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Abstract: Metabolic inflexibility is a hallmark of insulin resistance and can be extensively explored
with high-throughput metabolomics techniques. However, the dynamic regulation of the metabolome
during an oral glucose tolerance test (OGTT) in subjects with type 2 diabetes (T2D) is largely un-
known. We aimed to identify alterations in metabolite responses to OGTT in subjects with T2D using
untargeted metabolomics of both plasma and subcutaneous adipose tissue (SAT) samples. Twenty
subjects with T2D and twenty healthy controls matched for sex, age, and body mass index (BMI)
were profiled with untargeted metabolomics both in plasma (755 metabolites) and in the SAT (588)
during an OGTT. We assessed metabolite concentration changes 90 min after the glucose load, and
those responses were compared between patients with T2D and controls. Post-hoc analyses were
performed to explore the associations between glucose-induced metabolite responses and markers
of obesity and glucose metabolism, sex, and age. During the OGTT, T2D subjects had an impaired
reduction in plasma levels of several metabolite families, including acylcarnitines, amino acids, acyl
ethanolamines, and fatty acid derivates (p < 0.05), compared to controls. Additionally, patients with
T2D had a greater increase in plasma glucose and fructose levels during the OGTT compared to
controls (p < 0.05). The plasma concentration change of most metabolites after the glucose load was
mainly associated with indices of hyperglycemia rather than insulin resistance, insulin secretion, or
BMI. In multiple linear regression analyses, hyperglycemia indices (glucose area under the curve
(AUC) during OGTT and glycosylated hemoglobin (HbA1c)) were the strongest predictors of plasma
metabolite changes during the OGTT. No differences were found in the adipose tissue metabolome in
response to the glucose challenge between T2D and controls. Using a metabolomics approach, we
show that T2D patients display attenuated responses in several circulating metabolite families during
an OGTT. Besides the well-known increase in monosaccharides, the glucose-induced lowering of
amino acids, acylcarnitines, and fatty acid derivatives was attenuated in T2D subjects compared to
controls. These data support the hypothesis of inflexibility in several metabolic pathways, which may
contribute to dysregulated substrate partitioning and turnover in T2D. These findings are not directly
associated with changes in adipose tissue metabolism; therefore, other tissues, such as muscle and
liver, are probably of greater importance.

Keywords: type 2 diabetes; oral glucose tolerance test; metabolomics

1. Introduction

Type 2 diabetes (T2D) is a complex disease characterized by disturbances affecting the
whole metabolism and resulting in diffuse alteration of glucose and lipid homeostasis [1].

Metabolic inflexibility is the inability to adapt to changes in metabolic demand ac-
cording to prevailing conditions or activity and is a key hallmark of insulin resistance [2].
One of its main pathological implications is that insulin-sensitive tissues cannot shift from
catabolic fatty acid oxidative processes during fasting to anabolic glucose oxidative pro-
cesses in the fed state [2]. Adipose tissue has been recognized as an important player in
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this pathological process [3]. Metabolic inflexibility is traditionally investigated through
indirect calorimetry during hyperinsulinemic clamp [4] and has been associated with
cardiometabolic diseases [5].

High-throughput metabolomics techniques allow a comprehensive overview of the
metabolic status both in physiologic and pathologic conditions and have revealed several
metabolites and pathways that are dysregulated long before the clinical onset of T2D [6,7].
This can help to identify new diagnostic tools for early detection of the disease and new
therapeutic targets [8,9].

In this context, many studies have depicted the metabolomics signature of T2D during
fasting [10]. Branched-chain amino acid (BCAAs) catabolism is impaired in insulin-resistant
subjects, resulting in higher circulating levels of these metabolites [11,12], which interferes
with early-stage insulin signaling in insulin-target tissues [13]. Other metabolic pathways
are also disrupted in insulin resistance states, such as acylcarnitines and other lipidic
molecules [6,9], depicting a complex metabolomics signature for this condition. However,
investigating the fasting-state metabolomic signature does not provide information on
dynamic changes occurring in the fasted-to-fed transition. Therefore, it is of interest to
outline the dynamic metabolomic changes associated with insulin resistance and T2D
also in non-fasting conditions. Several studies have performed metabolomics during
an oral glucose tolerance test (OGTT) in healthy subjects, showing that a glucose load:
(1) decreases circulating levels of FFAs and acylcarnitines, reflecting a switch from beta-
oxidation to glycolysis and lipid storage; (2) increases circulating levels of bile acids and
lysophosphatidylcholines as markers of induced enterohepatic circulation of bile acids
and redistribution of phospholipids [14–16]. To the best of our knowledge, only one study
has directly compared the changes in the untargeted plasma metabolome upon a glucose
load between subjects with and without T2D [17], but none has been carried out with a
parallel comparison on the metabolome of the subcutaneous adipose tissue (SAT). This
study aimed to identify metabolic alterations during an oral glucose load in subjects with
T2D using an untargeted metabolomics and lipidomics approach on both plasma and SAT
samples. This setup provides a feasible method of describing metabolic inflexibility using
the metabolomic technique.

2. Methods
2.1. Subjects and Study Design

Briefly, 20 subjects with T2D (10 males and 10 females) and 20 controls matched for sex,
age (58 ± 9 vs. 58 ± 11 years), and BMI (30.7 ± 4.9 vs. 30.8 ± 4.6 kg/m2) were recruited.
T2D was diagnosed according to the ADA criteria. All subjects with T2D were on treatment
with only metformin for at least 3 months before the study, with doses ranging from 500
to 2500 mg according to clinical guidelines. Further characteristics of this cohort have
been previously described [18] and are summarized in Table 1. The study was approved
by the Regional Ethics Review Board in Uppsala (Dnr 2013/183 and 2013/494), and all
participants gave their written informed consent.
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Table 1. Clinical characteristics of study participants.

Control T2D

N (F/M) 10/10 10/10

Age (years) 58 (11) 58 (9)

Diabetes duration (years) N/A 4 (3)

BMI (kg/m2) 30.8 (4.6) 30.7 (4.9)

Waist-to-hip ratio 0.96 (0.07) 0.99 (0.05)

Plasma glucose (mmol/L) 6.0 (0.7) 8.2 (1.5) *

Serum insulin (mU/L) 11.5 (5.2) 15.5 (7.0) *

HbA1c (mmol/mol) 37.3 (3.7) 48.8 (8.6) ***

HOMA-IR 3.08 (1.58) 5.27 (2.86) **
Data are presented as mean (SD). * p < 0.05; ** p < 0.01; *** p < 0.001 relative to control (Mann–Whitney U test).

The subjects visited the research facility (Uppsala University Hospital) after an overnight
fast. First, a medical assessment was performed, and anthropometric data were collected.
Secondly, fasting blood samples were collected and analyzed for plasma glucose and lipids,
serum insulin, and C-peptide at the Department of Clinical Chemistry, Uppsala University
Hospital. Afterwards, a needle biopsy of the SAT was taken in the fasting state from the
lower part of the abdomen after local anesthesia with lidocaine (Xylocaine; AstraZeneca,
Södertälje, Sweden). Then, an OGTT was performed to analyze plasma glucose and serum
insulin via the administration of a bottle of a solution containing 75 g of glucose. Another
SAT needle biopsy and a blood sample were taken 90 min after glucose administration
with the same abovementioned procedure. Biopsies were taken from different sides of the
abdomen to avoid local tissue injury or inflammation at the biopsy site. Part of the fasting
and the post-OGTT SAT biopsy samples were snap-frozen in liquid nitrogen and used for
metabolomics [18].

2.2. Metabolites Quantification

Metabolite and lipid quantification was performed by Metabolon, Inc.’s (Durham, NC,
USA) TrueVision™ analysis, which includes the global mVision platform and TrueMass®

Lipomic Panel. The amounts provided for analysis were 2 × 150 µL of serum plus
1 × 100 mg and 1 × 50 mg of adipose tissue (whole-tissue biopsy) per sample for Metabolon’s
mVision and TrueMass Lipomics analysis, respectively. Plasma and adipose tissue samples
were analyzed at fasting and 90 minutes after glucose ingestion. All samples were processed
by Metabolon (Research Triangle Park, NC, USA) using GC/MS and LC/MS/MS platforms
with the methodological details previously reported [18] and summarized as follows:

Sample Preparation. Samples were prepared using the automated MicroLab STAR
system from Hamilton Co (Reno, NV, USA). Recovery standards were added prior to the
first step in the extraction process for quality control (QC) purposes. Sample preparation
was conducted using a methanol extraction to remove the protein fraction while allowing
maximum recovery of small molecules. The resulting extract was divided into five fractions:
one for analysis by UPLC-MS/MS with positive ion mode electrospray ionization, one
for analysis by UPLC-MS/MS with negative ion mode electrospray ionization, one for
liquid chromatography (LC) polar platform, one for analysis by gas chromatography/mass
spectrometry (GC/MS), and one as a backup. Samples were placed briefly on a TurboVap
(Zymark) under nitrogen to remove the organic solvent. For LC, the samples were stored
under nitrogen overnight. For GC, the samples were dried under a vacuum overnight.
Samples were then prepared for the appropriate instrument, either LC/MS or GC/MS.
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Liquid Chromatography/Mass Spectrometry (LC/MS, LC/MS2) Analysis. The sam-
ple extract for LC/MS/MS was split into two aliquots, dried, and then reconstituted in
acidic or basic LC-compatible solvents, each containing eight or more injection standards
at fixed concentrations. One aliquot was analyzed using acidic positive ion optimized
conditions, and the other using basic negative ion optimized conditions in two independent
injections using separate dedicated columns. The MS analysis alternated between MS and
data-dependent MS2 scans using dynamic exclusion.

Gas Chromatography/Mass Spectrometry (GC/MS) Analysis. GC/MS sample ex-
tracts were re-dried under vacuum desiccation for a minimum of 18 h prior to being
derivatized under dried nitrogen using bistrimethyl-silyl-triflouroacetamide (BSTFA). The
GC column was 5% phenyl, and the temperature ramp was from 60 ◦C to 340 ◦C in 17.5 min.
Samples were analyzed on a Thermo-Finnigan Trace DSQ fast-scanning single quadrupole
mass spectrometer using electron impact ionization and operated at unit mass resolving
power. The instrument was tuned and calibrated for mass resolution and mass accuracy on
a daily basis.

Accurate Mass Determination (LC/MS) and MS/MS Fragmentation (LC/MS/MS)
for Structural Elucidation. The LC/MS portion of the platform was based on a Wates
ACQUITY UPLC and a Thermo-Finnigan OrbiElite mass spectrometer, which had a linear
ion-trap (LIT) front end and an orbitrap mass spectrometer backend. Accurate mass
measurements could be made on the parent ion as well as fragments. The typical mass
error was less than 5 ppm. Fragmentation spectra (MSn) were targeted.

Metabolite Identification. Compounds were identified by comparison to library
entries of purified standards or recurrent unknown entities. Identification of known
chemical entities was based on comparison to metabolomics library entries of more than
3300 commercially available purified standards, and additional presently unknown entities
were identified by their recurrent nature.

Metabolite Quantification and Data Normalization. Peaks were quantified using
the area under the curve. For studies spanning multiple days, a data normalization step
was performed to correct variation resulting from instrument inter-day tuning differences.
Essentially, each compound was corrected in run-day blocks by registering the medians
to equal one (1.00) and normalizing each data point proportionately. Missing values were
assumed to result from areas falling below the detection limits. As such, missing values
were imputed with the observed minimum for each metabolite after the normalization step.

TrueMass Lipomics Panel. Lipids were extracted in the presence of authentic in-
ternal standards by the method of Folch [19] using chloroform: methanol (2:1 v/v). For
separating neutral lipid classes (free fatty acids; triglycerides; diglyceride; cholesteryl
ester) a solvent system consisting of petroleum ether/diethyl ether/acetic acid (80:20:1)
was employed. Individual phospholipid classes within each extract (phosphatidylcholine;
phosphatidylethanolamine) were separated using the Agilent Technologies 1100 Series
LC (Agilent Technologies, Santa Clara, CA, USA). Each lipid class was transesterified in
1% sulfuric acid in methanol in a sealed vial under a nitrogen atmosphere at 100 ◦C for
45 min. The resulting fatty acid methyl esters were extracted from the mixture with hexane
containing 0.05% butylated hydroxytoluene and prepared for GC by sealing the hexane
extracts under nitrogen. Fatty acid methyl esters were separated and quantified by capillary
GC (Agilent Technologies 6890 Series GC) equipped with a 30 m DB 88 capillary column
(Agilent Technologies) and a flame detector.

Metabolite levels were quantified in arbitrary units (AU), while fatty acid derivatives
were quantified in mole percentage of the lipidic subfamily. Metabolites missing in more
than 20% of the samples among control and T2D groups were excluded from the data
(modified 80% rule) [19]. The remaining missing metabolites that failed to reach the
detection threshold were imputed from the minimum observed value of the metabolite.
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2.3. Pathway Analysis and Statistical Analysis

All data are presented as mean ± SEM unless otherwise indicated. Statistical analyses
were performed using Metaboanalyst 5.0 (http://www.metaboanalyst.ca, accessed on 15
November 2022) and Prism 9 (GraphPad, San Diego, CA, USA).

We calculated the ratio between the post-OGTT and the fasting level of all metabolites
with absolute quantification in arbitrary units (fold-change). We calculated the difference
between the post-OGTT and the fasting percentage of all lipids with mole percentage
quantification. Multiple Mann–Whitney tests were used to compare fasting metabolite
levels and the changes after the glucose load versus fasting levels in all metabolites between
subjects with and without T2D. p-values were adjusted with the Benjamini, Krieger, and
Yekutieli false discovery rate procedure to account for multiple testing. Significantly
different metabolites were then detected based on a Q-value threshold <0.05. Spearman’s
correlations were performed to test the association between OGTT-induced fold changes
and several clinical and metabolic variables. Principal component analysis (PCA) was used
to condense all metabolite profiles into one principal component (PC1) that explained 47%
of the observed variance. The PC1 scores were used as outcomes in multiple regression
models to identify the clinical variables associated with the changes in metabolite levels
after OGTT. p-values and Q-values lower than 0.05 were considered significant.

Metaboanalyst 5.0 was used for automated pathway analysis and interpretation of
metabolomics data.

This was an exploratory study with no formal power analyses. However, according
to previous studies using a similar approach [15,20], this study has at least 80% power to
detect 20% differences in the effects of OGTT on metabolite concentrations between control
and T2D groups. Still, no adjustment for multiplicity was considered for this purpose.

3. Results
3.1. Untargeted Metabolomics and Lipidomics during the OGTT in Controls and Type 2
Diabetes Subjects

We identified 541 metabolites with absolute quantification and 214 lipids with mole
percentage quantification in plasma. In the adipose tissue, we found 365 metabolites with
absolute quantification and 223 lipids with mole percentage quantification. We did not
consider those molecules that could not be identified as known metabolites. The complete
metabolite list with their mean fold change 90 min after glucose administration is available
in Supplementary Materials File S1.

Levels of 25 unique plasma metabolites were differently affected by the OGTT in
T2D compared to controls (p < 0.05, after false discovery rate (FDR) correction, Figure 1a,b.
In controls, the glucose load caused a reduction in the plasma concentration of several
acylcarnitines, acyl ethanolamines, xanthine, mannose, BCAAs, and other amino acids, but
this effect was significantly blunted in patients with T2D (all p < 0.05 after FDR correction;
Figures 1c and 2). Additionally, patients with T2D had a greater rise in plasma glucose
and fructose levels during the OGTT compared to controls (both p < 0.05). Patients with
T2D had a reduced relative reduction of the unsaturated palmitoleic and alpha-linolenic
acids and a reduced relative increase of the saturated stearic acid compared to controls
(Figures 1c and 2).

http://www.metaboanalyst.ca
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Figure 1. Metabolites with a significantly different fold change after the OGTT between T2D and 
control subjects. (a) Volcano plot of the differences in plasma metabolite concentration changes 90 
min after 75 g glucose ingestion between patients with T2D and controls. Y-axis shows –log10 false 
discovery rate. Red dots depict significant results. (b) Zoom-out on the significant metabolites from 
panel (a). (c) Fold and percentage changes of the significant metabolites after the OGTT for T2D and 

Figure 1. Metabolites with a significantly different fold change after the OGTT between T2D and
control subjects. (a) Volcano plot of the differences in plasma metabolite concentration changes
90 min after 75 g glucose ingestion between patients with T2D and controls. Y-axis shows −log10

false discovery rate. Red dots depict significant results. (b) Zoom-out on the significant metabolites
from panel (a). (c) Fold and percentage changes of the significant metabolites after the OGTT for T2D
and control subjects. In blue, acylcarnitines; in brown, amino acids; in light blue, acyl ethanolamides;
in green, monosaccharides; in magenta, xenobiotics; in orange, free fatty acids.
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Figure 2. Fasting and 90 min post-OGTT plasma levels of the metabolites that significantly differ in
response to the OGTT between control and T2D subjects (n = 20 per each group). FA16:1n7: palmitoleic
acid. FA18:0: stearic acid. FA18:3n3: alpha-linoleic acid. Data are presented as mean ± SEM. AU,
arbitrary units. %, percentage of the free fatty acid family total concentration. * p < 0.05, ** p < 0.01,
*** p < 0.001 for differences between controls and T2D individuals (Mann–Whitney tests).

Glucose, mannose, and metformin had significantly different plasma concentrations at
fasting between T2D and controls after FDR correction (Supplementary Materials File S2).

The alterations observed in adipose tissue and plasma differed largely. In adipose
tissue, several metabolites tended to increase during the OGTT in T2D subjects compared
to controls, such as lipids, glutamate, and mannose (Supplementary Materials File S2), but
did not cross the threshold of statistical significance after FDR correction.
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3.2. Metabolic Pathways Associated with Abnormal Response to Oral Glucose in Type 2 Diabetes

The metabolites with different plasma concentration changes during the OGTT in
T2D and control subjects were analyzed with automated pathway analyses. The majority
of metabolites that differed between controls and T2D were related to fatty acid biosyn-
thesis; fructose, mannose, and galactose metabolism; amino sugar and amino nucleotide
metabolism (all Q < 0.049) (Figure 3).
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Figure 3. Pathway analysis. The figure shows the pathways that significantly differ in response to the
OGTT between controls and T2D subjects. Metabolites are arranged according to the scores based on
enrichment analysis (y-axis, Q-values) and topology analysis (x-axis, arbitrary unit). The color of each
circle shades from white to red according to the p-value, and the size is based on the pathway impact
values. Only significant pathways are named in the figure. Figure created with Metaboanalyst 5.0.

3.3. Associations with Clinical Parameters

To screen which clinical parameters were most associated with the metabolites changes
during the oral glucose load, we performed a correlation matrix including markers of
hyperglycemia, insulin resistance, and insulin production (glucose AUCOGTT, HbA1c,
fasting glucose, HOMA-IR, insulin AUCOGTT, Matsuda index, Insulinogenic index), obesity
markers (BMI, FFA AUCOGTT, liver fat percentage), and age (Figure 4). Changes in the
levels of acylcarnitines, amino acids, and monosaccharides were prominently positively
correlated with markers of hyperglycemia, i.e., glucose AUCOGTT, HbA1c, and fasting
glucose, and the insulin resistance marker HOMA-IR and negatively correlated with IGI.
Some of the metabolites were also negatively associated with the Matsuda index. Among
the amino acids, BCAAs showed the strongest associations. No remarkable correlations
were found between metabolite concentration changes and insulin AUCOGTT, age, BMI,
FFA AUCOGTT, or liver fat content.
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principal component, and the PC scores were used as the dependent variable (Table 2). 
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Figure 4. Correlation matrix between plasma concentration change of metabolites that significantly
differ in response to the OGTT between controls and T2D individuals (rows) and several clinical
parameters (columns). A black dot indicates a statistically significant correlation between the respec-
tive metabolite and parameter (p < 0.05). Glc AUCOGTT: glucose area under the curve during the
OGTT. HbA1c, glycosylated hemoglobin. Ins AUCOGTT: insulin area under the curve during the
OGTT. IGI: insulinogenic index. FFA: free fatty acid. In blue, acylcarnitines; in brown, amino acids; in
light blue, acyl ethanolamides; in green, monosaccharides; in magenta, xenobiotics; in orange, free
fatty acids.

In order to identify whether hyperglycemia, insulin resistance, or obesity predicted the
observed changes in plasma metabolites, relevant parameters were included in multivariate
regression analyses (Table 2). PCA was used to condense all metabolites into one principal
component, and the PC scores were used as the dependent variable (Table 2). The models
were also adjusted for sex and age. Only glucose AUCOGTT or HbA1c were significant
predictors of the PC scores derived from the metabolites (model 1 r2 = 0.61, p < 0.001 and
model 2 r2 = 0.47, p < 0.001, respectively) (Table 2), while HOMA-IR, BMI, age, and sex
were not.
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Table 2. Multiple linear regression models of principal component score 1 (PC1) derived from
metabolites with significantly different fold changes after the OGTT between T2D and control
subjects vs. insulin sensitivity and obesity.

Standardized Beta p-Value 95% CI R2

Model 1
GluAUC −0.736 <0.001 [−0.30, −0.13]
HOMA-IR −0.010 0.950 [−0.46, 0.43]
BMI −0.222 0.098 [−0.36, 0.03]

0.61 ***
Model 2
HbA1c −0.463 0.003 [−0.30, −0.07]
HOMA-IR −0.289 0.068 [−0.85, 0.03]
BMI −0.132 0.379 [−0.32, 0.12]

0.47 ***
PC1: proportion of variance = 46.5%. Models are adjusted for sex and age. CI, confidence interval for unstan-
dardized coefficient (lower bound, upper bound); GluAUC, glucose area under the curve; BMI, body mass index;
HbA1c, glycosylated hemoglobin. Bold values indicate statistical significance. *** p < 0.001.

4. Discussion

Our results suggest that after an OGTT, T2D subjects display an impaired reduction in
plasma levels of several metabolite families, including amino acids, acylcarnitines, and fatty
acids, while glucose and fructose levels are increased. Furthermore, we demonstrated that
the OGTT-induced metabolome changes are independently associated with hyperglycemia
per se rather than insulin resistance.

Evidence about the impact of hyperglycemia and insulin resistance on metabolome
changes in the fasted-to-fed transition is poor and fragmented [14,15,21,22]. In the present
study, we characterized the global metabolome at fasting and 90 min after a 75 g load of oral
glucose, and we observed whether the fold change of the concentration of each metabolite
from fasting was different between subjects with and without T2D, with a case-control
approach. In response to the glucose challenge, most lipids, acylcarnitines, amino acids,
fatty acids, and fatty acid oxidation intermediates decreased in plasma and adipose tissue
in control and T2D subjects. As observed in previous studies, these alterations reflect the
switch from fatty acid oxidation to glucose oxidation and fat storage during the OGTT [14].
However, after FDR correction, we identified 25 metabolites that showed different dynamics
between T2D subjects and controls over a glucose load in plasma but not in adipose tissue.
T2D patients display higher plasma monosaccharide levels during an OGTT but attenuated
responses in several metabolite families, including amino acids, acylcarnitines, and fatty
acid derivatives. The post-OGTT fold changes of amino acids, acylcarnitines, fatty acids,
and monosaccharides were positively associated with glucose AUC during the OGTT and
HbA1c levels, suggesting that hyperglycemia influences metabolic inflexibility in response
to a glucose load. This can also indicate that the metabolic inflexibility during an OGTT
in T2D subjects could be due to the reduced amount of glucose entering the tissues [23]
and being available for oxidation and storage. This would be consistent with a previous
study demonstrating that metabolic flexibility in response to glucose in subjects with T2D
is not impaired after controlling for glucose disposal rate [23,24]. Metabolomics research
has shown that metformin influences several metabolites’ plasma levels, including reduced
concentration of unsaturated lipids, lysophosphatidylcholines, urea cycle metabolites,
and purine derivatives [25]. Therefore, even though the patients with T2D did not take
metformin on the day of the examination, we cannot rule out a possible impact of metformin
in the metabolomics findings. Additionally, treatment with metformin in patients with
T2D might have attenuated the investigated differences by lowering the subjects’ insulin
resistance in the long term. Although many metabolites are known to be associated with
T2D [10], we are the first to report the dynamic changes following an oral glucose load both
in plasma and in the SAT. The data presented with this untargeted metabolomics approach
suggest that analyses of key metabolites, such as BCAAs, acylcarnitines, monosaccharides,
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and related pathways, during an OGTT provide a great opportunity to study metabolic
inflexibility across different degrees of hyperglycemia and insulin resistance.

Glucose and metformin levels validated our data. As expected, subjects with T2D had
a higher increase in glucose levels after the glucose load than controls [18]. Additionally,
since all patients with diabetes were on metformin, a reduced concentration of the drug
was appreciable in the second sampling after the glucose load. Patients with T2D did not
take metformin the morning before the visit. Still, metformin levels at the time of sampling
reflected the pharmacokinetic processes of distribution and metabolism, in line with the
known half-time of the drug (2–6 h) [26]. No metformin was detected in the control subjects.

The most numerous metabolite family was amino acids. An impaired reduction in
the plasma levels of the BCAAs leucine, isoleucine, and valine during the OGTT occurred
in T2D subjects. Elevations in BCAAs are considered predictive biomarkers of impaired
fasting glucose [11]. BCAAs alter key metabolic processes affecting glucose homeostasis,
for instance, activating the mTOR pathway and disrupting insulin signaling [27,28]. The
observed impaired reduction of BCAAs during the OGTT in T2D may be due to impaired
BCAA catabolism [29] or reduced uptake into the skeletal muscle [27,28,30]. BCAAs excess
might spill over into other tissues, including the liver and beta-cells, leading to TCA cycle
anaplerosis via BCAAs catabolite products (i.e., alpha-ketoacids), impaired beta-oxidation
and higher acylcarnitine release, mitochondrial stress, and disruption of insulin signaling,
thus reinforcing hyperglycemia [31,32].

Concomitantly, we found that other amino acids, including phenylalanine, threonine,
and glutamine, showed an impaired reduction during the glucose challenge in T2D subjects
compared to controls.

Impaired changes for BCAAs, phenylalanine, and threonine have been previously
reported for obese and insulin-resistant subjects in separate studies [21,22,33,34]. Increased
fasting levels of the aromatic amino acid phenylalanine and threonine have also been
associated with diabetes [35–41]. Recent evidence employing the Mendelian randomization
method has confirmed a causal role of several amino acids’ disrupted metabolism in the
development of insulin resistance [42]. Additionally, lower glutamine levels or glutamine-
to-glutamate ratio are associated with a higher risk of diabetes [36,39,40] and a worse
cardiometabolic profile [43]. In our study, the OGTT caused a reduction in circulating
glutamine in controls, while an increase was seen in T2D subjects. Since insulin resistance
results in a reduced ability of insulin to block muscle protein breakdown after a glucose
load [16], increased circulating glutamine levels might depend on the higher release of
this amino acid into the circulation as a consequence of impaired blockade of protein
breakdown. Our results underline that dynamic changes of BCAAs and other amino acids
after a glucose load also reflect metabolic inflexibility in T2D subjects with hyperglycemia.

Four acylcarnitines (hexanoyl carnitine, cis-4-decenoyl carnitine, decanoyl carnitine,
and octanoyl carnitine) showed an impaired reduction in plasma levels after the OGTT in
patients with T2D compared to controls. Acylcarnitines are markers of incomplete fatty acid
oxidation [44], and their plasma levels are suppressed during an OGTT in healthy men, in-
dicating a metabolic switch from beta-oxidation to glycolysis and liposynthesis [14]. Higher
levels of FFA during the OGTT, as previously reported [18], and reduced suppression of
acylcarnitines in the T2D group suggest that the oral glucose load did not suppress FFA
release or fatty acid oxidation as much as in the control group. These findings are consistent
with animal models [45] and with recent evidence that acylcarnitine plasma levels are less
suppressed even in subjects with higher insulin resistance but without diabetes [21].

Plasma mannose levels are a surrogate for hepatic glycogenolysis, namely the degra-
dation of glycogen into glucose that is released into the circulation in the fasting state. An
oral glucose load elicits an insulin response that blocks hepatic glycogenolysis, resulting
in lower mannose levels [46], as observed in the control group of this study. However,
this was not seen in T2D subjects who displayed unchanged mannose levels during the
OGTT. This indicates that hepatic insulin resistance causes a failure in suppressing hepatic
glycogenolysis in the fed state, as shown in rat models [47].
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Increased plasma fructose levels in patients with T2D during the OGTT likely reflect
increased endogenous production of this monosaccharide because of the shunt of excess
glucose from glycolysis to the polyol pathway. This pathway is insulin-independent and
leads to decreased production of endogenous antioxidants and contributes to microvas-
cular diabetic complications affecting tissues that are freely permeable to glucose, such as
the retina [48,49]. Additionally, fructose in excess might compete with glucose in other
metabolic pathways, leading to disrupted saccharide turnover.

Laurate is a medium-chained fatty acid that rises predominantly during fasting due
to lipolysis in the adipose tissue mediated by hormone-sensitive lipase. Insulin-sensitive
subjects show a major decrease in FFAs circulating levels after an OGTT because of lipolysis
suppression induced by insulin on the adipose tissue [50]. Therefore, higher circulating
levels of laurate in T2D patients link impaired insulin sensitivity with continuous fatty
acid release in the transition from a fasted to a post-prandial state. After a glucose load,
the plasma concentration of stearic acid (FA18:0) rises while the levels of the unsaturated
palmitoleic (FA16:1n7) and alpha-linolenic acid (FA8:3n3) are reduced [51,52]. These
changes are significantly blunted in T2D. This might be caused by altered re-esterification
processes and impaired lipid storage in the adipose tissue rather than by adipose insulin
resistance per se, as suggested before [18,53]. Moreover, we could not detect lipidome
alterations in the adipose tissue after the OGTT.

Oleic ethanolamide and palmitoyl ethanolamide are endogenous lipid analogues
classified as endocannabinoid-like molecules [54]. These lipid amides are endogenous
ligands of peroxisome proliferator-activated receptor (PPAR)-alpha, a nuclear receptor
activated mainly in the liver to promote fatty acid beta-oxidation, gluconeogenesis, and
ketogenesis during energy deprivation [55]. Oleic ethanolamide has gained interest because
of its central anorexigenic effect [54]. Their role in insulin resistance is still to be clarified.

Notably, opposite to what Ho et al. found, we saw increased rather than decreased
serotonin levels after OGTT, with no difference between controls and patients with T2D, and
we did not see significant changes in TCA cycle intermediates after glucose load [15,56].
Moreover, we did not reveal any differences in the suppression of beta-hydroxybutyrate, a
marker of ketogenesis, between T2D and controls, as suggested before [15,16]. This might
depend on the different sampling times, different clinical characteristics of the cohorts, or
sample sizes.

Surprisingly, we did not see any significant fold changes in the metabolite pool of the
adipose tissue after a glucose load. This might depend on the short period between the
two measurements (90 min), but it also suggests that tissues other than the adipose, such as
the liver or the skeletal muscles, play a major role in determining the early metabolome
response observed in plasma following the oral glucose load.

Metabolic inflexibility is associated with hyperglycemia and insulin resistance, but
the cause-effect relationship is not known. The observed metabolic inflexible state with
raised fatty acids and amino acids in the post-prandial state encompasses a variety of
pathways and mechanisms that can further lead to hyperglycemia and insulin resistance.
Increased lipids and BCAA in circulation or non-adipose tissues, such as muscle, liver and
pancreas, hamper insulin signaling [28,57]. Additionally, an increased supply of fatty acids
can lead to defects in fatty acid oxidation and altered mitochondrial energetics [58]. Several
studies have also suggested that the rise in circulating BCAAs, derived by a decline in their
catabolism in adipose tissue in metabolically compromised individuals [59], can “spill”
into catabolic pathways in muscle and liver and reduce the efficiency of the oxidation of
fatty acids and glucose, leading to mitochondrial stress, insulin resistance, and further
contributing to hyperglycemia [30]. However, this study included subjects where insulin
resistance had already developed, and therefore we cannot rule out that insulin resistance
itself plays a primary role in the observed metabolic inflexibility.
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5. Limitations

This study has some limitations. First, the OGTT metabolome sampling was performed
90 min after glucose ingestion. This time might be too short to highlight some later
metabolome perturbations, especially in the adipose tissue. Secondly, our cohort consisted
of 40 subjects, which might not give sufficient statistical power to detect smaller differences
in the metabolome, especially considering the robust correction we performed for multiple
testing. Third, our patients with T2D were on metformin treatment, and the potential effect
of it on the outlined results is unknown. However, patients did not take metformin on the
days of the visit, so the acute effects of the drug on the presented results are expected to be
minimal. Additionally, the degree of physical activity was not available and therefore was
not included in the models. Finally, this observational study does not allow us to conclude
the causality of the associations presented. Further studies are warranted to shed light on
the pathophysiology of metabolic inflexibility in insulin resistance.

6. Conclusions

We used a metabolomics approach to show that T2D patients display attenuated re-
sponses of several metabolites in plasma during an OGTT. This involves several metabolite
families, including amino acids, acylcarnitines, and fatty acid derivatives. These per-
turbations support inflexibility in several metabolic pathways, which can contribute to
dysregulated substrate partitioning and turnover in T2D and seem to be associated with
chronic hyperglycemia rather than insulin resistance, secretion, or adiposity. These findings
are not directly associated with changes in adipose tissue metabolism. Instead, other tissues,
such as muscle and liver, may be more important, and the underlying mechanisms and
impact in T2D warrant further studies considering the metabolome variation upon different
nutrient challenges.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13010131/s1. Supplementary Materials File S1: list of
all metabolites’ concentration in plasma and SAT before and after OGTT. Supplementary Materials
File S2: statistical analyses for differences in all metabolites’ plasma concentration after OGTT between
T2D and controls.
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