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Greedy Approximation to the Metric Dissimilarity Problem 

Broadly speaking, our goal is to efficiently identify a subset of 𝑘 conformers from a much larger 

set of conformers in order to capture the total range of likely geometries of the conformers. 

More formally, if our set of conformers is 𝑋 = {𝑥1, … , 𝑥𝑛} and the dissimilarity between 𝑥𝑖 and 𝑥𝑗 

is given 𝑑𝑖𝑗, we wish to maximize some measure of total dissimilarity 𝑓(𝑆) over all subsets of 

size 𝑘 from 𝑋. Historically, this total dissimilarity function 𝑓 is measured by averaging the 

dissimilarity over all pairs of elements in 𝑆. However, in practice, we would also like for these 

dissimilarity sets to be an efficient representation of the range of likely geometries. That is, we 

are willing to trade some fidelity in the representation of the conformers for a smaller set of 

representatives, more formally, if |𝑇| < |𝑆| are such that 𝑓(𝑇) and 𝑓(𝑆) are approximately the 

same, we will prefer 𝑇 to 𝑆. In order to capture this preference, we replace the sum over with 

pairwise similarities with the product, i.e. 

𝑓(𝑆) = ∏𝑑𝑖𝑗
𝑖,𝑗∈𝑆
𝑖≠𝑗

. 

While at first glance this would seem to add significant computational complexity, by 

considering 

log(𝑓(𝑆)) = ∑ log
𝑖,𝑗∈𝑆
𝑖≠𝑗

(𝑑𝑖𝑗), 

we can preserve the same computational performance. By picking a sufficiently large constant 𝐶 

and considering a weighted graph with edge weights 𝑤𝑖𝑗 = 𝐶 + log(𝑑𝑖𝑗), this can be viewed as 

equivalent to identify the clique of size 𝑘 with the maximum total edge weight, known as the 

MaximumeEdgeWeightedClique [1]  or the MaximumDiversity [2]  problem. Unfortunately, 



this problem is, in general, 𝒩𝒫-complete and hence computationally intractable [3]. As such, a 

variety of approaches have been to developed to solve instances of these problems, including 

integer and mixed-integer programming formulations [6,7], facet-generation algorithms [4], and 

various heuristics [1,2,5]. 

Despite the extensive work in this problem, we are unaware of any approaches which have 

provided provable performances guarantees. In this Supplementary Information, we show that 

if the dissimilarity is measured as the product of Euclidean distances, then there are at least some 

performance guarantees for the greedy heuristic. As the RMSE is an Euclidean distance up to a 

multiplicative factor, this is directly applicable to our approach of identifying dissimilar 

conformers detailed above. 

1. Approximating Triangles  

Although determining the maximum dissimilarity of a collection of objects is in general quite 

challenging, the addition of metric space constraints has the potential to provide a means of 

significantly reducing the computational challenges in the problem. In particular, the 

underlying metric space imposes significant constraints on the configurations of the points. In 

order to illustrate this, in this section we delve in to the problem of identifying the maximum 

dissimilarity triangle for a collection of points in an arbitrary Euclidean space. 

Before proceeding further it is helpful to consider some simplifying assumptions for the triangle 

case. The first, and the most obvious, is that the ratio between the dissimilarity of a point set and 

the greedy approximation is invariant under rotations, translations, and scaling of the ambient 

space. In particular, we can assume the largest distance in the point set of interest is 1 and it occurs 

between a point at the origin and a point aligned with the unit basis vector 𝑒1. Thus the question 

of approximation ratio can be reduced to considering points in the intersection of the spheres of 

radius of 1 surrounding the origin and 𝑒1, that is, points in 𝐵(0⃗ , 1) ∩ 𝐵(𝑒1, 1). 

This space can be further reduced by assuming a particular value for the greedy solution. In 

particular, if the greedy heuristic results in a triangle with dissimilarity of 𝑠, then we can further 

restrict our attention the points 𝑥  such that dist(𝑥 , 0⃗ )dist(𝑥 , 𝑒1) ≤ 𝑠 . This leads to the final 

reduction, we may restrict our attention to the geometry of 3-space when determining the 

approximation ratio of the greedy algorithm. Specifically, since the worst-case triangle lies in a 2-

dimensional subspace and the line between 0⃗  and 𝑒1 defines a 1-dimensional space, it is sufficient 

to consider examples in 3-space. To that end, for any 𝑠 ∈ (0,1] we define 

𝑆(𝑠) = {(𝑥, 𝑦, 𝑧): 𝑥2 + 𝑦2 + 𝑧2 ≤ 1, (1 − 𝑥)2 + 𝑦2 + 𝑧2 ≤ 1, (𝑥2 + 𝑦2 + 𝑧2)((1 − 𝑥)2 + 𝑦2 + 𝑧2) ≤ 𝑠2}. 

The approximation ratio of the greedy heuristic for the triangle is then given by max𝑠∈(0,1]
𝑓(𝑠)

𝑠
, 

where 𝑓(𝑠) is the maximum dissimilarity of a triangle in 𝑆(𝑠) where every edge length is at 

most 1. It is worth noting that by assumption 𝑠 ≤ 𝑓(𝑠) ≤ 1, with 𝑓(𝑠) = 1 if and only if there is 

an equilateral triangle of side length 1 in 𝑆(𝑠). 



Before turning to our results, it is helpful to explore the geometry of 𝑆(𝑠). In particular, letting 

𝑟2 = 𝑦2 + 𝑧2 in the definition of 𝑆(𝑠), it is obvious that the boundary of 𝑆(𝑠) is formed by rotating 

the function 𝑟(𝑥) about the 𝑥-axis where 

𝑟2(𝑥) = min

{
 

 
1 − 𝑥2, 1 − (1 − 𝑥)2, max {0,−

1

4
− (𝑥 −

1

2
)
2

+√𝑠2 + (𝑥 −
1

2
)
2

}

}
 

 
. 

In Fig. S1, we provide a depiction of 𝑟(𝑥) for various choices of 𝑠 to illustrate the geometry of 

the region 𝑆(𝑠). We note that if 𝑠 <
1

4
, the region 𝑆(𝑠) is disconnected and the 𝑥 coordinates are 

restricted to lie in the region [0,
1−√1−4𝑠

2
] ∪ [

1+√1−4𝑠

2
, 1]. 

 

Figure. S1 Illustration of the boundary of 𝑺(𝒔) for various values of 𝒔. The black lines correspond to the restriction that the 

points must be at most distance 1 from (0,0,0) and (1,0,0). The colored lines correspond to the restriction on the point set imposed 

by the greedy heuristic identifying a triangle with dissimilarity 𝑠. 

Looking at Fig. S1 it is unsurprising that if 𝑠 is sufficiently larger, then 𝑆(𝑠) contains three points 

that form an equilateral triangle of side-length 1. In fact, the following result shows that we only 

need 𝑠 to be slightly larger than 
1

2
. 

Proof. We first consider the case where the region 𝑆(𝑠) is connected, i.e. 𝑠 ≥
1

4
. To this end, we 

examine family of equilateral triangles defined by 𝜖 ∈ [0,
1

2
] and 𝑦, 𝑧 ≥ 0, 



𝑝1 = (
1

2
,√𝑠 −

1

4
, 0)

𝑝2 = (
1

2
− 𝜖,−𝑦, 𝑧)

𝑝3 = (
1

2
+ 𝜖,−𝑦,−𝑧)

 

We first note 𝑝1 is well defined if 𝑠 ≥
1

4
, and that dist((0,0,0), 𝑝1)

2
= dist((1,0,0), 𝑝1)

2
= 𝑠, so 𝑝1 ∈ 𝑆. 

Since (𝑝1, 𝑝2, 𝑝3) defines an equilateral triangle with side length 1, we have that 

1 = 4𝜖2 + 4𝑧2

1 = 𝜖2 + (√𝑠 −
1

4
+ 𝑦)

2

+ 𝑧2.
 

Thus 𝑧 = √
1

4
− 𝜖2 and 𝑦 =

√3

2
−√𝑠 −

1

4
. As 𝜖 ∈ [0,

1

2
] and 𝑠 ≥

1

4
, both 𝑦 and 𝑧 are well defined. Thus it 

suffices to show that 𝑝2, 𝑝3 ∈ 𝑆. 

As both 𝑆 and {𝑝2, 𝑝3} are symmetric in the plane defined by 𝑥 =
1

2
, in order to show that 𝑝2, 𝑝3 ∈

𝑆 it suffices to show that 

(
1

2
+ 𝜖)

2

+ 𝑦2 + 𝑧2 ≤ 1  and

((
1

2
+ 𝜖)

2

+ 𝑦2 + 𝑧2)((
1

2
− 𝜖)

2

+ 𝑦2 + 𝑧2) ≤ 𝑠2
 

Rearranging, yields that 

𝑦2 + 𝑧2 ≤ min {
3

4
− 𝜖 − 𝜖2, −

1

4
− 𝜖2 +√𝜖2 + 𝑠2} 

As 𝑧2 =
1

4
− 𝜖2, this is equivalent to 

𝑦2 ≤ min {
1

2
− 𝜖,−

1

2
+ √𝜖2 + 𝑠2}. 

Thus 𝑆 contains an equilateral triangle for a given 𝑠 if there exists an 𝜖 ∈ [0,
1

2
] such that 

1

2
+ 𝑠 − √3𝑠 −

3

4
≤ min {

1

2
− 𝜖,−

1

2
+ √𝑠2 + 𝜖2}. 

Considering only the equation 

1

2
+ 𝑠 − √3𝑠 −

3

4
≤
1

2
− 𝜖 



we see that 𝜖 ≤ √3𝑠 −
3

4
− 𝑠. Note that √3𝑠 −

3

4
− 𝑠 ≤ 0 for 𝑠 ≤

3−√6

2
 and increases monotonically up 

to 
1

2
 over the interval [

3−√6

2
, 1]. Thus for 𝑠 ≤

3−√6

2
, there is no valid 𝜖. We thus restrict ourselves to 

the regime where 𝑠 ≥
3−√6

2
 and consider the inequality 

1

2
+ 𝑠 − √3𝑠 −

3

4
≤ −

1

2
+ √𝑠2 + 𝜖2. 

As this inequality is strictly weaker for larger 𝜖, we may assume that 𝜖 takes on the largest possible 

value, that is 𝜖 = √3𝑠 −
3

4
− 𝑠. The desired inequality is then 

(1− (√3𝑠 −
3

4
− 𝑠))

2

≤ 𝑠2 + (√3𝑠 −
3

4
− 𝑠)

2

. 

Rearranging, this is equivalent to 

1 + 2𝑠 − 𝑠2 ≤ 2√3𝑠 −
3

4
. 

As both sides are positive for 
1

4
≤ 𝑠 ≤ 1, this inequality holds whenever 

0 ≤ −4 + 8𝑠 − 2𝑠2 + 4𝑠3 − 𝑠4. 

This occurs on the entirety of the range 

2 + √6 − √2 + 4√6

2
≤ 𝑠 ≤ 1, 

as desired. ◻ 

From Lemma1 we know that if the dissimilarity of the triangle is sufficiently large with respect to 

the maximum distance, then the dissimilarity of the triangle discovered by the greedy algorithm 

is off by at most a factor of 22 from the triangle with maximum dissimilarity. 

In order to address the case where the triangle discovered by the greedy algorithm is "small", we 

relax the problem slightly and consider the problem of the finding the triangle with maximum 

dissimilarity in 𝑆(𝑠), that is, we ignore the condition that all three edges of the triangle must have 

distance at most 1. In this relaxed problem, it is easy to see that all three points lie on the surface 

of 𝑆(𝑠), that is, if (𝑥, 𝑦, 𝑧) is a point in the optimal triangle then 𝑦2 + 𝑧2 = 𝑟(𝑥)2. Now, by using 

the rotational symmetry of 𝑆(𝑠) and the symmetry about the plane 𝑥 =
1

2
, we may further assume 

that one of the point of the triangle has the form (𝑥1, 𝑟(𝑥1), 0) with 𝑥1 ≤
1

2
 and that the other two 

 
1 Actually, Lemma 1 gives an approximation ration of 

2

2+√6−√2+4√6
∼ 1.9711 for these large triangles. 

 



points (𝑥2, 𝑦2, 𝑧2) and (𝑥3, 𝑦3, 𝑧3) are such that 
1

2
≤ 𝑥2, 𝑥3. Further, examining the critical points of 

the gives that 𝑧2 and 𝑧3 have opposite signs. These reductions make brute force search for the 

optimal triangle practical. In Fig. S3 we see the resulting approximation ratio indicting that the 

greedy algorithm provides a rough factor 2 approximation to the maximum dissimilarity 

problem. 

 
Figure. S2 Plot of the ratio between 𝒔 and the triangle in 𝑺(𝒔) with the largest dissimilarity. 

2. Typical Approximation Ratio 

As we have seen above, the geometric constraints imposed by the solution to the greedily 

discovered 𝑘-clique can effectively constrain the maximum value of the dissimilarity of a point 

set. Unfortunately, as the geometric constraints depend on the entire history of the greedy 

approximation, there is little hope of easily extracting a bound on the approximation ratio based 

on these constraints. Thus, we instead wish to empirically estimate the maximum and average 

ratio between the greedy and exact solutions to the maximum dissimilarity problem for small 𝑘. 

To this end, we sample 200 points from 7-dimensional sphere of radius 
1

2
 and determine the 

maximum dissimilarity 𝑘-clique for 𝑘 = 2, 3, 4, 5, 6 both exactly and using the greedy heuristic. 

We note that even for this relatively small experiment, the naïve presents significant 

computational challenges with the need to consider over 8.5 × 1010 subsets of points per 

experiment. However, we have found that following simple observation allows for a significant 

trimming of the search tree. 



Lemma 2.  Let 𝑋 be a collection of points and let ℓ < 𝑘. Suppose that {𝑥1, … , 𝑥𝑘} ⊆ 𝑋 is a 𝑘-clique having 

dissimilarity at least 𝑡
(𝑘2), then the ℓ-clique with maximum dissimilarity in 𝑋 has dissimilarity at least 𝑡

(ℓ2). 

Proof. Suppose not. Then, for for all (𝑘
ℓ
) ℓ-cliques contained in {𝑥1, … , 𝑥𝑘}, the dissimilarity is 

strictly smaller than 𝑡
(ℓ2). Now note that the the product of the dissimilarity of all the ℓ-cliques is 

at strictly 𝑡
(ℓ2)(

𝑘
ℓ) . Now each distance occurs exactly (𝑘−2

ℓ−2
) times in this product, which gives 

dissimilarity of the 𝑘-clique is strictly smaller than 

𝑡

(ℓ2)(
𝑘
ℓ)

(𝑘−2ℓ−2) = 𝑡
ℓ!𝑘!(ℓ−2)!2!

(ℓ−2)!2!ℓ!(𝑘−ℓ)!(𝑘−2)! = 𝑡
𝑘!

(𝑘−2)!2! = 𝑡
(𝑘2), 

a contradiction. ◻ 

As a consequence, by considering the greedy approximation (and the greedy extension of partial 

solutions) to finding the maximum dissimilarity 𝑘-clique, we can restrict our attention to building 

up from ℓ-clique which have large dissimilarity. Using this observation we are able to repeat the 

experiment 1000 times and estimate the maximum and typical approximation ratio for the greedy 

heuristic, depicted in Fig. S3. Interestingly, even though we know that the worst case 

approximation ratio for triangles is 2, this is unlikely to be achieved with typical approximation 

ratios closer to 1.1. Unsurprisingly, the quality of the greedy approximation decreases with the 

size of the clique, but for the typical situation still remains quite good. 



 

Figure S3 Approximation ratio of the greedy heuristic for 1000 trials of a set of 200 points distributed uniformly 

over the 𝟕-dimensional sphere of radius 
𝟏

𝟐
. 
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