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Abstract: Genome-scale metabolic models (GEMs) have found numerous applications in different
domains, ranging from biotechnology to systems medicine. Herein, we overview the most popular
algorithms for the automated reconstruction of context-specific GEMs using high-throughput experi-
mental data. Moreover, we describe different datasets applied in the process, and protocols that can
be used to further automate the model reconstruction and validation. Finally, we describe recent
COVID-19 applications of context-specific GEMs, focusing on the analysis of metabolic implications,
identification of biomarkers and potential drug targets.
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1. Introduction

Genome-scale metabolic models (GEMs) have found numerous applications in dif-
ferent domains, ranging from biotechnology to systems medicine [1]. One of their main
benefits is that they can provide genotype-to-phenotype projections, such as growth rate
and nutrient uptake predictions, and predictions of metabolic flux values. The latter can
be used to assess metabolic reaction activities in different contexts [2,3]. A GEM describes
a metabolic network with a stoichiometric matrix [4] and each reaction is constrained by
its minimal and maximal flux bounds. Moreover, a GEM usually encodes the information
on gene–protein reaction (GPR) associations, which can be applied in the adaptation of a
GEM to a specific context described with high-throughput data, such as transcriptomics or
proteomics data. Such integration can be performed with the application of context-specific
model reconstruction algorithms, which are used to adapt the flux bounds of a reference
model to a given context described with (at least one) high-throughput dataset. This allows
one to at least partially automatise the reconstruction of tissue-specific, cell type-specific,
disease-specific, or even personalised GEMs. Further investigation of context-specific GEMs
includes comparative analyses between different conditions (e.g., analysis of metabolic
reprogramming in cancer cells [5]), and identification of biomarkers and therapeutic targets
in different diseases or disorders [6].

Herein, we overview the most popular algorithms for the automated reconstruction of
context-specific GEMs using high-throughput experimental data. We also briefly review
the different datasets and databases applied in the process. Moreover, we describe different
protocols that can be used to further automatise the model reconstruction and its validation.
Finally, we describe the state-of-the-art applications of context-specific GEMs on the analysis
of metabolic implications of COVID-19, and identification of COVID-19 biomarkers and
potential drug targets.
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2. Genome-Scale Metabolic Modelling

Genome-scale metabolic models (GEMs) aim to systematically encode our knowledge
of the metabolism of an organism. Reference GEMs describing generic models of a cell
are constructed with a combination of automated approaches and manual curation. Such
reconstructions are based on genome annotation data and a myriad of additional data
sources, including biochemical databases, organism-specific databases, experimental data,
and literature data [7]. GEM reconstruction, its refinement, adaptation, and analysis are
commonly performed with the aid of model building tools [8] and reconstruction and
analysis frameworks, such as COBRA [9], COBRApy [10], RAVEN [11] or PSAMM [12].
These frameworks provide implementation of a vast scope of methods with different goals,
including the reconstruction of a draft metabolic model [13], visualisation of metabolic
maps (e.g., see Paint4Net [14]), identification of blocked reactions and gap filling [15] and
analysis of reconstructed GEMs, such as optimal steady-state flux assessment [16] or flux
sampling [17]. GEMs have been reconstructed for more than 1,000 different organisms [18].
Moreover, advances in our knowledge guide iterative refinements of GEMs. For example,
Recon presents a generic human GEM that has gone through several iterations from Recon
1 [19] to Recon 2.2 [20] and to Recond3D [21], and was later extended and integrated with
the HMR2.0 database [22] to obtain the Human–GEM model [23].

In the context of biomedicine, GEM applications range from the identification of
disease biomarkers to the prediction of drug targets [24], drug repurposing [25] and cancer
research [26]. GEMs can also be applied in a vast array of bioengineering applications [18].
These range from predicting cellular phenotypes (e.g., in the context of predicting maximal
growth in different conditions and identification of an optimal medium [27]) to guiding
metabolic engineering (e.g., in the context of optimal strain design [28]) and identification
of a minimal gene set [29].

Most computational approaches aimed at the analysis of GEMs rely on constraint-
based modelling and are based on flux balance analysis (FBA) [16] or its derivations. FBA
aims to find the metabolic flux values that are consistent with a set of given constraints
(minimal and maximal flux bounds) and which bring the system to a steady state. Moreover,
FBA requires a specification of required metabolic functionality (RMF) that is used to define
an objective function for optimisation. The optimisation can then be formulated as a linear
programming (LP) problem. However, since the constraints in this formulation are usually
mathematically underdetermined [30], several nonunique optimal solutions exist. To assess
metabolic flux ranges through reactions that bring the system to a near optimal, or optimal,
steady state, flux variability (FVA) can be used [31]. However, the latter still requires
the specification of a RMF, which is hard to identify in a general context and may yield
biased results. Moreover, it has been shown that the definition of the RMF strongly affects
the precision of model predictions [32]. An unbiased alternative to methods relying on
RMF-based optimisation is to use flux sampling of the feasible solution space without a
specific optimisation criterion [17].

Reconstructed GEMs, as described above, present the metabolism of a general cell
in an arbitrary context and, thus, compose generic models. Since only specific metabolic
reactions are, in fact, active in a specific cell [33], these models need to be further tailored
to a specific context in which only a subset of enzymes is active [34]. This process can be
carried out using different reconstruction algorithms, in combination with high-throughput
datasets and available biological knowledge, to obtain context-specific models (see Figure 1
and Tables 1 and 2). The latter present a subset of a generic GEM and can be used to
describe the metabolism of a specific cell in a specific context [35]. Finally, such a model
can describe a cell-, a tissue-, a disease-, or even an individual-specific model.
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Figure 1. Reconstruction and analysis of context-specific GEMs. Generic models are tailored to a
specific context with the integration of (high-throughput) experimental and literature data using
a combination of automated algorithms and manual curation. The reconstruction process can
be additionally enhanced with the application of reconstruction and validation protocols. The
reconstructed models can be used to conduct different analyses, ranging from the prediction of
phenotypes and context-specific reprogramming of a metabolic network to the identification of drug
targets and disease biomarkers.

3. Algorithms and Tools for Reconstruction of Context-Specific Models

Most algorithms for the reconstruction of context-specific GEMs rely on transcrip-
tomics data to identify active and inactive genes and to adjust metabolic reaction activities
in a given context (see Table 2). In this case, each transcript and its corresponding pro-
tein/enzyme needs to be associated with specific reactions. One of the first attempts to
correlate gene expression data with metabolic flux constraints was presented by Akesson
et al. [36]. This was performed on a gene-by-gene basis, where fluxes through the metabolic
reactions, with experimental evidence suggesting the absence of their enzymes, were
constrained to 0.

Gene–protein reaction (GPR) rules present an association between a specific gene and
a metabolic reaction in a model. These rules can describe different types of gene–reaction
linkage. For example, different genes might encode different subunits of the same enzyme.
In this case, a reaction catalysed by this enzyme can be active only when all of the respective
genes are expressed (AND rule). Different genes might also express isoforms of the same
enzyme. In this case, a reaction catalysed by this enzyme can be active when at least one
of the respective genes is expressed (OR rule) [37]. A large number of recent algorithmic
approaches for the reconstruction of context-specific GEMs rely on GPR rules to project
the transcriptomics data to reaction activities (see more detailed descriptions of specific
algorithms below). However, as illustrated above, GPR rules are encoded in a model as
Boolean functions. On the other hand, gene expression data are usually described with non-
binary values. In this case, logical OR can be interpreted as the maximum, and logical AND
as the minimum, between two or more values (Min/Max GPR mapping) [38]. Alternatively,
AND can also be interpreted as the geometric mean, and OR as the sum of two or more
values [39].

Certain algorithms only require a definition of a core set of reactions, which are active
in a given context. A list of such reactions can be compiled manually (e.g., see [40]) or
automatically using transcriptomics data (e.g., see [41,42]). Some reconstruction algorithms
allow the integration of other kinds of data, for example metabolomics or proteomics data
(see Table 2). A more detailed process of such integration is described, together with a
specific reconstruction algorithm, in the continuation of this section.

We employ and extend the classification of methods as introduced in [43]. Namely,
the majority of the methods can be classified into three main families, i.e., GIMME-, iMAT-,
and MBA-like families. We also introduce a MADE-like family, which employs differential
expression data in the reconstruction process (see Table 1 and Figure 2). An overview of
the reviewed algorithms is summarised in Table 2.
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Table 1. An overview of different families of algorithms for context-specific model reconstruction.
Abbreviations: RMF—required metabolic function; MILP–mixed integer linear programming.

Family Description

GIMME-like Maximising the compliance with the experimental
evidence while pertaining to a given RMF.

iMAT-like
Does not specify a RMF, matching of reactions states
(active or inactive) with expression profiles (present

or absent), employs MILP-based optimisation.

MBA-like
Defining core reactions and removing other reactions

while pertaining to model consistency, support
integration of different data types.

MADE-like Employs differential gene expression data to identify
flux differences between two or more conditions.

Table 2. An overview of algorithms for automated reconstruction of context-specific models. Abbre-
viations: LP—linear programming; RMF—required metabolic function.

Algorithm Reference Family Input Data Comments

GIMME Becker et al., 2008 [38] GIMME-like transcriptomics
Inactivate reactions below

a threshold while
maintaining RMF.

GIMMEp Bordbar et al., 2012 [44] GIMME-like transcriptomics,
proteomics

RMFs based on
proteomics data.

GIM3E Schmidt et al., 2013 [45] GIMME-like transcriptomics,
metabolomics No thresholding.

RIPTiDe Jenior et al., 2020 [46] GIMME-like transcriptomics
Minimises the weighted

flux values, no
thresholding.

iMAT Zur et al., 2010 [47] iMAT-like transcriptomics,
proteomics

Matches reaction activities
with expression profiles,

no RMF.

INIT Agren et al., 2012 [48] iMAT-like
transcriptomics,

proteomics, metabolomics
(qualitative)

Reaction weights based on
experimental evidence,

integration of
metabolomics data.

tINIT Agren et al., 2014 [49] iMAT-like

prior knowledge,
transcriptomics,

proteomics, metabolomics
(qualitative)

Based on a set of required
metabolic tasks.

Lee Lee et al., 2012 [50] iMAT-like transcriptomics Uses absolute expression
data (RNA-seq).

RegrEx Estevez et al., 2015 [51] iMAT-like transcriptomics
Uses absolute expression

data (RNA-seq) and
regularisation.

MBA Jerby et al., 2010 [52] MBA-like

prior knowledge,
transcriptomics,

proteomics, metabolomics,
fluxomics

Removes non-core
reactions and checks

model consistency for core
reactions.

mCADRE Wang et al., 2012 [53] MBA-like transcriptomics,
metabolomics

Different reaction scores to
determine core reactions.

FASTCORE Vlassis et al., 2014 [40] MBA-like a set of core reactions
Two LPs to find a minimal
set of non-core reactions to
activate all core reactions.

SWIFTCORE Tefagh and Boyd, 2020 [54] MBA-like a set of core reactions
Enhanced runtime and

network compactness in
comparison to
FASTCORE.

FASTCORMICS Pires Pacheco at al.,
2015 [41] MBA-like transcriptomics FASTCORE workflow for

microarray data.
rFASTCORMICS Pires Pacheco at al.,

2019 [42] MBA-like transcriptomics FASTCORE workflow for
RNA-seq data.

scFASTCORMICS Pires Pacheco at al.,
2022 [55] MBA-like transcriptomics FASTCORE workflow for

scRNA-seq data.

CORDA Schultz and Qutub,
2016 [34] MBA-like a set of core reactions

Does not require to
remove all non-core

reactions.

MADE Jensen and Papin,
2011 [56] MADE-like transcriptomics

Identifies reaction
activities in a sequence of

measurements.
RMetD2 Zhang et al., 2019 [57] MADE-like transcriptomics Sequentially pushes the

constraints.

∆FBA Ravi et al., 2021 [58] MADE-like transcriptomics
Finds a consistent and

minimal solution of flux
differences between the

conditions.
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Figure 2. Families of algorithms for automated reconstruction of context-specific models.

3.1. GIMME-like Family

The main goal of GIMME-like algorithms is to produce a model that is consistent
with the provided experimental data while having the capability to conduct a required
metabolic function (RMF). The latter is specified as an additional artificial reaction in the
model, usually corresponding to the biomass accumulation [59]. Most of the methods
belonging to the GIMME-like family perform reconstruction in the following way: (1)
maximisation of an RMF on the basis of FBA and with (2) minimisation of the penalty
function describing the inconsistency between the obtained reaction fluxes and the experi-
mental data while maintaining the flux through the RMF above a predefined fraction of
the flux calculated in step (1) [43]. GIMME (Gene Inactivation Moderated by Metabolism
and Expression) presents the oldest context-specific model reconstruction algorithm to
apply gene expression transcriptomics data in combination with the RMF to describe a
given context. It generates two irreversible reactions per reversible reaction and solves
a linear programming (LP) problem minimising the fluxes through the reactions with
corresponding expression levels below a threshold. Here, the penalty is proportional to
the difference from the threshold. Only reactions with negative evidence (low expression
values) are penalised, while reactions with missing data are omitted from the optimisation
process [38].

The extensions of GIMME include GIMMEp [44] and GIM3E [45]. GIMMEp allows
for the additional integration of proteomic data as an RMF [44]. A separate model is
constructed for each proteome-associated reaction objective using the original version of
the GIMME algorithm [38]. These models are then combined into a final GIMMEp model.
GIM3E is another GIMME-based extension that allows the integration of metabolomics
data [45]. The turnover metabolite is introduced for each reaction producing or consuming
metabolites present in the metabolomics dataset. A sink reaction is added for each turnover
metabolite and its lower flux bound is set to a small positive value. This ensures compliance
of the network with the metabolomics data, since all detected metabolites need to be used
by the network. Similar to the case of GIMME, transcriptomics data are applied to penalise
the obtained network. The penalty for a transcript-associated reaction is proportional to its
flux and the difference between the maximal gene intensity and the specific gene intensity.
The minimal total penalty through the network is then calculated and the optimisation
problem is constrained to a value proportional to the minimal total penalty. However, each
reversible reaction in a network needs to be converted to two irreversible reactions, and
only one of these can be active at the same time. The optimisation problem thus needs to
be converted to a mixed integer linear programming (MILP) problem, which increases the
computational complexity of the algorithm.
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RIPTiDe (Reaction Inclusion by Parsimony and Transcript Distribution) [46] is based on
quantitative transcriptomic data and aims to find the most cost-effective use of metabolism
in a way similar to RegrEx, which can be classified into the iMAT-like family (see Section 3.2
and Reference [51]). However, RIPTiDE requires the specification of a RMF and is based on
a formulation similar to parsimonious enzyme usage FBA (pFBA) [60] to minimise overall
flux values through the network [46]. RIPTiDe additionally weights each reaction on the
basis of quantitative expression data. Firstly, it maximises the flux through the RMF to eval-
uate the optimal solution of the generic model, and then constrains the next optimisation
steps to a near optimal solution value in a similar manner as GIMME [38]. Based on the
gene expression profiles, a linear coefficient (weight) from the interval (0, 1] is evaluated
for each reaction, whereas higher transcript abundances correspond to lower coefficient
values. The median coefficient value is assigned to reactions that are not described in the
experimental data. RIPTiDE then minimises the weighted sum of flux values pertaining to
at least the minimal required flux through the RMF. Finally, reactions and pathways with
zero flux values are removed from the network. RIPTiDE can also be used to analyse the
extracted network by observing the inverse linear coefficients of each reaction, and by flux
sampling on the constrained and reduced model [46].

GIMME-like algorithms have been widely applied in the past. For example, GIMME
and its extensions have been used for the reconstruction of context-specific Escherichia
coli and human cell models [38], for the extraction of cancer-specific GEMs [61], in the
analysis of metabolic immunomodulators of macrophage activation [44], and in the analysis
of Salmonella Typhimurium metabolism in different media [45]. Applications of RIPTiDE
include the prediction of metabolic patterns of Escherichia coli [46] and the reconstruction of
Clostridioides difficile cells in infection and in in vitro settings [62].

One of the main limitations of the GIMME-like methods is that they focus on the
optimisation of RMF, which might lead to inconsistencies between reaction fluxes and
experimental data [63]. Another drawback of the GIMME-like methods is that they require
the definition of the RMF, which is hard to define in a general setting [64,65] as the general
applicability of biomass accumulation is questionable [50,66]. If the RMF is unknown
for a given context, alternative reconstruction algorithms should be employed. These are
described in Sections 3.2 and 3.3.

3.2. iMAT-like Family

In contrast to the GIMME-like family, the family derived from iMAT does not require
an exact definition of the RMF. The reconstructed context-specific network presents a
solution of MILP classifying reactions in a reference model as active or inactive to comply
with the corresponding states of experimental data [43]. This means that quantitative
experimental data need to be classified into two or more groups describing different states
of data (e.g., expressed and not expressed in the context of transcriptomics data).

The integrative Metabolic Analysis Tool (iMAT) [47] presents an implementation
of the method previously proposed by Shlomi et al. [67]. It allows the integration of
transcriptomic and proteomic data in which each gene or protein is described with one
of three states, namely low, moderate or high expression. The iMAT also performs a
discretisation of these data, if necessary, and predicts the flux activity state of each reaction
(active or inactive), based on the maximisation of matches between the reaction state and
the corresponding transcript/protein state obtained from experimental data. This can be
performed by solving an MILP problem that has many alternative solutions. A variant of
flux variability analysis (FVA) [31] is employed to account for these solutions. For each
reaction, maximal attainable similarity with the expression data is calculated for a condition
in which the reaction is always active and for a condition in which the reaction is always
inactive. The reaction is deemed active if its inclusion increases the similarity with the
experimental data and is considered inactive if its inclusion decreases the similarity with
the experimental data [67].
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INIT (Integrative Network Inference for Tissues) was initially developed to employ
protein abundance data from the Human Protein Atlas as the main source of data [48].
However, gene expression data could also be integrated when proteomic evidence is not
available. Experimental data are used to evaluate the weight of each reaction, where the
weights represent arbitrary (discrete) functions of experimental evidence. Each reaction
can have a positive (presence) or a negative weight (absence). During MILP-based optimi-
sation, reactions are included/excluded from the model to maximise the sum of weights
of included reactions. Additionally, INIT does not presume a steady state of the network,
since it imposes a positive net production of metabolites present in the experimental data.
Namely, the net production of metabolites with experimental evidence is forced to exceed a
given lower bound. Therefore, INIT allows for the qualitative integration of metabolomics
data [48].

Task-driven INIT (tINIT) presents an INIT extension that focuses on functional context-
specific models, since the models obtained need to perform a given set of metabolic
tasks [49]. These might include the production or consumption of a certain metabolite or
the activation of a pathway known to be active in a given context. Furthermore, tINIT
additionally constrains the reversible reactions so they cannot have flux in both directions
simultaneously. The user can specify whether the net production of metabolites is allowed
or if the steady-state is imposed. Recently, another variation, i.e., rank-based tINIT, which
employs a rank-based weight function, was proposed [61,68].

The approach presented by Lee et al. maximises the correlation between measured
gene expression data and predicted reaction fluxes within the model [50]. The approach
is similar to iMAT; however, it relies on absolute (continuous) RNA-seq gene expression
data. In contrast to other iMAT-like approaches, transcriptomics data are not discretised,
and the minimisation of the distance between absolute expression values and reaction
fluxes is used during the optimisation. However, the optimisation function is additionally
linearised to convert the problem into a computationally more feasible alternative, i.e., a
convex programming problem. Model reconstruction is performed through an iterative
process involving the following steps: (1) maximise the correlations between irreversible
reactions and experimental data using the above-described optimisation function, and (2)
use FVA to identify the reversible reactions that reduce the correlation values found in
step (1). In step (2) the set of irreversible reactions is increased and steps (1) and (2) are
repeated until no additional irreversible reactions are found, or until a predefined number
of iterations is performed.

RegrEx extends the approach presented by Lee et al. with the inclusion of regularisa-
tion into the optimisation function to enhance the exclusion of reactions that are irrelevant
to a context [51]. Moreover, in comparison to Lee’s approach, RegrEx does not require
iterative removal of reversible reactions and is unbiased regarding the order in which
reversible reactions are removed. Since the Euclidean distance between the experimental
evidence and flux values is used during the optimisation, the latter presents a quadratic pro-
gramme. Finally, RegrEx formulates the optimisation problem as a mixed integer quadratic
programme (MIQP) to constrain the activity of a reversible reaction to a single direction
only [51].

Applications of iMAT-like methods include the reconstruction of human cell type-
specific and cancer-specific GEMS [22,48,61], identification of anticancer drugs [49], pre-
dicting of human tissue-specific metabolism [67], and the reconstruction of cell specific
models of Arabidopsis thaliana [69]. The main limitations of this family derive from the
lack of an objective function, which might result in the reconstruction of a nonfunctional
model [63]. However, this problem might be addressed with the employment of a set of
required metabolic tasks, as introduced in tINIT [49].

3.3. MBA-like Family

The MBA-like family is based on the identification of core reactions, which is followed
by the removal of the reactions that are not in a core set [43]. Similar to the iMAT-like
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family, these algorithms do not presume a specific metabolic objective, which makes them
applicable to cases wherein the latter is unknown. The first member of the MBA-like family,
called the Model Building Algorithm (MBA) [52], employs a set of core reactions that can
be identified using multiple data sources and curated biochemical knowledge. Moreover,
these reactions need to be further separated into two groups, namely, high- and moderate-
likelihood reactions. The goal of the algorithm is to obtain a reconstruction including
all high-likelihood reactions, a maximal number of moderate-likelihood reactions and a
minimal set of remaining reactions required to fill the gaps in the reconstructed model.
The algorithm iteratively prunes randomly selected non-high-likelihood reactions while
maintaining the model’s consistency. Since the sequential order of reaction removal affects
the obtained results, the procedure is repeated several times to yield a set of candidate
models. The final model is obtained on the basis of consensus among these candidate
models. Checking of the model consistency might be performed with the application of
FVA [31] to assess if the removal of a reaction causes gaps (blocked reaction) in the model.
A computationally more feasible alternative identifies a list of reactions that cannot be
activated, due to the removal of a reaction by repeatedly conducting the following steps:
(1) maximise the fluxes through the reactions in the list; (2) minimise the fluxes through the
reactions in the list; (3) minimise/maximise the flux through each reaction in the list. When
a non-zero flux is found for a reaction in any of these steps, the reaction is removed from
the list.

The mCADRE (metabolic Context-specificity Assessed by Deterministic Reaction
Evaluation) applies different types of reaction scores, based on gene expression data and
network topology. These scores are applied to identify the set of core reactions, as well as to
define the order in which non-core reactions are removed [53]. Reactions with expression
scores above a threshold are selected as core reactions. Non-core reactions are ranked
according to their connectivity- and confidence-level scores. In a similar way to MBA,
the consistency of the model is evaluated after a selected reaction is removed. However,
mCADRE allows the user to also define a set of key metabolites that appear in a given
context. Furthermore, mCADRE does not require all core reactions to be kept in the final
model. Namely, a core reaction can be removed if it does not prevent the production of
a key metabolite and if this does not block other core reactions. Non-core reactions can,
thus, be omitted in the case of strong experimental evidence of their absence in the context
(negative set of reactions) even if they block some of the core reactions. However, the
ratio between the number of blocked core reactions and the number of blocked non-core
reactions needs to be below a predefined threshold. Consistency checking is performed in
a similar way as for MBA, but with the application of the FastFVA algorithm [70].

FASTCORE aims to find a minimal consistent network in which all core reactions,
supported by experimental evidence, are active [40]. It identifies a minimal set of sparse
modes (i.e., feasible flux vectors) in which all core reactions are active. This is achieved with
an iterative application of two linear programmes to maximise the number of reactions with
non-zero flux values in the core set and to minimise this number outside the core set [40].
The algorithm exhibits decreased computing time in comparison to mCADRE and MBA,
due to the application of the fast consistency checking (FASTCC) algorithm. The latter
aims to maximise the function that pushes all the fluxes in the network away from zero. In
this way, FASTCC can detect all blocked reactions in a single LP iteration. However, when
dealing with reversible reactions, additional LP iteration is required in which reversible
reactions are considered for negative flux. To avoid the manual compilation of different
datasets for the identification of core reactions, FASCTORE was recently extended to allow
direct integration of high-throughput transcriptomics data. While FASTCORMICS [41]
presents a pipeline for the direct integration of microarray data, rFASTCORMICS [42]
presents another FASCTORE adaptation for the direct integration of RNA-seq data (rFAST-
CORMICS), and scFASTCORMICS for the integration of single-cell RNA-seq (scRNA-seq)
data [55].
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SWIFTCORE tackles the reconstruction problem in a similar way as FASTCORE does
and even exceeds its performance in the context of reconstruction runtime and network
compactness [54]. The algorithm is also based on linear programming. However, increased
performance of SWIFTCORE can be attributed mainly to its handling of reversible reactions.
It does not determine the direction of a reversible reaction, but encourages one of the
possible directions in a soft manner. This approach neither requires a MILP formulation,
nor the solving of two LP problems for reversible reactions [54].

Pruning of all non-core reactions leads to a so-called parsimonious reconstruction
yielding a minimal model for a given context. However, such an approach might cause the
removal of fundamental reactions, for which experimental data are not available [34]. The
cost-optimization reaction dependency assessment (CORDA) algorithm aims to solve this
problem by loosening the constraint to remove all non-core reactions and, thus, obtain a
concise, but not minimal (and unrealistic), reconstruction. [34]. It is based on the assessment
of the dependency of reactions with strong experimental evidence on the reactions with
little or no experimental evidence. Reactions from the latter two groups are added to the
reconstruction if they are associated with a reaction from the first group. CORDA exhibits
fast execution times, since it only relies on FBA and solving LPs. Moreover, in contrast
to reaction-pruning algorithms, such as MBA and mCADRE, the model reconstruction is
independent of the ordering of reactions [34]. It also supports the integration of required
metabolic tasks, similar to the tINIT algorithm [49].

Selected applications of MBA-like methods include analysis of cell-type specific epi-
genetic control points of the macrophage metabolic network [41], analysis of metabolic
rewiring in different cancer cells [42], reconstruction of tissue-specific human models [34],
and reconstruction of head and neck squamous cells in healthy and cancer states [71].

One of the main limitations of MBA-like methods is that they require a set of core reac-
tions, which need to be compiled manually, while relying on the literature data, biochemical
databases, and experimental data. This problem can be at least partially avoided using the
FASTCORE extensions that allow direct integration of transcriptomics data [41,42,55].

3.4. MADE-like Family

The last group of reconstruction algorithms relies on differential expression data to
reconstruct genome-scale metabolic models that describe differences in metabolic fluxes be-
tween two contexts/conditions. MADE (Metabolic Adjustment by Differential Expression)
uses differential expression data between two or more conditions. For each of the genes
observed, these data describe a type of change between the conditions (decrease, increase,
or unchanged) and the significance of the change. MADE aims to find a sequence of binary
expression states that describe the binarised activity of the genes (i.e., on or off) that most
closely match the corresponding differences in expression levels, whereas the statistical
significance of these differences is used to create the most probable sequence. This sequence
is then used to reconstruct GEMs and obtain metabolic fluxes that describe a specific con-
dition, while maintaining the minimum flux value required through the RMF [56]. The
original implementation of MADE was extended further within the TIGER framework
(Toolbox for Integrating Genome-scale Metabolism, Expression, and Regulation) to allow
multilevel gene expression states and to allow comparison between arbitrary conditions in
a sequence [72].

Relative Metabolic Differences version 2 (RMetD2) presents a similar approach, focus-
ing on the integration of differential expression data that describe the difference between
two biological conditions [57]. RMetD2 pushes the flux constraints in the direction of exper-
imental evidence. This push is performed in several steps, which allows the evaluation of
the consistency of flux changes using standard measures, such as the Spearman correlation
between flux values. Contrary to MADE, RMetD2 can operate without the specification of
the RMF and can also incorporate additional constraints that describe the perturbed model.

A more recent approach, called ∆FBA, maximises consistency and minimises inconsis-
tency between flux changes and gene expression changes among two conditions [58]. A set
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of up- and down-regulated reactions is obtained from the differential expression data using
Min/Max GPR mapping. These are then integrated into a MILP optimisation in which flux
differences between the conditions are constrained to a steady state. Flux differences can be
additionally constrained on the basis of experimental data. MILP is then used to maximise
the consistency or reaction fluxes with gene expression changes. The algorithm additionally
aims to find a minimal solution with the minimisation of the L2 norm of flux differences
between the conditions. Similar to RMetD2, ∆FBA does not require the specification of
the RMF.

4. Data for Model Construction and Validation

As described in the preceding sections different types of high-throughput data can be
used in combination with context-specific model reconstruction algorithms (see Table 3),
these being transcriptome, proteome and metabolome data. The majority of reconstruction
algorithms use the gene or protein expression value, or the metabolite concentration, as in-
put data (see Section 3). Alternatively, algorithms including MADE-like family [56–58] and
METRADE [73,74] can use the differential gene or protein expression level as input data.

The datasets used in the reconstruction of GEMs can be found in open-access reposi-
tories. The open-access repositories impose community-developed reporting standards,
which include a set of minimum information data and meta-data being required and vali-
dated at the deposition of the data. This is true for the repositories at NCBI and EBI, which
govern the majority of repositories. The omics data not deposited in data repositories have
less meta-data associated with it and is available in a much less standardised form. How-
ever, even data in standardised repositories have a problem regarding missing information,
poor experimental design and mis-annotation of samples.

Table 3. The types of high-throughput data, their use and available repositories.

High-Throughput Data Input Data Algorithm Data Repositories

Transcriptome

Gene expression value
GIMME-like ArrayExpress

iMAT-like cBioPortal
MBA-like CCLE

PRIME EGA

Differential gene expression value

ENA
Expression Atlas

FANTOM5
MADE-like GEO
METRADE GTEx

HPA
SRA

TCGA

Proteome

Protein expression value
GIMME-like cBioPortal

iMAT-like CCLE
MBA-like Expression Atlas

Differential protein expression value
HPA
PDC

METRADE ProteomeXchange
TCGA

Metabolome Metabolite concentration
GIMME-like MetaboLights

iMAT-like Metabolomics workbench
MBA-like

The transcriptome encompasses all RNA molecules expressed by an organism. Tran-
scriptomics are methods used to analyse transcriptomes. There are two major methods,
DNA-microarrays and RNA sequencing by NGS (next-generation sequencing). Both tech-
nologies generate data describing gene expression value or differential gene expression
value for each gene. Such data is usually deposited in public repositories and is, therefore,
easily accessible. There are general repositories at NCBI (National Center for Biotechnology
Information) and EBI (European Bioinformatics Institute), where researchers can upload
any transcriptomic data from humans and plants to bacteria. COVID-19-related transcrip-
tomic datasets can be retrieved from these repositories, namely, GEO (Genome Expression
Omnibus) [75,76] (https://www.ncbi.nlm.nih.gov/gds, accessed on 1 November 2022),

https://www.ncbi.nlm.nih.gov/gds
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Array Express [77] (https://www.ebi.ac.uk/arrayexpress, accessed on 1 November 2022),
SRA (Sequence Read Archive) (https://www.ncbi.nlm.nih.gov/sra, accessed on 1 Novem-
ber 2022), Expression Atlas [78] (https://www.ebi.ac.uk/gxa/, accessed on 1 November
2022), and ENA (European Nucleotide Archive) (https://www.ebi.ac.uk/ena, accessed on
1 November 2022).

There are many dedicated public data repositories available, which collect other
data besides that of transcriptomes and enable a comprehensive synthesis of information.
The Genotype-Tissue Expression (GTEx) database (https://gtexportal.org, accessed on
1 November 2022) is a resource dedicated to the study of tissue-specific gene expression
and regulation in non-diseased human tissue and single cells. The European Genome–
Phenome Archive (EGA) [79] (https://ega-archive.org/, accessed on 1 November 2022) is
an archive of genomic, transcriptomic, phenotypic and clinical data from medical research
projects. FANTOM5 (Functional Annotation of the Mammalian Genome 5) is another
resource with transcriptomic data, which also includes non-coding RNA, in combination
with information about the regulatory elements in mammalian cells [80] (https://fantom.
gsc.riken.jp/, accessed on 1 November 2022).

Many repositories are disease-oriented, collecting and combining not only tran-
scriptomic data, but also proteomic data. Many of these are dedicated to cancer. The
main one is The Cancer Genome Atlas (TCGA) [81]. This is a repository for genomic,
epigenomic, transcriptomic, and proteomic data from over 30 different cancers (https:
//www.cancer.gov/tcga, accessed on 1 November 2022). The omics data is complemented
with clinical and imaging data, enabling a classification of samples in analyses. The cBio
Cancer Genomics Portal is also dedicated to integrating multidimensional cancer-related
omics datasets [82] (https://www.cbioportal.org/, accessed on 1 November 2022). The
Cancer Cell Line Encyclopedia (CCLE) is a repository of transcriptomic and proteomic
datasets from cancer cell lines [83] (https://sites.broadinstitute.org/ccle/, accessed on
1 November 2022).

The proteome encompasses all the proteins expressed by an organism. Proteomics are
methods by which we analyse the proteome, these being two-dimensional gel electrophoresis,
different types of protein-microarrays and mass spectrometry. Using proteomic methods,
we can measure protein gene expression level or differential protein expression. The Pro-
teomeXchange is an international consortium dedicated to the standardised archiving and
dissemination of mass spectrometry-based proteomic datasets and tools for their visualisation
and analyses [84] (http://www.proteomexchange.org/, accessed on 1 November 2022). The
Human Protein Atlas (HPA) includes data on gene and protein expression collected from
different omics experiments [33] (https://www.proteinatlas.org/, accessed on 1 November
2022). The National Cancer Institute’s Proteomic Data Commons (PDC) is a proteomics
repository dedicated to cancer-related data and enables integration with genomic and medical
image datasets (https://pdc.cancer.gov/pdc/, accessed on 1 November 2022).

The metabolome represents all metabolites that are present in an organism. Metabolomic
methods are based on the chromatographic separation of metabolites, coupled with mass-
spectrometry, which enables the identification and quantification of the metabolome.
Currently, there are a few metabolomic repositories available, such as the Metabolomics
Workbench (https://www.metabolomicsworkbench.org/, accessed on 1 November 2022)
and the MetaboLights [85] (https://www.ebi.ac.uk/metabolights/studies, accessed on 1
November 2022).

5. Reconstruction and Validation Protocols

Although specific reconstruction algorithms aim towards full automation (e.g., see
∆FBA [58]), most of the algorithms require evaluation of certain parameters (such as gene
activity thresholds). Moreover, different algorithms employ different presumptions during
the reconstruction (see Section 3), and they might produce significantly different results
for the same dataset. It has been demonstrated that model content might reflect larger
variation, due to the employed algorithm more than to the cell type [86]. Thus, it is vital to

https://www.ebi.ac.uk/arrayexpress
https://www.ncbi.nlm.nih.gov/sra
https://www.ebi.ac.uk/gxa/
https://www.ebi.ac.uk/ena
https://gtexportal.org
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https://fantom.gsc.riken.jp/
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https://www.cancer.gov/tcga
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https://www.cbioportal.org/
https://sites.broadinstitute.org/ccle/
http://www.proteomexchange.org/
https://www.proteinatlas.org/
https://pdc.cancer.gov/pdc/
https://www.metabolomicsworkbench.org/
https://www.ebi.ac.uk/metabolights/studies
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select the algorithm that yields the reconstruction with the highest biological significance
in a given context. Specific benchmarks and protocols have been developed to guide the
selection of the most appropriate model extraction method, as well as its calibration, and to
increase the quality of reconstructed models (see Figure 3).

Pires Pacheco et al. presented an overview of benchmarks for testing different context-
specific model reconstruction algorithms [87]. They divided the methods into the following
two groups: Consistency-based testing can be used to analyse robustness against missing
or noisy data, as well as capability of methods to distinguish among different contexts. It
includes approaches such as cross-validation, adding noise to expression data, and estimat-
ing the diversity of generated models from similar and diverse cell groups. The second
group is that of comparison-based testing, which is based on comparing the functionalities
with other models, manually curated networks or additional datasets. On the basis of these
tests, the authors proposed a benchmark for testing context-specific reconstruction algo-
rithms on real and artificial input data. While the models built upon real data were tested
for required metabolic functionalities, the artificial data models were built on different
fractions of artificial data and the output models were compared to the complete input
model. The obtained results indicate that the models constructed with different algorithms
vary considerably, even when constructed using the same data. The performed tests indi-
cate that the algorithms that performed discretisation of gene expression data yield better
results in the context of inclusion and activity of reactions, supported by experimental
evidence; and express better predictive power. Algorithms that consider unknown data as
absent (exclusive methods) showed better predictive power than generic models. On the
contrary, algorithms that considered unknown data as present (inclusive) tend to generate
larger networks, and scored lower when comparing the networks to new data, but were
more robust to noisy data and had reduced resolution power. This was evident from the
cross-validation experiments. GIMME-like algorithms performed the best in the context
of noise robustness. However, algorithms from the MBA-like family (i.e., FASTCORE and
FASTCORMICS) performed the best in capturing the variability between different tissues.
An important aspect to consider was also the computing speed, which could range from
seconds (e.g., FASTCORE) to hours (e.g., GIMME and INIT).

Pires Pacheco et al. [87] aimed at keeping the parameters used for reconstruction in
accordance with the values used in the original implementations. However, Opdam et al.
systematically evaluated different cancer cell line models obtained by using six different
reconstruction algorithms (i.e., FASTCORE, GIMME, iMAT, INIT, MBA, and mCADRE) in
combination with different gene expression thresholds, three sets of uptake and secretion
flux constraints, and with slightly modified RMF, or without the definition of the RMF [35].
Moreover, Recon 1 [19] and Recon 2.2 [20] were used as template models [19,20]. In the
experiment, they applied RNA-seq data from cancer cell lines. They analysed the reactions
that were identified to be active in each of the models and tested their predictive capabilities
on gene-essentiality predictions and on the metabolic functionalities of the obtained models.
The selection of a template model and composition of the RMF did not significantly affect
the qualitative response of the reconstructed models. The authors analysed the effects
of other factors with the application of principal component analysis (PCA) on the set of
reactions present in each context-specific model. While gene expression threshold had
the strongest effect (largest amount of explained overall variance in the first principal
component), the selection of the reconstruction algorithm had a moderate effect and flux
constraints only had a significant effect on the third principal component. Furthermore, the
authors compared the accuracy of gene-essentiality predictions across the obtained models.
All context-specific models had higher accuracies compared to the generic GEM. However,
more stringent threshold cutoffs resulted in more accurate gene-essentiality predictions,
and different algorithms yielded different accuracy levels. The most accurate predictions
were obtained using INIT, MBA, and mCADRE algorithms with genes above the top 10% of
the gene expression level as active, and genes below the mean expression level as inactive.
Even though expression thresholds had the largest impact on the reactions included in a
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model, algorithm selection had the largest impact on model accuracy. Furthermore, the
authors tested whether 56 metabolic functions required for cancer growth, encoded as a
biomass function, were maintained in the extracted models. The models were constructed
without specifying this as a RMF, except in the case of the GIMME algorithm. They
evaluated the functionality score by comparing the number of functionalities that a model
was able to perform with the number of functionalities performed by models constructed
from randomised data. PCA-based analysis indicated that gene expression thresholds
had the strongest effect on functionality scores and algorithm selection had a moderate
effect. Some functionalities were omitted from most models, which could also be attributed
to missing or incomplete GPR associations encoded in a generic GEM. Richelle et al.
presented a framework to address this problem with a list of curated metabolic tasks that
a cell should perform and that were protected during model reconstruction [86]. Their
approach increased the consensus among models reconstructed with different extraction
algorithms on 44 cancer cell lines. In addition, the extracted models better captured the
biological variability between the cell lines. For each cell line, the authors inferred active
metabolic tasks from the list of curated tasks using transcriptomic data and integrated these
into an MBA-like family of methods. The same approach could not be applied to IMAT-
and GIMME-like methods, in which the protectionist approach would require a modified
implementation.

In another article, Richelle et al. focused on the evaluation of key decisions that
must be made in the integration process of transcriptomic data [88]. They focused on
the initial preprocessing steps of data integration, namely on the possible interpretations
of GPR associations (gene mapping) and the selection of gene expression thresholds to
identify active and inactive genes (thresholding). The authors used two different gene
mapping approaches, namely the Min/Max and Min/Sum GPR mapping. While in the
first, Boolean OR was interpreted as maximum, in the second it was interpreted as a sum.
Furthermore, the authors proposed three different thresholding rules. The first option
was to have a single threshold in a global context (global T1). A gene-specific threshold
could be evaluated when multiple samples were available (local threshold). This could
be combined with a global concept for a set of genes with low expression values across
all the samples to prevent their inclusion in a set of active genes (local T1). The third rule
(local T2) applied the local rule only to genes having expression between predefined lower
and upper bounds to also address anomalies that might arise within the family of genes
with high expression levels in all samples. Not only was the selection of gene mapping
method applied important in combination with a thresholding rule, but also the order in
which these two steps were applied was important. To assess the impact of these decisions,
the authors used different combinations of preprocessing steps on the data describing
32 tissues to obtain 640 reaction lists for evaluation. They showed that the thresholding
rule had the largest effect on variability in the obtained list of reactions. Interestingly,
this had an even larger effect than differences among tissues. The order of preprocessing
had a significantly smaller effect, and gene mapping had the smallest influence among all
observed factors. The local T2 rule, with thresholding of gene expression before conversion
to reaction activity, yielded the most accurate results in the context of tissue grouping at the
reaction level. The local T2 rule also reduced the number of false negative predictions at
the tissue level and provided the most accurate list of active reactions. The result obtained
by a T2 rule was later additionally improved using a heuristic method, StanDep, that firstly
clusters the data, based on their gene expression patterns in different contexts, and, then,
determines the thresholds within each cluster separately [89].

One still needs to select the most suitable extraction methods for a given context.
According to the no-free-lunch theorem, an optimisation method that would supersede all
other methods in all cases does not exist [90]. This also holds for the algorithms for context-
specific GEM reconstruction. A specific method must be selected and calibrated together
with a given dataset to yield the best results. Walakira et al. [91] proposed a protocol to
guide the selection of the most suitable algorithm and its configuration in dependence
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on the applied data. This selection was, on the one hand, guided by the heterogeneity of
the extracted models and, on the other hand, by the ability to capture the true variability
in the provided data. The latter was based on the evaluation of the explained variability
by the observed factors within each algorithm. These factors might include cell type,
genotype, gender of an organism, or diet used in the experiment. The authors demonstrated
their approach in the evaluation of five different extraction algorithms (GIMME, iMAT,
FASTCORE, INIT and tINIT) in a combination with different thresholding values and
threshold rules (see Ref. [88]) in an analysis of Cyp51 knockout mice diet experimental
data [92]. They showed that, in their specific case, the models with the largest biological
relevance were extracted using the FASCTORE algorithm and using the 80th percentile of
gene expression values between all genes in a sample as a gene expression threshold value
to determine the core set of reactions.

An alternative approach does not focus on the selection of the best single approach for
a given dataset. Instead, the objective is to address the issue of algorithm heterogeneity
by constructing a consensus model from the set of models constructed using different
extraction algorithms [93]. The proposed method builds a consensus model from the
reactions present in most of the models, and then iteratively extends this model with the
additional reactions required to perform a predefined set of metabolic tasks. The authors
demonstrated that the obtained consensus model yielded more accurate results in the
context of the prediction of known metabolic phenotypes and traits in the experimental
data [93].
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Figure 3. An overview of selected benchmarks and protocols to guide the extractions of context-
specific models [35,86–88,91,93].

6. COVID-19 Applications of Context-Specific Genome-Scale Metabolic Modelling

The COVID-19 pandemic has significantly impacted our personal and work lives.
The disease is caused by infection with SARS-CoV-2, a virus from the Coronaviridae
family, causing severe acute respiratory syndrome, and has resulted in millions of deaths
worldwide. In combatting COVID-19 all available resources in science have been harnessed,
not only experimental tools, but also computational tools. There were several omics
datasets generated by analysing SARS-CoV-2-infected human samples and various cell
lines, which are available in GEO, ENA, EGA and ArrayExpress repositories. Numerous
papers have been published reporting on experiments studying viral biology, virus effects
on cell metabolism, immune cells and the overall effect on the immune system and the
human body.

Several computational approaches have been applied to combat COVID-19, [94] rang-
ing from the establishment of a knowledge repository of COVID-19 molecular mechanisms,
i.e., COVID-19 disease maps [95,96], to the identification of candidate drugs which may be
helpful in COVID-19 treatment and prevention [97]. In this context, different approaches
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have also been proposed to analyse the COVID-19 metabolic signatures and propose
novel treatments and diagnostic approaches using GEMs. Figure 4 presents the state-of-
the-art COVID-19-related applications of context-specific GEMs, which are additionally
overviewed in Table 4, and described in more detail in this section.

Recon, Human-GEM,
human metabolic

whole-body models

High-throughput data

Literature data

Reference Analysis

Differential reaction
fluxes

Enriched metabolic
pathways

Drug targets

Disease biomarkers

Viral biomass
objective function

Drug repurposing

Healthy and infected
(host-virus) models

Whole-body
metabolic models

Disease severity
models

Models

Dietary impacts

Personalised models

Figure 4. Reconstruction and analysis of COVID-19-specific GEMs. Recon models, Human–GEM and
human metabolic whole-body models (WBMs) have been applied as reference models in combination
with different forms of viral biomass objective function (VBOF), high-throughput data, and literature
data. The reconstruction approaches have focused on establishing group-specific, or even person-
alised healthy and infected (host-virus) models with different disease severity levels, and different
complexities (tissue-specific or whole-body models). The reconstructed models have been used to
conduct differential flux and pathway enrichment analyses, to identify possible drug targets, disease
biomarkers, and dietary impacts on COVID-19 metabolic reprogramming.

Table 4. An overview of applications of genome-scale metabolic modelling and analysis of COVID-19.
Abbreviations: VBOF—viral biomass objective function, WBM—whole-body model.

Reference Reconstruction Algorithm(s) Comments

Renz et al., 2020 [98] none Integration of VBOF into a human alveolar macrophage
model.

Renz et al., 2021 [99] none A follow-up study on [98].
Delatre et al., 2021 [100] none Integration of VBOF into a human lung cell model.

Yaneske et al., 2021 [74] METRADE
A combination of manual curation with automated

reconstruction using transcriptomics and proteomics data
from Huh-7 cells.

Santos-Beneit et al., 2021 [101] pyTARG (for a healthy lung model) Manual curation of a healthy lung model with literature data.

Cheng et al., 2021 [102] iMAT An integration of data from 12 datasets, validation of
identified targets with additional experiment.

Kishk et al., 2021 [103] rFASTCORMICS An integration of data from two RNA-seq studies on lung
cells.

Dillard et al., 2022 [104] RIPTide Combining GEMs with machine learning analysis on plasma
metabolomes of non-acute and severe COVID-19 patients.

Wang et al., 2022 [105] none Extension and integration of VBOF into Recon3D.
Nanda and Ghosh, 2021 [106] tINIT An integration of NHBE and lung biopsy RNA-seq data into

HumanGEM.

Režen et al., 2022 [107] GIMME, iMAT, INIT, tINIT An integration of different cell lines and patient samples data
following the protocol proposed in [91].

Ambikan et al., 2022 [108] tINIT
A reconstruction of personalised and group-specific models

with integration of RNA-seq data (blood), constraining
exchange reactions with metabolomics data (plasma).

Renz et al., 2022 [109] FASTCORE A computational pipeline for identification of
broad-spectrum antiviral drugs using scRNA-seq data.

Thiele and Fleming, 2022 [110] none An integration of VBOF and other virus-specific reactions
into metabolic sex-specific WBM.

Renz et al. generated a host–virus model of human alveolar macrophage [98], based on
an approach that had been previously applied to other viruses [111]. The reconstruction of
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a host–virus model was based on a manual integration of a SARS-CoV-2 biomass objective
function (VBOF) into the host model, i.e., iAB-AMØ-1410 model [112]. The VBOF was
reconstructed on the basis of available knowledge considering amino acids, nucleotides,
and energy requirements of the virus. The obtained model was then used to analyse
the stoichiometric changes between host and virus by comparing host and viral biomass
objective functions (BOFs), and metabolic changes between host- and virus-optimised
states using FBA and FVA. The latter was used in the identification of potential antiviral
targets. The obtained results suggested that supplementation of L-isoleucine and L-lysine,
and the inhibition of guanylate kinase, ought to be the targets. The latter was confirmed by
a follow-up study using a refined model, in which different SARS-CoV-2 variants were also
considered [99].

Delattre et al. performed a similar analysis using a human lung cell model [100]. The
latter was adapted from the Recon 2.2 model [20] on the basis of gene expression data from
the Human Protein Atlas [33]. The obtained model was then extended with the VBOF
constructed on the available literature data in a similar way to that described in [98,111].
Simulations of the obtained model were conducted using the FBA. By using the VBOF as
an objective, the authors proposed a set of individual and double perturbations as potential
drug targets to inhibit SARS-CoV-2 reproduction in a host cell. In addition, they identified
a set of existing drugs that complied with the proposed targets.

The VBOFs proposed by Renz et al. [98,99] and Delattre et al. [100] were later extended
by Wang et al. to increase their accuracy and to account for the Alpha and Delta variants of
COVID-19 [105]. These VBOFs were integrated into Recon3D [21] to obtain variant-specific
models. These were then applied to identify antiviral enzymes and metabolites using a
fuzzy hierarchical optimisation framework, in which identified antiviral targets presented
the smallest possible metabolic perturbations, eliminated virus replication, and allowed
the infected cells to restore the dynamics of healthy cells. The optimisation problem
was applied to investigate reactions modulated in both gene-centric (identification of
reactions regulated by enzymes) and metabolite-centric (identification of reactions related
to a metabolite). It revealed dihydroorotate dehydrogenase inhibitors and different two-
target combinations to block viral biomass growth. They also identified a set of drugs
from the DrugBank database [113] as potential candidates for COVID-19 drug repurposing.
Furthermore, according to the metabolite-centric approach, inhibition of CTP and UDP
revealed a similar effect to molnupiravir, which reduced the risk of hospitalization or death
in at-risk, unvaccinated adults with COVID-19 [114].

Santos-Beneit et al., 2021 [101] reconstructed context-specific models of healthy lung
tissue using pyTARG [115], a variant of the PRIME algorithm [116]. Since these algorithms
require an association of transcriptomic data with phenotypic measurements (in a manner
similar to METRADE [73], see below), they were excluded from the algorithm summary in
Section 3. Briefly, PRIME first decomposes all reversible reactions into forward and back-
ward reactions and iteratively decreases the upper bounds of reactions in the network as
much as possible (until biomass production is maintained). It then assesses the correlations
between metabolic reaction activities and the measured growth rates. Upper bounds of
reactions that are significantly correlated with growth rates are then linearly related to their
gene expression values. The pyTARG follows a similar procedure. However, it constraints
all the metabolic reactions based on the expression levels of their associated genes [115].
Santos-Beneit et al. applied RNA-seq data from the Human Protein Atlas [23] in combina-
tion with pyTARG and HMR metabolic models [117] to reconstruct a context-specific model
of healthy lung cells. The metabolic model of SARS-CoV-2 infected cells was obtained
with manual curation of the healthy lung cell model using data from the literature that
described interactions between viral and human proteins. Moreover, the infected models
were augmented with a stoichiometric equation describing the virion production (VBOF).
The obtained model was used to identify drug targets by restricting reaction rates catalysed
by the tested enzymes. Only the enzymes known to interact with viral proteins were tested
and 10 human enzymes were identified as potential targets. Putative inhibitors of selected
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targets were then assessed with a literature search and by using molecular docking. Based
on their analysis, the authors proposed 12 bioactive molecules as promising drugs to treat
COVID-19. Some of these are already undergoing clinical trials or have been approved.

Approaches described above mostly relied on a manual adaptation of a selected model
to account for the SARS-CoV-2 infection. However, the completeness of a description
of a specific context could be increased with the integration of experimental data using
context-specific model reconstruction algorithms and protocols (see Sections 3 and 5).
High-throughput data describing the response of different cell lines, tissues, or model
organisms were made publicly available shortly after the start of the COVID-19 pandemic
(see, e.g., [118]). Several approaches have focused on the integration and analysis of these
datasets with genome-scale metabolic models.

Yaneske et al. reconstructed a set of healthy and COVID-19-infected models using
transcriptomic and proteomic data from Huh-7 cancer cell lines [74]. Data were obtained
from uninfected cells, and cells 24, 48, and 72 h after infection, as reported in [119]. Firstly,
the authors expanded the Recon 2.2 model [20] with a VBOF [111] and secretory path-
ways for a range of relevant immune proteins. Second, data integration and creation of
condition-specific models were performed using a modified version of the METRADE
pipeline (MEtabolic and TRanscriptomics ADaptation Estimator), in which flux bounds
were described by linear functions of differentially expressed gene/protein data and, also,
mapping to the phenotype in each condition [73]. They constructed separate models for
transcriptomic and proteomic data. Additional constraints were introduced, based on the
literature and RNA-seq data analysis results. The analyses of each of the models were
performed with FVA evaluating minimal and maximal flux values of each reaction in each
of the conditions. These were used to identify differentially active reactions (fold change
above the 95th percentile and at least 1.5 for up-regulated reactions, and fold change below
the 0.05th percentile and at most 0.8 for down-regulated reactions, respectively). Perturbed
metabolic pathways were identified using the hypergeometric test. In their analysis, the
authors identified the RNA production, energy production, fatty acid metabolism and the
secretome as the main areas of cancer metabolism affected by SARS-CoV-2 infection. [74].

Dillard et al. combined different machine learning approaches with genome-scale
metabolic modelling using COVID-19 patient plasma metabolomes (the samples were
collected within the proposed study) [104]. The Recon3D model [21] was first adapted to
match the measured metabolites with the corresponding metabolites in the model. The
exchange bounds of the differential metabolites between the disease states were set to
simulate open metabolic exchange. The obtained model was then adapted to non-acute and
severe disease states using the RIPTide algorithm [46]. The obtained models were analysed
on the basis of 500 FBA samples generated using Gapsplit [120]. Finally, the authors applied
random forest classification to identify the reactions capable of differentiating between the
non-acute and severe disease models. Using a combination of metabolomic data analysis
for biomarker identification and pathways analysis, and genome-scale metabolic modelling
for mechanistic understanding, they were able to get a more complete image of COVID-19
impacts on the human body. Furthermore, the top ten identified reactions that accurately
classified non-acute and severe disease models agreed with previous research that indicated
that interleukin-13 levels drove the severity of COVID-19 disease [121].

Nanda and Ghosh [106] developed healthy and infected models of normal human
bronchial epithelial (NHBE) and lung biopsy cells using the data reported in [118]. The
models obtained were used to identify metabolic pathways enriched after infection [106].
HumanGEM model [23] was extended with the VBOF before the integration of SARS-CoV-2
infection data using tINIT to obtain the infected models. Healthy models were constructed
in a similar way, but without the integration of VBOF and with the integration of data
describing uninfected cells. The obtained models were used to generate flux samples.
Significantly up- and down-regulated reactions between the healthy and disease states
were identified by using the two-sample Kolmogorov–Smirnov test with the Benjamini–
Hochberg procedure for false discovery rate control. Finally, only reactions that were



Metabolites 2023, 13, 126 18 of 28

altered beyond (for up-regulated) or below (for down-regulated) a predefined threshold
were selected as changed. The lists of up- and down-regulated reactions were used to
identify enriched metabolic subsystems using the two-tailed hypergeometric test with
the Benjamini–Hochberg procedure for false discovery rate control. The authors iden-
tified several metabolic pathways that were enriched in the infected NHBE model and
could have therapeutic relevance. These included deregulation in fatty acid metabolism,
beta-oxidation, and arachidonic acid metabolism, which complied with existing literature
data. Furthermore, the authors also identified the reactions affected by post-translational
modifications by integrating transcriptomic data with the SARS-Cov-2 protein interaction
map [122] and the phospho-proteomic landscape of infection [123], and projecting inhibited
enzymes onto metabolic reactions using GPR associations encoded in HumanGEM. The
list of affected reactions was again used to perform the metabolic pathway enrichment
analysis. The pathways predicted to be most affected were in line with the results from
clinical metabolomics studies.

Režen et al. [107] performed an extension of the context-specific GEM analysis de-
scribed by Nanda and Ghosh [106]. They extended the analysed datasets to also include
human embryonic kidney (293T), Calu-3, and adenocarcinoma human alveolar basal ep-
ithelial (A549) cell lines [118]. Furthermore, they followed and extended the reconstruction
protocol proposed by Walakira et al. [91] to analyse the results obtained with different
reconstruction algorithms, including iMAT, INIT, tINIT, and GIMME. GIMME- and tINIT-
produced models yielded the most relevant results, allowing a straightforward separation
of models by infection and cell type. Their results indicated the modulation of several
fatty acid and cholesterol metabolic pathways in COVID-19 patients. The tINIT-produced
models also identified the lower metabolism of several vitamins in infected models.

Cheng et al. [102] performed the integration of 12 published gene expression datasets
on SARS-CoV-2 infection (3 of which were also analysed in [107]) using the IMAT algorithm,
and Recon 1 [19] and Recon3D GEM [21]. Metabolic flux distributions were obtained with
flux sampling and differential fluxes were assessed between the healthy and infected
models. Reactions with altered fluxes were identified by observing the absolute rank
biserial correlations and absolute relative flux changes (> 0 for up- and < 0 for down-
regulated reactions, respectively). The enriched reaction sets were compared across datasets
using Fisher’s exact test. Since no reaction was common to all datasets, the most relevant
reactions were identified by the intersection between bulk RNA-seq patient datasets and
single-cell RNA-seq (scRNA-seq) datasets. These reactions were then used to perform
pathway enrichment analyses using Fisher’s exact test. The latter was performed separately
on the Recon 1 and Recon3D models, and pathways with inconsistent enrichment results
were removed from further analysis. The authors visualised selected enriched pathways
in which directions of edges (reactions) were determined by the consensus direction and
differential fluxes through reaction with the consensus across the datasets. Furthermore,
robust metabolic transformation analysis (rMTA) [124] in flux samples was used to predict
single targets or targets in combination with remdesivir (RNA-seq data from Vero E6 cells
infected by SARS-CoV-2, with or without remdesivir treatment), whose inhibition facilitates
the transformation from diseased to healthy states. The predictions obtained were validated
on different datasets with anti-SARS-CoV-2 gene targets or drugs. Furthermore, the top 10
% of the rMTA targets were used to obtain a set of consensus candidate targets in the data
sets, which were assigned to known drugs using the DrugBank database [113]. Additionally,
the authors performed the metabolic pathway enrichment analysis of identified targets
(Fisher’s exact tests) to prioritise the ones for experimental validation, using siRNA assay
in Caco-2 cells. The results obtained with pathway-based analyses complied with previous
studies, which indicated that GEMs could be used for antiviral target prediction. This
was confirmed with the validation of the identified drug targets using literature data and
additional validation experiments.

Kishk et al. proposed another pipeline for GEM-based drug repurposing using
FBA [103]. As in most other works, the generic models (Recon 2 [20] and Recon3D [21])
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were extended with a VBOF according to [98]. Context-specific models were obtained using
two RNA-seq studies on healthy, mock and infected lung expression data with different
disease severity levels [118,125]. The blocked reactions were removed using FASTCC [40]
and the integration of data was performed using rFASTCORMICS [42]. Potential drug
targets were identified with single (essential genes) and double (synergetic genes) gene
knockouts using the COBRA toolbox [9]. Double knockouts revealed two types of gene-pair
combinations, namely, pairs of non-essential genes that reduced the viral growth when
silenced simultaneously, and pairs of essential and non-essential genes that induced a
stronger reduction when silenced simultaneously. The safety of essential genes for healthy
tissue was assessed with their impact on biomass in different healthy models. Essential
and synergistic genes were used to perform KEGG pathway enrichment analysis and
GEM-based metabolic pathway enrichment analysis. Existing drugs targeting the predicted
essential genes were identified in the DrugBank database [113]. Drugs with multi-target
effects were identified by constructing the drug–gene–pathway interaction networks. A
set of 85 repositionable single drugs, 47 drugs on gene pairs, and 52 drug combinations
against COVID-19, were identified.

Ambikan et al. presented multi-omics (blood RNA-seq and plasma metabolomics)
analyses of personalised networks in which patients were stratified according to the sever-
ity of the disease, and which also included reconstruction and analysis of personalised
and group-specific GEMs [108]. Human-GEM [23] was used as a reference model in the
reconstruction. Personalised models were constructed with individual gene expression
data and group-specific models were constructed with average gene expression data, using
the tINIT algorithm. Exchange reactions were constrained on the basis of metabolomics
data and validated with the literature data [126]. VBOF was incorporated into the models
built with COVID-19-positive samples. For infected models, FBA was used to maximise
the flux through a pseudo-reaction with VBOF products and ATP hydrolysis as reactants.
In other models, ATP hydrolysis was used as an FBA objective function. Based on group-
specific GEMs, the authors identified 100 reactions that were differentially active between
patient groups and 15 transport reactions that were differentially active when comparing
mild/moderate and severe groups with healthy controls. Personalised GEMs were used
to identify 274 differentially active reactions among patients, mostly consistent with the
results of the group-specific analysis. The consensus among the models yielded 16 spe-
cific reactions to COVID-19 and 10 specific reactions to COVID-19 severity. The authors
additionally performed a network topology analysis on the set of metabolites and enzymes
present in active (non-zero flux) reactions. This analysis was used to identify network
communities and to prioritise nodes (metabolites and enzymes) based on their centrality
values. Seven genes and 51 metabolites were identified as prioritised nodes. Single-gene
deletion COBRA function [9] was used to identify essential genes in COVID-19 patients,
these being the mitochondrial genes. This was in concordance with other analyses in the
study which exposed the central metabolic pathway, and the TCA (tricarboxylic acid) cycle,
as essential in COVID-19 patients.

Renz et al. described a computational pipeline for the identification of broad-spectrum
antiviral drugs using context-specific GEMs [109]. The authors extended the Recon 2.2 [20]
with the VBOF as described earlier. The generic model was then adapted using FAST-
CORE [40] and StanDep scRNA-seq preprocessed data [89]. Viral replication capacities
across different cell types were assessed using the FBA on the models reconstructed with
the integration of mice data from the Tabula Muris Consortium dataset [127] and data
from humans covering the gastrointestinal tract [128]. In accordance with the past ob-
servations, the highest viral replication capacities were observed for the intestine and
cells of the oral cavity [109]. Viral replication capacities were additionally investigated in
COVID-19-specific patient GEMs that were obtained with the integration of scRNA-Seq
data from COVID-19 patients [129]. In these models, viral replication capacity was strongly
increased in the upper respiratory tract, and ciliated, secretory and FOXN4 cells showed a
mean increase in comparison to uninfected models. Metabolic pathway analysis revealed



Metabolites 2023, 13, 126 20 of 28

55 enriched pathways (out of 57 analysed pathways) in severely diseased patients, and
39 enriched pathways in moderately and severely diseased patients, in comparison to
healthy controls. Furthermore, the authors used single gene deletions to predict different
types of antiviral targets, where targets which decreased the VBOF by at least 50 % and
which did not strongly affect the biomass of a cell (did not fall below 80 % of the initial
value) were identified as primary targets. Among these, potential broad-spectrum antiviral
targets that occurred across all cells from the individual datasets were selected. Moreover,
only the targets that had already been reported to interact with other human pathogenic
viruses were used to finally identify four enzyme targets. These were applied in further
experimental validation using SARS-CoV-2 infected Calu-3 and CaCo-2 cell lines. The latter
confirmed Phenformin and Atpenin A5 as potential broad-spectrum antiviral drugs.

Finally, Thiele and Fleming generated a whole-body metabolic sex-specific host-virus
model (WBM) [110] based on previously reported WBMs of human metabolism [126]. The
latter was extended with a VBOF and with other SARS-CoV-2 specific reactions formulated
using available knowledge, including virus uptake through the air, replication in different
tissues, degradation by CD4+ T cells, and release back into the air. Organs and cells
that could be affected by the virus included the lung, CD4+ T cells, adipocytes, small
intestinal epithelial cells, and liver. In total 25 virus-specific reactions were included in the
WBMs. Furthermore, the models obtained were additionally constrained according to the
physiological and dietary parameters of individuals. The authors assessed the metabolic
flux distributions using FBA that minimises the Euclidian norm (to obtain a unique solution)
and with the flux through a virus shedding reaction as an objective. The models were able
to yield a feasible solution with the basic viral load (modelled with the flux through the viral
uptake reaction). However, an increase in T cells was required to obtain a feasible solution in
models with the amount of viral load corresponding to hospitalised and severe COVID-19
patients, which was consistent with current knowledge. Furthermore, the authors assessed
metabolic changes associated with the infection, disease severity (viral load), and CD4+
T cell availability in three models for each sex. When comparing healthy models with
infected models, and comparing both infected models, the flux values changed by at least
10 % in approximately 15 % of reactions, demonstrating that the metabolism of the entire
body is affected during the viral infection. The authors additionally used the established
models to analyse the blood metabolome by calculating the maximally possible increase
or decrease of metabolites in the blood compartment with the addition and individual
maximisation of artificial reactions that allowed the accumulation of each metabolite. The
change of the metabolome showed good agreement with the literature and was observed in
around 35 % of the metabolites between healthy and infected models and between infected
models with different disease severity levels. Furthermore, the authors used their models
to analyse different sets of drug targets previously reported in the literature. Although
the models were unable to confirm the results reported in [122], they produced results
consistent with a previous study on GEMs [98]. Since in silico analyses indicated that
isoleucine was a rate limiting factor for the viral shedding rate, the authors also inhibited
different lung amino acid uptake (isoleucine, threonine, tryptophan, and lysine), resulting
in a reduction in shedding rate. These perturbations could also be achieved by dietary
changes. The authors additionally analysed the effects of different diets on viral shedding
flux. The Virtual Metabolic Human database [130] was used to establish different diets and
the lowest shedding rate was achieved with the vegan and vegetarian diets. On the other
hand, burger- and steak-rich diets yielded the highest virus replication rates. Finally, the
authors used the WBM models to analyse viral shedding and replication rates, and amino
acid requirements of different virus variants described with different VBOFs.

7. Conclusions

Even though several standard bioinformatic approaches for the analyses of omics data
have been applied in the context of COVID-19 applications (e.g., see [131]), GEM-based
analyses complement these approaches, since they are able to provide additional insights
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into experimental data. The main benefits of GEM-based applications include a mechanistic
view into the dynamics of the disease, as well as possibilities to test different hypotheses in
silico (e.g., using in silico gene knockouts).

Our understanding of COVID-19 has been greatly enhanced with the employment
of GEM-based analyses. These analyses have been conducted on context-specific mod-
els reconstructed with a combination of manual curation and algorithms for automated
reconstruction, as reviewed in this paper. The latter have employed different types of
experimental data, such as data obtained from different cell lines (e.g., see [74]), patient
samples (e.g., see [108]), or a combinations of both (e.g., [102]). Most of the approaches
devoted to the GEM-based analysis of COVID-19 focused on the identification of enriched
metabolic reactions and pathways (e.g., see [102,106,107]) and/or to the identification of
potential antiviral targets (e.g., see [98,99,105]) and drug repurposing (e.g., see [100,103]).
Reported studies also focused on the identification of metabolic reactions guiding disease
severity [108], and on the analysis of cancer metabolism affected by SARS-CoV-2 infec-
tion [74]. The approaches analysed different SARS-CoV-2 variants (e.g., see [99,105]) and
infection dynamics in different cell types [109]. Finally, whole-body models were applied to
analyse the consequences of the infection on the whole human body [110]. Context-specific
GEMs have, thus, been able to confirm existing COVID-19 treatment strategies, as well as
resulted in proposals of novel drug targets and repurposed drugs for effective treatment.
However, validation of the obtained results with additional experiments has so far been
limited. Moreover, most of the approaches were limited to the analysis of the metabolism
of specific cell types in isolation.

It is a fact that automated approaches have allowed for fast and straightforward
reconstruction of context-specific models. However, even though we can, at least to
some extent, rely on such automation, the quality of reconstructed models is still strictly
dependent on the quantity and quality of biological knowledge incorporated into a generic
model of an organism. For example, most of the reconstruction approaches rely on the
associations between genes and metabolic reactions defined by GPR rules encoded within
the reference model. If this data is inaccurate or is missing relevant associations, the
reconstruction process cannot yield a biologically relevant model.

Specific GEM repositories, such as BiGG [132] and Metabolic Atlas [23] have already
been reported on. However, these repositories are mainly focused on publishing generic
GEMs. Having (parts of these) repositories specifically devoted to context-specific GEMs,
which would be searchable through parameters, such as an algorithm used for the re-
construction or focus of the reconstruction (e.g., disease, tissue, etc.), would ease the
reproducibility and reusability of the reconstructed context-specific GEMs.

Another aspect that should also be addressed in the context of reproducible models
with large biological significance is the establishment of standards, protocols and tools
for automated reconstruction of context-specific GEMs. Even though certain attempts
have already been made in this direction (see Section 5) an easy-to-use tool that would
automatically select the best reference model and algorithm(s) for a specific problem (i.e.,
dataset), perform parametrisation of these algorithms, validate the obtained results and
yield a set of the most significant models has not yet been reported.

Another limiting factor of GEMs in general is that they describe the dynamics of a
metabolic network in isolation. The majority of GEMs have been focused on a model of
an individual cell, and are, thus, unable to capture the metabolism of the whole body.
Recently, Thiele et al. presented a set of personalised sex-specific whole-body metabolic
(WBM) GEMs [126]. These were also applied in the context of the analysis of metabolic
reprogramming followed by SARS-CoV-2 infection [110]. Even though WMB models could
describe the metabolism of a large number of organs in the human body [110], they only
account for the (steady-state) response of metabolic networks, which are isolated from
other biological networks. Several integrative approaches to connect metabolism to other
cellular processes have already been proposed. For example, much effort has been devoted
to the integration of GEMs with gene regulatory networks [133] and other regulatory
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mechanisms [134]. Moreover, GEMs have been integrated into whole-cell models, but
only for simple organisms, such as Mycoplasma genitalium [135], and more recently for
Saccharomyces cerevisiae [136]. However, the integration of such models into a human
whole-cell model [137] and the virtual human body [138] is still less developed [126].

Despite these facts, GEMs have proven to be an efficient way to incorporate high-
throughput data into mathematical representations. These can not only be used to perform
computational simulations and assess metabolic reaction activities, but can also compre-
hensively capture knowledge about the metabolic functions of a cell [139]. Moreover,
despite several presumptions and simplifications applied within the GEM reconstruction
and analysis, GEMs are able to provide valuable insights into the metabolism of a specific
organism and its context-specific reprogramming, as also demonstrated by the COVID-19
applications described in this paper.
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BOF biomass objective function
CCLE Cancer Cell Line Encyclopedia
COBRA constraint-based reconstruction and analysis
CORDA cost optimization reaction dependency assessment
COVID coronavirus disease
EBI European Bioinformatics Institute
EGA European Genome-Phenome Archive
ENA European Nucleotide Archive
FANTOM5 Functional Annotation of the Mammalian Genome 5
FASTCC fast consistency checking
FBA flux balance analysis
FVA flux variability analysis
GEM genome-scale metabolic model
GEO Genome Expression Omnibus
GIM3E gene inactivation moderated by metabolism, metabolomics and expression
GIMME gene inactivity moderated by metabolism and expression
GIMMEp gene inactivity moderated by metabolism and expression by proteome
GPR gene-protein-reaction
GTEx Genotype-Tissue Expression database
HPA Human Protein Atlas
iMAT integrative metabolic analysis tool
INIT integrative network inference for tissues
LP linear programming
MADE metabolic adjustment by differential expression
MBA model building algorithm
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mCADRE metabolic context-specificity assessed by deterministic reaction evaluation
METRADE MEtabolic and TRanscriptomics ADaptation Estimator
MILP mixed integer linear programming
MIQP mixed integer quadratic programming
MTA metabolic transformation algorithm
NCBI National Center for Biotechnology Information
NGS next-generation sequencing
NHBE normal human bronchial epithelial
PCA principal component analysis
PDC Proteomic Data Commons
pFBA parsimonious flux balance analysis
PRIME personalized reconstructIon of metabolic models
QP quadratic programming
RegrEx regularized context-specific model extraction method
RIPTide reaction inclusion by parsimony and transcript distribution
RMetD2 relative metabolic differences version 2
RMF required metabolic function
RNA-seq RNA sequencing
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
scRNA-seq single cell RNA sequencing
SRA Sequence Read Archive
TCGA The Cancer Genome Atlas
TIGER toolbox for integrating genome-scale metabolism, expression, and regulation
tINIT task-driven integrative network inference for tissues
TPM transcripts per million
VBOF viral biomass objective function
WBM whole-body model
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