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Abstract: Computational methods for creating in silico libraries of molecular descriptors (e.g., collision
cross sections) are becoming increasingly prevalent due to the limited number of authentic reference
materials available for traditional library building. These so-called “reference-free metabolomics”
methods require sampling sets of molecular conformers in order to produce high accuracy property
predictions. Due to the computational cost of the subsequent calculations for each conformer, there is
a need to sample the most relevant subset and avoid repeating calculations on conformers that are
nearly identical. The goal of this study is to introduce a heuristic method of finding the most dissimilar
conformers from a larger population in order to help speed up reference-free calculation methods
and maintain a high property prediction accuracy. Finding the set of the n items most dissimilar from
each other out of a larger population becomes increasingly difficult and computationally expensive as
either n or the population size grows large. Because there exists a pairwise relationship between each
item and all other items in the population, finding the set of the n most dissimilar items is different
than simply sorting an array of numbers. For instance, if you have a set of the most dissimilar
n = 4 items, one or more of the items from n = 4 might not be in the set n = 5. An exact solution would
have to search all possible combinations of size n in the population exhaustively. We present an
open-source software called similarity downselection (SDS), written in Python and freely available
on GitHub. SDS implements a heuristic algorithm for quickly finding the approximate set(s) of
the n most dissimilar items. We benchmark SDS against a Monte Carlo method, which attempts to
find the exact solution through repeated random sampling. We show that for SDS to find the set of
n most dissimilar conformers, our method is not only orders of magnitude faster, but it is also more
accurate than running Monte Carlo for 1,000,000 iterations, each searching for set sizes n = 3–7 out
of a population of 50,000. We also benchmark SDS against the exact solution for example small
populations, showing that SDS produces a solution close to the exact solution in these instances.
Using theoretical approaches, we also demonstrate the constraints of the greedy algorithm and its
efficacy as a ratio to the exact solution.

Keywords: conformer; downselection; graph; metabolomics; molecule; Monte Carlo; Python; sampling;
structure; similarity)

1. Introduction

The metabolomics analysis of biological and environmental samples can give rise to
thousands of features (e.g., from LC-IMS-MS/MS or related multi-dimensional methods).
To make identifications in these complex samples, the gold standard approach is to compare
experimental features to a library of features created through the analysis of authentic
reference materials (i.e., standards) analyzed by the same analytical platform. Due to the
high complexity and/or low concentration of components, these samples are not amenable
to traditional de novo structure elucidation methods (e.g., nuclear magnetic resonance).
One of the current major roadblocks in metabolomics is the discrepancy in the size of
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identification libraries compared to the number of compounds in the molecular universe
(both natural and man-made molecules), leaving metabolomics researchers in a position
where samples cannot be fully characterized. Thus, unfortunately, most of the features
observed in studies of complex samples remain unannotatable. This issue remains because
most molecular structures are unknown and from those that are known, the set available as
purchasable or easily synthesizable is limited.

A growing alternative to building identification libraries in the laboratory through the
analysis of standards is to computationally predict or calculate the chemical properties and
instrument responses, i.e., build in silico libraries. As computational resources, instrument
physics understanding, and algorithm accuracy have improved, more groups have begun
exploring “reference-free” computational metabolomics methods. Common methods for in
silico library building include cheminformatics/QSAR, AI/ML, and quantum chemical
calculations, and consider features/properties such as retention time, drift time/collision
cross section, monoisotopic signatures, ionization adduct types, infrared spectra, mass
fragmentation patterns, and more.

For all methods, but especially quantum chemical calculations, obtaining a good
representation of the geometries of the molecules, i.e., conformers, is critical for increasing
accurate libraries. Conformers are molecules with identical bonds and atoms but different
structures (i.e., geometric arrangements of the atoms relative to each other). For each
molecule, there is an infinite number of conformers, but only a small set have low Gibb’s
free energy and are therefore probable to find under experimental conditions. A nontriv-
ial problem is creating sets of conformers and selecting the critical few that should be
used for the final property calculations. Thus, several groups have striven to create algo-
rithms and automated pipelines in order to smartly sample conformers sets: e.g., clustering
methods [1], randomly sampling (with or without simulated annealing) [2–4], or selecting
low energy sets from classical or semiempirical molecular modeling [5,6]. Part of the goal of
downselecting to a smaller set of conformers is to save on the relatively high computational
cost when performing quantum chemical calculations. In a recent study, we found that
by selecting the two most dissimilar and single most similar conformers from simulated
annealing runs prior to performing density functional theory calculations, we could save
substantial computational time while preserving property calculation accuracy [6]. How-
ever, that method was not scalable, and so we endeavored to find a new subsetting method
that could work well in high-throughput pipelines and consider thousands of conformers.

There exists a large and historical body of algorithms and their implementations for
searching, sorting, and clustering data based on distance or similarity. Popular algorithms
include beam search and K-means clustering [7–10], used for finding the target result by
following the most promising nodes (as determined by an evaluation function f(n)) and for
grouping data by similarity to a number of selected data points or nodes, respectively. One
similarity-comparison problem involves choosing the set of the n most dissimilar items
from a larger population of size N, in which there exists a pairwise relationship between
each item and all other items. There exist several older algorithms in the literature to solve
this type of problem [11–13] but none are available as open-source Python packages. The
solution to this dissimilarity-set problem is useful in chemistry and biology, for instance,
for finding the most geometrically dissimilar sets of conformers (or molecular structures)
to efficiently span conformational space and eliminate redundant structures. The use of
root-mean-square deviation (RMSD) of atomic positions for selecting sets of conformers
has been used by many groups [2,5,14–16].

Finding the exact solution to the most dissimilar set problem becomes intractably
computationally expensive (super-exponentially complex) as the population size N grows
large, and it is most expensive when n = N/2, according to the binomial coefficient
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Additionally, if the set n = 4 is found, one or more of its items might not be a member
of the set n = 5. Verifying that the exact solution has been found requires exhaustively
searching all possible combinations for a given set size. Finding the exact solution quickly
becomes intractable for classical computers. When considering a population of 50,000 items,
for example, finding the most dissimilar set of n = 3 items would require searching over
20 trillion unique combinations (2.083208335 × 1013 to be exact). However, if one assumes
all members of the set n are also members of the set n + 1, then an approximate solution
that is sufficiently close to the exact solution can be determined in a “greedy” fashion. We
introduce a heuristic algorithm implemented in Python, similarity downselection (SDS),
that finds the subset of the n most dissimilar items from a large population. As described,
this type of algorithm is critical for helping to accelerate reference-free metabolomics
methods for computing in silico libraries, but it is also generally applicable to other similar
subsetting problems across all domains of science. SDS is generalizable to any application
where the data can be represented as arrays whose elements are the pairwise relationships
between each item and all other items in the population. We include a brief description
of an example application on molecular conformer selection, and benchmark SDS against
both a Monte Carlo sampling method and the exact solution. In addition, we demonstrate
the constraints and efficacy of the algorithm using triangle approximations and ratios
(Supplementary Information).

2. Application: Molecular Conformer Sampling

It was previously found in ISiCLE that the Boltzmann-weighted average of the two
most dissimilar and one most similar conformer chosen out of 10 AMBER simulated
annealing cycles saved ~70% time while still being within >99% agreement with the full
conformer sampling, as compared to the Boltzmann-weighted average of every conformer
out of every cycle. This is thought to be because choosing the most dissimilar conformers
spans conformational space with fewer conformers. It should be noted that choosing the n
conformers most dissimilar from each other is not the same as choosing the n conformers
most dissimilar from the whole population. This is because two conformers can be similar
to each other and dissimilar from the average population at the same time. Finding the two
most dissimilar conformers is trivial, but finding the subsets of three or more is not. As
part of a larger analysis to assess the validity of various conformer selection techniques [6],
a method was needed to efficiently find the subset of the n most dissimilar molecular
conformers out of a set of 50,000 conformers (where 1 < n < 50,000). These conformers were
generated by a modified ISiCLE pipeline on a set of 18 small molecules with mass ranges of
~100–700 Da, as described previously [6]. The goal was to efficiently span conformer space
by downselecting from a larger population to the most structurally dissimilar conformers.
SDS was developed to this end and was proven to outperform a proposed Monte Carlo
method in both time and accuracy, as shown in Section 4 below. Figure 1 demonstrates the
8th dissimilar set being iteratively chosen by SDS on Harmine [M+H]+, SDGRG [M+Na]+,
and Naringin [M−H]−, and plotted in CCS vs. energy space.

The dissimilarity between two conformers was measured as the average pairwise
RMSD between corresponding atoms, calculated using OpenBabel (v 2.4.1) [17,18]. The
method for finding the nth dissimilar set needed to be efficient and applicable to any small
molecule. The section below provides a description of the SDS algorithm.
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Figure 1. Demonstration of SDS choosing the 8 most mutually dissimilar conformers for Harmine
[M+H]+, SDGRG [M+Na]+, and Naringin [M−H]−, showing the structure of the three most dissimilar
conformers for each. SDS works iteratively by finding the set n + 1 by building off the set n.

3. Similarity Downselection Python Module

SDS implements a heuristic algorithm for finding the set of n items most dissimilar
from each other out of a larger population. The algorithm is greedy, making the optimal
choice during each iteration, where each iteration finds the set n + 1 by building off the set
n. SDS is freely available as a Python module on GitHub at https://github.com/pnnl/sds
(accessed on 1 December 2022) and in the Supplementary Materials. Below, we provide
short descriptions of how the algorithm works using arrays and, alternatively, using
node/graph theory.

3.1. Algorithm Description

The individual items in a population are represented as arrays whose elements contain
floating point values of the pairwise relation (e.g., RMSD or other dissimilarity metric)
between the given item and all other items in the population. The first element of all arrays
is reserved for the pairwise relation to the first item, the second element to the second item,
and so forth until an NxN matrix is formed, where N is the size of the total population, the
ith row is the array of the ith item, and Nij contains the pairwise relation between items
i and j. Since Nij = Nji, the matrix is symmetric across the diagonal.

The algorithm first selects the two items that have the largest pairwise value between
them. This is the exact subset of n = 2 most dissimilar items. To find the subset n = 3,
the natural log of the first two arrays (corresponding to the first two items) are summed
element-wise to create a new summation array. The index of the largest value in the

https://github.com/pnnl/sds
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summation array is the index of the third most dissimilar item. The natural log of the array
corresponding to the third item is then added to the summation array to yield the index of
the fourth most dissimilar item. Successive subsets n = 5, 6, 7, . . . , N, are achieved in the
same manner, selecting the item corresponding to the index of the highest value, as shown
in Figure 2.
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Figure 2. Illustration of the similarity downselection algorithm. The natural log is taken on a square
matrix containing the pairwise-similarity relations of the items in the full population. The two most
dissimilar items (i.e., most dissimilar subset n = 2) are found and their arrays summed to find the
third most dissimilar item (i.e., subset n = 3). Successive most dissimilar subsets are iteratively found
by adding the array of the most recently found item to the summation array and taking the index of
the largest (or smallest) value. Items already selected cannot be selected again and are represented as
nan in the summation array.

Items could be multiplied into a multiplication array instead of log-summed, but
it was found the product of floating-point numbers quickly exceeds machine precision
(10×10323 in our setup) after about 10,000 items, so log-summing was used instead. Ef-
fectively, log-summing (or multiplying) rewards items that have a large value across all
arrays by making its numerical representation larger and punishes items that have even
one significantly small pairwise relation with another item by making its numerical repre-
sentation smaller. N can be very large, theoretically indefinite, and limited only by machine
precision and memory. The population used for the original implementation, as discussed
in Section 3, contained 50,000 items.

3.2. Problem and Algorithm Description Using Graph Theory (Nodes and Edges)

Like the traveling salesman problem, the longest path problem (LPP), and many other
problems found in graph theory, the items in the most dissimilar set problem (MDSP) can
be thought of as nodes. Like the LPP for weighted complete graphs (where each node is
connected to every other node and the edges are assigned weights), the MDSP seeks to
find the nodes that will maximize the total distance. More specifically, the MDSP must find
the subset of size n that will yield a maximum distance. In graph theory, this makes the
MDSP more general than the LPP because the LPP is a special case when n = N. In MDSP
permutation, unlike LPP permutation, the order the nodes are visited does not matter. For
example, when the target set size is the full population size (n = N), the solution to the
MDSP is trivially the full population. In contrast, the solution for the LPP has not only not
been found, it has not even been searched for. Additionally, while problems like the LPP
require the total distance be calculated by the simple path traveled between nodes (only
two connecting edges per node: entering and exiting), the MDSP takes into account all
pairwise edges in the solution set exactly once. In other words, the exact solution to MDSP
can and must travel all pairwise edges in the chosen set and does not double count edges
that have already been traveled.

SDS uses a one-dimensional representation to inform its decision traversing the graph.
The algorithm starts by finding the two nodes most distant from each other (two nodes with
the highest weight assigned to their connecting edge). It then takes the one-dimensional
representation of one of the two nodes and log-sums its weighted edges (distances) with the
one-dimensional representation of the second node. This creates a new one-dimensional
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representation where all previously chosen nodes have zero distance and the node with the
furthest distance (highest log-sum) is the next node chosen on the graph.

4. Benchmarking
4.1. Performance against a Monte Carlo Method

SDS was shown to be faster and produce more dissimilar sets than a Monte Carlo
(MC) sampling method in a contest to find the most dissimilar sets of n = 3–7 out of
a population of 50,000 conformers for sphingosine [M+H]+. MC sampling was run for
1,000,000 iterations for each n-sized set, with each taking more than 2 h to complete. After
loading the data matrix, which required about 3 min, the heuristic algorithm found all sets
in <1 min. SDS also had a greater RMSD log-sum (total distance between nodes) for every
set size, as shown in Figure 3, indicating that it was closer to the exact solution than the
MC method every time.
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and methyleugenol [M+Na]+ with conformer populations of 50,000. Top and middle, the conformer
RMSD log-sum (a metric of the dissimilarity of the set) for SDS and the largest RMSD log-sum found
via the MC method for set size n. Bottom, search time per node for both methods. Time includes the
(approximate) 3 min to load the pairwise RMSD matrix.
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This benchmarking analysis was applied again to 50,000 conformers of methyleugenol
[M+Na]+, with similar results. Here, MC performed better than SDS at n = 3 by a small
margin (Figure 3). SDS ran the complete search for every possible set of 1 < n < 50,000 in
approximately 7 min, including the approximate 3 min required to load the matrix.

4.2. Performance against the Exact Solution

SDS was benchmarked against the exact solution for N = 20, 22, and 24 with n = N/2
used on randomly generated datasets, as summarized in Figure 4. In each case, the
SDS solution had a total distance closer to the exact solution distance than the mean set,
indicating a good heuristic solution.
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larity for the exact solution, SDS, mean, and minimum (most similar) sets. Bottom, search time per
node for both methods.

In our setup, we estimate that it would require over 72 node hours to find the exact so-
lution for a population even as small as N = 30 with n = 15 while SDS would find a heuristic
solution in a fraction of a second. Despite the extensive work in this type of problem, we
are unaware of any approaches which have provided provable performances guarantees.
In the Supplementary Information, we show that if the dissimilarity is measured as the
product of Euclidean distances, then there are at least some performance guarantees for the
greedy heuristic.

4.3. Comparing Computational Costs of Calculating Pairwise Relations

SDS requires the pairwise relation matrix to be calculated in advance. Depending on
the application and what set size is being searched for, initially this may falsely appear
to reduce the cost-effectiveness. Because the same pairwise relations would have to be
calculated for both the MC method and the exhaustive search, the total computational cost
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is equal to the cost for SDS, assuming each relation is efficiently calculated only once during
each method. If MC fails to consider every possible pairwise relation and is computing
them on the fly, then there would be fewer pairwise relations to compute, but this would
be the same as creating a randomly selected subset of data and running MC searches when
SDS could have been run on the subset just as well, underscoring the benefit of SDS.

5. Conclusions

We have introduced new software written in Python that implements a heuristic
algorithm for finding the set of n items most dissimilar from each other. We have demon-
strated its efficacy and efficiency in benchmarks against a Monte Carlo method, and
the exact solution and provided mathematical evidence for the limitations of the algo-
rithm (Supplementary Information). SDS, freely available at https://github.com/pnnl/sds
(accessed on 1 December 2022) with instructions for running on the command line or a
step-by-step Jupyter Notebook tutorial, has application in molecular conformer selection
when using computational methods to predict properties in “reference-free” metabolomics
studies, but also has potential application in searches for the nth most dissimilar set in
generalized datasets.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/metabo13010105/s1, SDS code (Nielson_etal_2021.zip). References [19–25]
are cited in the supplementary materials.
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