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Abstract: Novel anticancer treatments target the pH regulating system that plays a major role in
tumor progression by creating an acidic microenvironment, although few studies have addressed
their effect on tumor acidosis. In this study, we investigated in vivo several proton pump inhibitors
(PPIs) targeting NHE-1 (Amiloride and Cariporide) and V-ATPase (Esomeprazole and Lansoprazole)
proton transporters in the DU145 androgen-insensitive human prostate cancer model. In cellulo
results showed that DU145 are sensitive, with decreasing efficacy, to Amiloride, Esomeprazole
and Lansoprazole, with marked cell toxicity both in normoxia and in hypoxia, with almost any
change in pH. In vivo studies were performed upon administration of Esomeprazole to assess both
the acute and chronic effects, and Iopamidol-based tumor pH imaging was performed to evaluate
tumor acidosis. Although statistically significant tumor pH changes were observed a few hours
after Esomeprazole administration in both the acute study and up to one week of treatment in the
chronic study, longer treatment resulted in a lack of changes in tumor acidosis, which was associated
to similar tumor growth curves between treated and control groups in both the subcutaneous and
orthotopic models. Overall, this study highlights MRI-CEST tumor pH imaging as a valid approach
to monitoring treatment response to PPIs.

Keywords: tumor; cancer; prostate cancer; magnetic resonance imaging (MRI); chemical exchange
saturation transfer (CEST); iopamidol; pH; acidosis; treatment; proton pump inhibitors (PPIs); resistance

1. Introduction

Prostate cancer is one of the three major responsible causes of death in men diagnosed
with cancer [1,2], and in recent decades, different approaches, from imaging to screening
assays, have been combined to help clinicians to better stratify the progression risks and char-
acterize tumor lesions in a patient-based fashion [3,4]. Above all, multi-parametric Magnetic
Resonance Imaging (MRI) is one of the preferred imaging techniques able to provide both
anatomical and functional information about perfusion, oxygenation and necrosis induced
by the radiotherapy [5]. Thus, many efforts have been focused on the standardization and
validation of the multiple approaches available in clinic [6,7]. Nevertheless, other assays
are needed to complete the screening, such as biopsies and prostate-specific antigen (PSA)
tests that look into specific biomarkers for achieving the best prognosis for patients [8]. An
emerging MRI approach is the Chemical Exchange Saturation Transfer (CEST) imaging
technique, which by exploiting pH sensitive agents can provide measurements of tissue
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pH [9–11]. In particular, the administration of Iopamidol, a pH-responsive contrast agent,
allows accurate quantitative assessments of extracellular tumor pH in vivo [9,12–14]. Of
note, some studies have been conducted in human patients with promising clinical translata-
bility for the characterization of tumor lesions with accurate pH measurements [15–17]. It is
well known that the tumor microenvironment is characterized by acidosis, a physiological
state that is exacerbated by the abnormal metabolism rate that tumors adopt to survive
and to counteract the defensive mechanism of the organism [18–21], especially to evade
and suppress the immune surveillance [22,23]. As a matter of fact, immune cells suffer
this condition and become harmless to the tumor cells since they are no longer able to
fight against the neoplastic cells [24,25]. Consequently, the tumor cells can grow, advance
in more aggressive stages, and finally migrate from the primary mass to the circulation,
creating metastasis in multiple target organs, with tumor acidosis being associated to
cancer invasiveness [26–30]. Therefore, treatments able to perturb this acidic condition
have been extensively investigated [31]. In particular, alkalinization therapies showed
promising results in reducing cancer invasiveness, by strengthening the immune activation
when coupled with immunotherapy [32–34] and by enhancing cytotoxicity when coupled
with pharmaceuticals [35]. Another way to modify the extracellular pH in tumors is to
actively inhibit the enzymatic pathways involved in the altered metabolism and physiology.
Recently, MRI-CEST tumor pH imaging has been shown to assess the treatment response
of drugs targeting different metabolic pathways by measuring tumor pH changes [36–39].
Among the several proton transporters, V-ATPases are the main transporters responsible
for the efflux of protons to the extracellular milieu, and they have been found to be more
active and more expressed in several types of cancer and associated with the invasiveness in
prostate cancers [40]. Proton pump inhibitors (PPIs) are weak bases that upon protonation
accumulate selectively in acidic spaces, as in tumors, where they are activated, and are non-
toxic to normal cells [41]. These compounds block the transport of the H+ excess from the
cytosol compartment to the extracellular space, therefore allowing to reduce tumor acidity
and aggressiveness [42,43]. Promising results have been obtained in several murine models
of gastric, colorectal, breast and melanoma cancers upon treatment with PPIs [41,44–49].
Therefore, our aim was to investigate the efficacy of several PPIs on a castration-resistant
human prostate cancer cell line by combining in vitro and in vivo studies addressing tumor
acidosis. Esomeprazole, Lansoprazole (vacuolar-ATPase inhibitors), Amiloride and Cari-
poride (sodium-hydrogen exchanger-1, NHE-1 inhibitors) were assayed for cell viability
and extracellular medium pH measurements to monitor the therapeutic effect on tumor
cells incubated for 24 or 48 h with these drugs, both in normoxia and hypoxia. Tumor
growth and MRI-CEST extracellular tumor pH measurements were performed in vivo after
acute or chronic Esomeprazole administration in both subcutaneous and orthotopic murine
models for monitoring the treatment outcome.

2. Materials and Methods
2.1. Cell Culture

The DU145 cell line was obtained from American Tissue Culture Collection (ATCC)
(Manassas, VA, USA). DU145 cells were grown in Minimal Essential Medium (MEM) with
the addition of 1% (v/v) non-essential amino acids (NEAA), 10 % (v/v) fetal bovine serum
(FBS), 1% (v/v) Na-Pyruvate, 100 mg/mL streptomycin and 100 U/mL penicillin, bought
from Lonza (Lonza Sales AG, Verviers, Belgium). Cells were incubated inside 175 cm2

flasks at 37 ◦C in a humidified 5% CO2 incubator, and after reaching confluence, detaching
was obtained with the addition of 2 mL of Trypsin–EDTA solution.

2.2. In Cellulo Treatment with PPIs

Esomeprazole, Lansoprazole, Amiloride and Cariporide were obtained from Sigma
(Sigma Aldrich, Milano, Italy). The inhibitors came as a powder and were then dissolved in
DMSO to prepare a mother stock solution that was diluted at the moment of the experiment
at several concentrations. A final volume of 100 µL was prepared for each well of the 96-well
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plate, where cells were seeded the day before at a density of 3× 104. Cell viability tests were
conducted after 24 h and 48 h of drug treatments performed in normoxia and in hypoxia,
whereas for pH measurements they were conducted only in normoxia after 24 h exposure.
The medium of control cells was added with DMSO to match the same concentration
in drug-treated cells. Cells were incubated in hypoxia with a hypoxic incubator (New
Brunswick™ Galaxy® 48 R, Eppendorf S.r.l., Milan, Italy) set to 1% O2, 5% CO2, and 95%
humidity during the whole experiment.

2.3. Cell Viability Study

A colorimetric assay with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) dye was used for cell viability studies in a multi-well plate. Each well was
washed twice with phosphate buffer solution (PBS) and then filled with the MTT solution
(prepared by dissolving MTT in PBS) and incubated for 4 hours (in normoxic or hypoxic
conditions). During the incubation, formazan crystals (purple colored) are produced
following the enzymatic reaction and are dissolved in DMSO before the fluorescence
reading at 500–600 nm.

2.4. Extracellular pH Measurements in Cellulo

Extracellular pH measurements were performed with the pH-Xtra Glycolysis Assay
(Luxcel Bioscience, Cork, Ireland) kit in normoxic conditions using a microplate reader (BioTek
Instruments, Inc., Winooski, VT, USA). Following the 24 h treatment in a standard incubator
(5% CO2, 37 ◦C), 96-well plates were placed in a CO2-free incubator at 37 ◦C for 2 h. A detailed
description of the whole procedure has been previously described [50]. The pH accuracy in
calculating the extracellular pH medium is reported in Supplementary Figure S1.

2.5. QRT-PCR and Western Blot

Total RNA (500 ng) was extracted from Du145 prostate cancer cells by using TRIzol®

reagent (15596018, Invitrogen, Waltham, MA, USA) and used to obtain cDNA using the
SuperScript III Reverse Transcriptase Kit (Invitrogen). The quantitative RT-PCR was carried
out on a Fast Real-Time PCR System (Applied Biosystems, 7900HT instrument) using Sybr
Green 2× PCR Master Mix with GAPDH as house-keeping gene, using the ∆∆Ct method.

A RIPA Lysis buffer (Merk Millipore #20-188) supplemented with Protease Inhibitor
Cocktail (Sigma #P2714) was used to extract proteins from the DU145 prostate cancer
cells. Then, 50 mg of total protein was separated by Bio-Rad Mini-PROTEAN® TGX TM

Gel (Bio-rad #456-9034) and transferred to a 45 µm-pore polyvinylidene difluoride (PVDF)
membrane (Immobilon PSQ, Millipore) and TBS-T (Tris-buffered saline with 0.1% Tween-20),
with 5% milk used for blocking. Primary antibodies for ATP6V1A (1:1000; Abcam #137574)
and NHE1 (1:2000; Novus Biological #NBP1-76847) were detected by anti-rabbit IgG (1:5000;
Sigma # A6154), and β-actin (1:3000; Sigma-Aldrich #A1978) by anti-mouse IgG (1:5000;
Sigma #A4416). Signals were detected with Pierce TM ECL Western Blotting Substrate kit
(Thermo-Fisher #32106), and ImageJ software (https://imagej.nih.gov/ij/index.html) was
used to quantify the bands.

2.6. Experimental In Vivo Settings

The European guidelines (directive 2010/63) were followed for animal procedures and
husbandry and according to the Ethical Committee of our university. Athymic nude mice
were obtained from Envigo Srl (San Pietro al Natisone, Italy) and housed in a temperature-
controlled room with a 12-hour light/dark schedule. DU145 cells (5 × 106 cells) were
injected subcutaneously in both flanks of 8-week-old male mice in two cohorts of mice;
the first was used for the acute effect experiment (n = 8) and the second one was used
for the 3-week-long chronic regimen (n = 16). A third cohort of mice (n = 8) was used
for the orthotopic model in which 1 × 106 DU145 cells were inoculated into the prostate
frontal lobe. For the subcutaneous model, caliper measurements were used to record
the two dimensions of height (H) and length (L) to calculate tumor volumes using the

https://imagej.nih.gov/ij/index.html
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formula V = H x L2

2 . Instead, for the orthotopic model, region of interests were placed on
T2-weighted axial MR images by using the ITK-Snap software (version 3.6, itksnap.org).
Tumors with a size of ca. 4–5 mm in diameter started the imaging protocol with systemic
anesthesia obtained by intramuscle injection of a mixture of xylazine 5 mg/kg (Rompum;
Bayer, Milan, Italy) and tiletamine/zolazepam 20 mg/kg (Zoletil 100; Virbac, Milan, Italy).
Esomeprazole was prepared at a concentration of 1 mg/mL in a saline solution (NaCl 0.9%)
and administered orally (dose = 2.5 mg/kg b.w., ca. 100 µL of volume per mouse) every
other day, starting when tumor dimensions were ca. 50–80 mm3 (for both subcutaneous
and orthotopic tumor models).

2.7. MRI In Vivo Experiments

A Bruker Avance Neo MRI microimaging scanner operating at 7 Tesla (Bruker Biospin,
Ettlingen, Germany) and equipped with a quadrature 1H coil was used to acquire all the
images. Mice were anesthetized for the MRI acquisitions, and before their placement in the
scanner a tail vein catheter was placed to inject Iopamidol. The imaging protocol involves
the acquisition of scout images and of a T2-weighted multislice sequence, followed by
the Z-spectra (CEST) acquisition. CEST acquisition parameters were: B1 = 3 µT, TS1 = 3 s,
TS2 = 1 s, offsets = 46, offset range: −10 to +10 ppm, matrix = 128× 128, FOV = 30 × 30 mm,
number of slices = 8, slice thickness = 1.5 mm, TR = 11.2 s, and TE = 3.9 ms [51]. Iopamidol
was injected after the first CEST acquisition (dose: 4 g Iodine/kg b.w.) and a second CEST
image was acquired to calculate the tumor extracellular pH maps. MRI-CEST pH images
were acquired in the first cohort of mice (acute effect) 3 hours after the Esomeprazole
administration, whereas in the second cohort of mice (chronically treated) they were
acquired after the first and the second week of treatment.

2.8. CEST Imaging Analysis

An in-house script was used to analyze CEST images within the MATLAB (The
Mathworks, Inc., Natick, MA, USA) environment. Briefly, for each voxel, Z-spectra were
interpolated and B0-shift corrected by cubic smoothing splines and CEST contrast (ST%)
was calculated by asymmetry analysis [52]. Given that the endogenous components can
contribute to the CEST signal, a background subtraction was performed by subtracting the
ST contrast after Iopamidol injection from the ST contrast before the injection on a per voxel
basis to obtain the difference contrast map (∆ST%). Tumor pHe values were calculated
in vivo by applying the ratiometric procedure [12].

2.9. Statistical Analysis

Data are shown in all graphs as mean values with SD (standard deviations). ANOVA
analysis was applied with the post-hoc Bonferroni correction for in vitro studies, whereas an
unpaired Student’s t-test was used for in vivo studies by using GraphPad Prism version 9.1
(La Jolla, CA, USA).

3. Results
3.1. In Cellulo Studies

Androgen-insensitive DU145 prostate cancer cells showed an elevated expression of
both NHE1 and V-ATPase proton pumps at both mRNA and protein levels, comparable to
that of other androgen-insensitive PC3 cancer cells (Supplementary Figure S2).

Amiloride was effective in reducing the cell viability of the DU145 cancer cells starting
at an intermediate concentration, with higher cell death upon longer exposure (48 h) or at
the highest concentration (Figure 1A). Even in hypoxic conditions, Amiloride treatment
resulted in significant cell death at both 24 h and 48 h of exposure but at the highest con-
centration (Figure 1B). On the other hand, Cariporide was totally ineffective in decreasing
cell viability at any tested condition and concentration. Esomeprazole treatment showed
significant and comparable results to Cariporide, with a significant cell death at all the
concentrations but only after 48 h of exposure in normoxia and at the highest concentration



Metabolites 2023, 13, 48 5 of 13

in hypoxic conditions. The homologue Lansoprazole induced a significant response only
after incubation in normoxic and hypoxic conditions at the highest doses.
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Figure 1. Impact of proton pump inhibitors on cell viability. Cell viability results for DU145 human
prostate cancer cell line in normoxia (A) and hypoxia (B) after 24 or 48 h incubation (gray columns)
with Amiloride, Cariporide, Esomeprazole, and Lansoprazole (in blue, light-blue, orange and pink
bars, respectively), at increasing concentrations (associated with darker colors of the bar columns;
first two columns on the left are control cells at 24h or at 48h). Statistical significance was calculated
with ANOVA analysis corrected with a Bonferroni post-hoc test applied to the control group at the
corresponding time point (* p value < 0.05; ** p value < 0.01; *** p value < 0.001; **** p value < 0.0001).

pH measurements taken for DU145 after 24 h of incubation with the different PPIs
revealed that only Amiloride was able to slightly modify the extracellular pH when com-
pared to the untreated cells, although this was not statistically significant (Figure 2). All
other drugs did not provide any extracellular pH increase compared to control cells; in-
stead, a marked acidification was observed, albeit Esomeprazole showed a more alkaline
extracellular pH at the highest concentration compared to the other two concentrations.

3.2. Extracellular Tumor pH Evaluation upon Acute Treatment

Since Esomeprazole showed a marked toxicity in both normoxic and hypoxic condi-
tions, it was selected for the following in vivo studies. Consequently, Esomeprazole was
administered once to mice bearing subcutaneous DU145 tumors, and MRI-CEST tumor pH
imaging was performed to evaluate acute extracellular tumor pH changes three hours after
the single administration. Baseline tumor extracellular pH values showed a marked acidic
tumor microenvironment, whereas a significant alkalinization occurred in the same mice
after Esomeprazole gavage (tumor extracellular pH = 6.79 and 7.07 for baseline and treated
mice, p < 0.05, Figure 3).
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Figure 2. Impact of proton pump inhibitors on extracellular pH. Measurement of culture media
pH values for DU145 prostate cancer cells upon incubation for 24 h in normoxia with Amiloride,
Cariporide, Esomeprazole, and Lansoprazole (blue, light-blue, orange and pink bars, respectively) at
increasing concentrations (associated with darker colors of the bar columns) compared to control
cells (white column bar on the left).
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Figure 3. Acute effect of Esomeprazole on tumor extracellular pH. MRI-CEST extracellular tumor
pH values for DU145 subcutaneous tumors three hours after oral Esomeprazole administration
(dose: 2.5 mg/kg b.w.) in treated (n = 4) and untreated (n = 4) groups (* p value < 0.05, unpaired
Student’s t-test) (A). Tumor pH maps superimposed over T2w anatomical images are shown for two
representative untreated mice (B) and for two treated mice (C) showing a marked reduction in tumor
acidic values upon Esomeprazole administration.
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3.3. Tumor Extracellular pH Evaluation upon Chronic Esomeprazole Administration in the
Subcutaneous Model

Further investigation on the effect of Esomeprazole in the DU145 subcutaneous cancer
model was conducted with a prolonged treatment regimen, with mice treated every other
day with Esomeprazole at 2.5 mg/kg b.w. once tumor volumes reached ca. 70 mm3. MRI-
CEST tumor pH imaging was then performed at one and at two weeks of treatment, while
caliper measurements were taken every three days to quantify tumor volume changes
during the three weeks duration of the study. Tumor extracellular pH imaging showed a
significant difference after one week of treatment with Esomeprazole between untreated
and treated mice (tumor extracellular pH = 6.83 and 6.98 for untreated and treated mice,
p < 0.01, Figure 4A), confirming the efficacy of Esomeprazole in altering tumor acidosis
as previously observed during the acute administration study. However, two weeks after
Esomeprazole administration we observed the onset of resistance, with comparable tumor
pHe values between the two groups (tumor extracellular pH = 6.91 and 6.97 for untreated
and treated mice, Figure 4A). Tumor growth curves showed that both untreated and treated
mice had a similar growing rate until the end of the study (Figure 4B), reflecting the failure
of Esomeprazole to induce tumor pH changes at longer exposure times.
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Figure 4. Chronic effect of Esomeprazole on tumor extracellular pH and tumor growth. Measured
extracellular tumor pH values (A) following long-term Esomeprazole oral administration in the
DU145 subcutaneous tumor murine model between untreated (n = 8) and treated (n = 8) groups
after one week (28 days) and two weeks (35 days) of treatment (white and black bars, respectively,
** p value < 0.01). Tumor growing curves obtained from caliper measurements (B).

Representative tumor extracellular pH maps for control and treated mice showed a
marked reduction in tumor extracellular acidosis for Esomeprazole-treated mice after one
week of treatment, in comparison to control mice, whereas extracellular tumor pH values
were comparable after two weeks of treatment (Figure 5).

Analogously to the subcutaneous model, orthotopically injected mice started a two-
week Esomeprazole treatment once the tumor reached an average volume of ca. 70 mm3,
with the same dose and regimen used in the subcutaneous model. MRI-based tumor
volume measurements did not show any difference in tumor growth between the two
groups of mice (Supplementary Figure S3).
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Figure 5. Extracellular tumor pH (pHe) images upon chronic Esomeprazole treatment. Representative
tumor extracellular pH images (from top to bottom) after one week of treatment (average tumor pHe of
6.74/6.85 and of 6.98/7.05 for untreated and treated mice, respectively) and after two weeks of treatment
(average tumor pHe of 6.90/6.94 and of 6.92/6.95 for untreated and treated mice, respectively).

4. Discussion

The efficacy of the proton pump inhibitors Amiloride, Cariporide, Esomeprazole and
Lansoprazole to alter extracellular pH was evaluated in vitro and in vivo in the human
prostate cancer cell line DU145. Each inhibitor was tested in vitro at three increasing
concentrations and at two exposure times of 24 and 48 h in both normoxic and hypoxic
conditions. Cell viability and extracellular medium pH quantifications were performed
to select the most effective inhibitor to be tested in vivo. The cell viability experiments
showed that Amiloride, Esomeprazole and Lansoprazole provided a consistent decrease
in cell viability with a dose-dependent trend in all the tested conditions. The toxicity in
both normoxic and hypoxic conditions followed this order: Amiloride, Esomeprazole,
Lansoprazole. On the other hand, Cariporide was totally ineffective in reducing cell
viability at all the examined conditions. Although there were promising results regarding
the efficacy of killing cancer cells, extracellular pH measurements reported only a modest
alkalinization upon Amiloride treatment, whereas all the other inhibitors were unable to
raise the extracellular pH above the control pH. These differences can be explained by either
longer drug exposure times being needed to observe significant extracellular medium pH
variations or by compensatory increased activity or expression of proton pumps being
required to counteract the effect of the proton pump inhibitor. Only the highest dose of
Esomeprazole provided a higher pH compared to the more acidic ones observed with
the lower concentrations. Then, we evaluated the efficacy of Esomeprazole to induce
tumor extracellular pH changes in vivo by exploring both an acute administration and a
chronic treatment. Mice with subcutaneous DU145 tumors were treated only once and
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imaged for tumor pH changes three hours after the oral administration. A significant
and marked increase in extracellular tumor pH was observed, indicating a clear in vivo
effect in inhibiting the targeted V-ATPase proton pump transporters. Based on these
results, we further tested the Esomeprazole efficacy upon a repeated administration to
mice every other day for two and three weeks, in an orthotopic and subcutaneous model,
respectively. MRI-CEST tumor pH imaging was performed in the subcutaneous model
after the first and second week of treatment to monitor any tumor extracellular pH change
during tumor progression, while tumor volume measurements continued until the third
week of treatment. In line with the acute effect study, a statistically significant higher
tumor extracellular pH was found in the treated mice after the first week of treatment.
However, after the second week of Esomeprazole treatment, any alteration in tumor
extracellular pH was observed for the treated mice, suggesting the onset of resistance to
the administered drug. Notably, any tumor volume changes were detected after three
weeks of treatment, confirming the tumor pH imaging findings. In addition, the orthotopic
model also confirmed the inefficacy of Esomeprazole to reduce tumor progression, since
any tumor volume changes were detected during the two weeks of treatment between
control and treated mice. The DU145 human prostate cancer cell line showed a marked
expression of both NHE1 and V-ATPase proton pumps, comparable to that observed for the
androgen-insensitive PC3 human prostate cancer cell line, hence representing a promising
anti-cancer target for PPIs [53–55]. However, one limitation of this study is that we did not
evaluate their expression in tumors, since changes in their relative expression or activity
upon chronic Esomeprazole treatment could potentially explain the lack of extracellular
tumor pH changes after two weeks of treatment.

Overall, Esomeprazole is capable of inducing tumor extracellular pH changes in the
DU145 animal model, but not in a sustained way for altering tumor progression. Nonethe-
less, targeting the pH regulatory systems seems to be a promising strategy to alter the
tumor microenvironment, and the induced early tumor extracellular pH changes could be
beneficial once an additional treatment is coupled with the pH-interfering drug [41,56–58].
In fact, several studies reported tumor growth reduction following PPIs treatment alone or
in combination with other chemotherapies in several tumor models, such as lymphoma,
breast, or colorectal cancers [47,59–63]. In spite of the positive results obtained in other
tumor models, PPIs can have a different outcome when administered to prostate cancer
models. In our previous work, Esomeprazole was effective in inducing only acute tumor
pH changes in the PC3 prostate cancer murine model, whereas chronic treatment did not
show any alteration in tumor extracellular pH or in tumor progression in both subcuta-
neous and orthotopic murine models, similar to what has been observed in this study
upon long-term treatment [50]. In another study, PPIs treatment can even enhance tumor
progression, as observed in the murine model of LNCaP prostate cancer [64]. Interestingly,
other studies have pointed out the risk associated with prolonged PPIs treatment, with
the consequent development of neuroendocrine tumors [65], hyperplastic gland polyps
and a 39% larger mortality in prostate cancer patients, although further validation of the
potentially negative association of PPIs with prostate cancer is still needed [66]. Conse-
quently, PPIs administration must be carefully considered and likely tailored to specific
cancer patients. From this perspective, MRI-CEST Iopamidol-based tumor pH imaging was
essential to obtain insights about the therapeutic efficacy of this inhibitor. Many studies
that exploited this non-invasive imaging technique for addressing important questions
regarding the characterization of cancer metabolism and aggressiveness [13,28] and for
monitoring therapeutic responses [36,39,67,68] confirmed the importance of tumor extra-
cellular pH as a promising novel biomarker, although further studies are needed to clearly
assess the potential clinical utility.

5. Conclusions

PPIs were able to perturb in vitro DU145 prostate tumor cell viability, and to a lesser
extent, the extracellular acidification. Although acute and early Esomeprazole treatment
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induced significant changes in tumor extracellular pH values, chronic treatment did not
affect either tumor acidosis or tumor growth. The proposed study demonstrates the crucial
role of longitudinal in vivo tumor pH quantifications to properly evaluate the treatment
response to novel anticancer therapies.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/metabo13010048/s1, Figure S1: pH accuracy in measuring extracellular
medium pH; Figure S2: RT-PCR and WB expression of NHE1 and V-APTase in DU145 and PC3
prostate cancer cells; Figure S3: Tumor volume upon chronic Esomeprazole treatment for the DU145
prostate orthotopic murine model.
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