes on metabolic processes. This metabolomics and bioinformat-
ics analysis is a comprehensive supplement that gives quick insights into how significant
metabolite signature markers are regulated during cocaine exposure and circadian rhythm
changes via the modulation of targeted metabolic pathways.
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