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Abstract: The zebra mussel, Dreissena polymorpha, is extensively used as a sentinel species for bio-
surveys of environmental contaminants in freshwater ecosystems and for ecotoxicological studies.
However, its metabolome remains poorly understood, particularly in light of the potential molecular
sexual dimorphism between its different tissues. From an ecotoxicological point of view, inter-sex and
inter-organ differences in the metabolome suggest variability in responsiveness, which can influence
the analysis and interpretation of data, particularly in the case where males and females would be
analyzed indifferently. This study aimed to assess the extent to which the molecular fingerprints
of functionally diverse tissues like the digestive glands, gonads, gills, and mantle of D. polymorpha
can reveal tissue-specific molecular sexual dimorphism. We employed a non-targeted metabolomic
approach using liquid chromatography high-resolution mass spectrometry and revealed a significant
sexual molecular dimorphism in the gonads, and to a lesser extent in the digestive glands, of D. poly-
morpha. Our results highlight the critical need to consider inter-sex differences in the metabolome of
D. polymorpha to avoid confounding factors, particularly when investigating environmental effects on
molecular regulation in the gonads, and to a lesser extent in the digestive glands.

Keywords: metabolome; zebra mussel; gender and organ specificity; ecotoxicology

1. Introduction

Ecotoxicological and biosurvey studies often propose the use of biological markers or
specific endpoints measured in model organisms as an indication of exposure to natural or
anthropogenic substances. Thus, one great challenge of ecotoxicology and stress ecology
research is to find relevant molecular signatures of specific stressors in sentinel organisms
and to understand their physiological effects on biota. Metabolomics is a sensitive, currently
emerging, high-throughput approach for investigating metabolites of low molecular weight
(<1500 Da), often using nuclear magnetic resonance (NMR) or liquid/gas chromatography
combined with tandem mass spectrometry (LC-MS/MS or GC–MS/MS). Metabolomics
analysis allows researchers to describe the metabolite profile of an organism and determine
its involvement in dynamic cellular processes to obtain an instantaneous fingerprint of the
physiological state of the organism. Metabolomics applied to an organ or an entire organism
constitutes one of the most reliable methods of chemical phenotyping for investigating the
homeostatic responses to environmental stresses from multiple origins [1–3] in organisms
like marine or freshwater bivalves [4–7]. Metabolomics greatly helps in characterizing the
molecular effects of different stressors on metabolic pathways and increasing our under-
standing of the mechanism of impairment. Metabolomic investigations are independent
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of the background genomic dataset of the model organism and therefore provide data
applicable to all organisms.

The freshwater zebra mussel, D. polymorpha, is a filter-feeding dreissenid mussel
native to the Ponto-Caspian regions. This sessile bivalve lives mostly on hard substrates
and is present in a wide range of habitats, from freshwater lakes and rivers to brackish
estuaries [8]. D. polymorpha has been considered a widespread and invasive species [9–12].
It has colonized Western Europe and North America, developing large populations because
of its high growth rate, and endangering freshwater biota and ecosystems. However,
the ecological pressure of D. polymorpha has tended to decrease during the last few years
concomitant with smaller populations and individual body sizes, allowing the benthic
populations of native species to regain their competitiveness and return to pre-invasion
densities [13]. Conversely, some ecological characteristics of this species such as its water
purification capabilities and influence on rates of nutrient cycling are beneficial in mitigating
the harmful effects of eutrophication [14].

D. polymorpha is also extensively used in laboratory experiments and as a bioindicator
species for water pollution because of its great abundance, large repartition area, limited
mobility, continuous filtering activity, high bioaccumulation potential and ease of han-
dling [15–21]. Its wide food size range combined with filtering capacities ranging from 5
to 400 mL/mussel per hour allows D. polymorpha to be exposed to various anthropogenic
or natural pollutants through direct gill absorption, ingestion of contaminated food or of
particles on which pollutants may be adsorbed [22–24]. Interest in the zebra mussel as
a bioindicator of environmental pollutants, pathogens or natural toxins such as metals,
microplastics, organochlorine contaminants, cyanotoxins and parasites, and as a model
organism in ecotoxicology studies, has been widely demonstrated [21,25–35]. D. polymorpha
has been suggested as the freshwater counterpart of the marine mussel Mytilus sp. in
biomonitoring and ecotoxicological studies [24]. It has been used as a sentinel organism of
water quality in the Great Lakes since the mid-1970s in the Mussel Watch program for water
quality monitoring [36,37]. Its remarkable bioaccumulation capacities, legal ecological sta-
tus allowing in situ collection without limitation, and ease of transplantation in cages have
stimulated great interest in using this organism in water quality management plans [38,39].

An NMR investigation of D. polymorpha [40] has underlined the usefulness of the
metabolomic approach in comparison to the measurement of core biomarkers for identify-
ing metabolites of interest in ecotoxicological investigations [38]. However, to enhance the
ecotoxicological relevance of the molecular biomarkers, the reference metabolic conditions
that differ among organs, developmental stages, and between the sexes must be clari-
fied [41]. In marine mussels, various gender- and tissue-specific metabolome differences
have already been reported, reflecting the specificities of the physiological responses to
different stressors depending on which sex and organ are considered [7,42–47]. There-
fore, attempting to define the corresponding baseline in terms of inter-sex and inter-organ
metabolite concentrations may help researchers understand the individual variability ob-
served in some ecotoxicological studies [48]. The aim of this study was to assess the specific
metabolite fingerprints of various tissues (digestive gland, gonad, gills, mantle) in both
males and females of D. polymorpha through a non-targeted metabolomic approach us-
ing ultra-high performance liquid chromatography–electrospray ionization–tandem mass
spectrometry (UHPLC-ESI-MS/MS).

2. Materials and Methods
2.1. Biological Model of D. polymorpha

To ensure an accurate comparison of the metabolomes of different tissues and genders
of organisms, it is necessary to use individuals as similar as possible from the same popula-
tion and of similar age and size. Thus, organisms were obtained from a single reference site
(Lac-du-Der-Chantecoq 48◦36′07.7′′ N; 4◦44′37.0′′ E) and were selected according to meta-
morphosis on a hard substrate, a process that yielded a group of similar ages. For this study,
organisms about 18 months of age (January 2021) were selected at a size of 25 ± 2 mm.



Metabolites 2023, 13, 1046 3 of 17

Groups of 40 individuals were placed in aerated 3 L tanks (six aquaria) containing a 1:1
ratio of water from the sampling site and Cristalline® spring water (Saint Yorre, France).
After collection from the field, they were gradually acclimated to lab conditions of 16± 2 ◦C
with a 12 h:12 h light:dark cycle for up to seven weeks. During the acclimation, the mussels
were fed daily with 2.5 µL per individual of a dietary concentrate containing the microalgae
Nannochloropsis salina (Nanno 3600® Planktovie, Marseille, France). After the acclimation,
individuals were randomly sampled from the six aquaria and sexed by gametes withdrawn
from the gonads using a 1 mL syringe to obtain 12 males and 12 females. The mussels
were anaesthetized for dissecting, and the digestive glands, gonads, mantle and gills were
removed, weighed, individually snap frozen in liquid nitrogen and stored at −80 ◦C.

2.2. Extract Preparation from Mussel Tissues and Metabolome Analysis by Mass Spectrometry

LC-MS grade acetonitrile, methanol, and formic acid were obtained from Carlo Erba
(Val-de-Rueil, France). A standard solution of Na formate (purchased from Sigma-Alrich,
Saint-Quentin-Fallavier, France) was freshly prepared with Ultra-pure MilliQ® water
(Guyancourt, France). Analytes were extracted from the chosen tissues of D. polymor-
pha with weights varying from 22 to 130 mg depending on the type of tissue. The amount
of solvent was adjusted in order to keep a ratio of 1 mL of 75%:25% UHPLC methanol:
water per 100 mg of fresh tissue. Tissues were mechanically ground (GLH850 OMNI) and
sonicated with an ultrasonic probe (Sonics VibraCell, 130 W, 20 kHz, 60% amplitude) for
30 s to release intracellular metabolite contents. Samples were then centrifuged at 15,300× g
for 10 min at 4 ◦C. Supernatants (2 µL) were analyzed by UHPLC (Elute, Bruker or Ultimate
3000, Thermo, Waltham, MA, USA) on a PolarAdvance-II C18 column (2.5 µm pore-size)
(Thermo, Waltham, MA, USA) at a 300 µL·min−1 flow rate with a linear gradient of ace-
tonitrile in 0.1% formic acid (5–90% in 16 min). Analytes were subsequently ionized and
analyzed using an electrospray ionization hybrid quadrupole time-of-flight high-resolution
mass spectrometer (ESI-Qq-TOF Compact, Bruker, Bremen Germany, France) at a speed of
2 Hz over a range of 50–1500 m/z on positive simple MS mode and then on broad-band
collision ion dissociation or positive autoMS/MS mode at a speed of 2–8 Hz over the
50–1500 m/z range with information-dependent acquisition.

The list of peaks (MS/MS spectra within 1 and 15 min of the LC gradient) was
generated from recalibrated MS spectra (<0.5 ppm, with an internal calibrant of Na formate)
with filtering of 5000 counts of minimal intensity and a minimal occurrence in at least
10% of all samples. All classical adducts ([M + H]+, [M + 2H]+, [M + 3H]+, [M + Na]+,
[M + K]+, and [M + NH4]+) and related isotopic forms were searched and grouped together
using a threshold value of 0.8 for the co-elution coefficient factor with MetaboScape 4.0
software (Bruker, Bremen, Germany). All data were acquired from the same single LC-MS
run. Data QC and Blank samples (injected every 6 injections) were examined in order to
ensure the reproducibility and robustness of the whole data series. Data quality in terms of
intensity, retention time and mass drift of ions were carefully inspected and recalibration
was automatically performed individually by the software on raw data of all samples
using internal standards (reference Na formate solution) injected at the beginning of every
sample acquisition. Different states of charge and adducts were grouped together and the
area under the peak was determined to generate a unique global data matrix containing
semi-quantification results for each analyte in all analyzed sample peaks for each analyte
(characterized by the respective mean mass of its neutral form and its corresponding
retention time).

The annotation of analytes was attempted from MS and MS/MS using the Meta-
boScape 4.0 (Bruker, Germany) with NPAtlas V1.0 structural databases [49] and the Met-
Gem 1.3.6 [50] interrogating spectral database available on GNPS and MS-DIAL (HMDB,
Massbank, EMBL, GNPS, CASMI, NIH).
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2.3. Data Treatment, Statistical Analyses, and Annotation by Molecular Network

The two data tables with quantification of area under the peak for the different an-
alytes (one with all analytes and one with only the annotated analytes) were evaluated
using MetaboAnalyst 5 (www.metaboanalyst.ca (accessed on 5 June 2021)) for Pareto’s
normalization, univariate group variance analyses (ANOVA and t-test with Benjamini FDR
calculation), multivariate statistical methods (unsupervised principal component analysis,
PCA) and data representation by heatmap with hierarchical clustering based on Euclidean
distances (https://www.metaboanalyst.ca (accessed on 5 June 2021)). Quantifications of
annotated analytes and of all analytes were also compared by gender and between tissues
using PERMANOVA analyses applied on PCA in the vegan R package (vegan: community
ecology package; https://cran.r-project.org/web/packages/vegan/index.html (accessed
on 20 July 2021)). Pairwise comparisons were carried out with the pairwise Adonis R
package. The significance threshold was set at p < 0.05. Analyte annotation was attempted
using combined ion annotation with the MetaboScape software based on mass and isotopic
pattern accuracy and with MetGem molecular networking based on the presence of ions in
certain molecular clusters for which substantial annotation could be retrieved according
to the MS/MS fragment occurrence. Previously uncharacterized analytes belonging to
annotated metabolite clusters were considered potential analogue molecules.

3. Results and Discussion
3.1. Analysis of the Global Metabolome of Tissues from D. polymorpha Males and Females

A total of 2634 analytes, annotated and not annotated, from untargeted LC-MS
metabolomics of the digestive gland, gills, mantle and gonads showed that the metabolome
of each tissue appeared to significantly differ from that of other tissues (PERMANOVA
p < 0.01, Table 1A). The heatmap with hierarchical clustering revealed first that the metabolic
signatures could be discriminated between the four tissues and second between males
and females, with only limited intra-group individual variability (n = 12 replicates per
tissue and per sex, Figure 1). The molecular profile of the gonad and of the digestive gland
significantly discriminated between males and females. The sexual dimorphism of the
gonad metabolome was more distinct than that of the digestive gland (PERMANOVA
p < 0.01; PAIRWISE PERMANOVA p < 0.01 and p < 0.05, respectively, Table 1B). In the
literature, clear differences in metabolomes between tissues and between the sexes have
also been observed in the marine mussel Mytilus galloprovincialis [7,47].

Table 1. Results of PERMANOVA analyses applied to the MS/MS peak list of 2634 analytes for
comparison of their relative quantity according to tissues (A) and sexes (B). Significant p-values are
indicated in bold (p < 0.05).

(A)

Tissues PERMANOVA

F.Model R2 p-Value

28.634 0.48286 0.001

Pairwise Tissues Pairwise PERMANOVA

F.Model R2 p-Value

Digestive gland vs. mantle 60.33 0.57 0.001

Gills vs. digestive gland 28.22 0.38 0.001

Gills vs. mantle 26.99 0.37 0.001

Digestive gland vs. gonads 26.81 0.37 0.001

Gonads vs. mantle 19.85 0.3 0.001

Gills vs. gonads 14.11 0.23 0.001

www.metaboanalyst.ca
https://www.metaboanalyst.ca
https://cran.r-project.org/web/packages/vegan/index.html
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Table 1. Cont.

(B)

Sex PERMANOVA

F.Model R2 p-Value

13.989 0.52669 0.001

Pairwise Female vs. Male Pairwise.PERMANOVA

F.Model R2 p-Value

Gonads 3.59 0.14 0.001

Digestive gland 1.61 0.07 0.042

Mantle 1.14 0.05 0.272

Gills 1.03 0.04 0.317
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Figure 1. Heatmap with hierarchical classification of the whole set of metabolites (n = 2634) deter-
mined by mass spectrometry in the digestive glands (red), gills (green), gonads (dark blue), and
mantle (light blue) of male (n = 12) and female (n = 12) D. polymorpha.

The metabolic signature of the gonads highlighted a clear sexual dimorphism, as
represented in the PCA (Figure 2A1 discrimination along the y-axis). Similar sex-specific
differences in the metabolome of mussel gonads have already been reported [47]. Volcano
plots, in which individual analytes were plotted according to their respective relative fold
change between males and females and their t-test and p-values, indicated that among
the 2548 analytes (annotated and not annotated) observed in the gonads, 21% showed
significantly different concentrations between males and females, with 245 being signifi-
cantly lower and 299 significantly higher in females compared to males (Figure 2A2). PCA
performed with the analytes from the digestive gland revealed slight discrimination of
metabolomes of males and females along the second component axis (Figure 2B1), but
weaker than the one observed in the gonads. The volcano plots showed that among the
2567 analytes detected in the digestive glands, 6% had different concentrations between the
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sexes, with 33 having lower concentrations and 124 higher concentrations in females than
in males (Figure 2B2). No obvious sexual dimorphism was observed in the gills by PCA
(Figure 2C1) and only 4.2% of the 2530 analytes presented differences in concentration be-
tween the two sexes (Figure 2C2). In the mantle, no clear sexual dimorphism was observed
by PCA (Figure 2D1), but 50 of the 2301 detected analytes had lower concentrations and
115 higher concentrations in females than in males, representing a 7.1% sex-discriminated
pattern (Figure 2D2). Interestingly, in three out of the four analyzed tissues, females showed
significantly higher concentrations of analytes than males (299 vs. 245 in the gonad, 124 vs.
30 in the digestive gland, and 115 vs. 50 in the mantle). Overall, female organs exhibited
higher analyte contents than males, suggesting that more intense and/or more complex
metabolic activities may occur in females, potentially in relation to their higher reproductive
effort resulting in a richer integration of reserves in female oocytes than in spermatozoids.

The molecular networks were identified using the GNP algorithm from MetGem
software with the 579 MS/MS spectra of the most concentrated analytes detected in the
gonads, digestive glands, gills, and mantle of D. polymorpha males and females (Figure 3).
The appearance of analytes with common MS/MS fragments within the same clusters
connected analytes sharing a structural similarity based on their respective fragmentation
patterns (cosine score < 0.7). Among all the analytes, MetGem aligned some in parallel
with annotated metabolites from public databases based on accurate mass correspondence
and sharing of MS/MS fragments. Thus, based on correspondence with both the mass
and the isotopic MS/MS fragmentation pattern, we were able to annotate various analytes
as genuine or potential phospholipids such as lysophosphatidylcholine (LPC) principally
found in the digestive glands, gills and gonads of males and females (Figure 3). Ana-
lytes annotated as lysophosphatidylethanolamine (LPE) were also abundant and located
mainly in the digestive gland and the gills, and to a lesser extent in the gonads; phos-
phatidylethanolamine (PE) was also found at relatively high concentrations. Previous
studies also reported the presence of LPE, LPC and PE in freshwater molluscs, with the
major phospholipid classes being the choline-containing PC and the amine-containing PE,
constituting around 50% of the total [51,52]. In D. polymorpha, LPE and PE constituted
47% of the total annotated phospholipids [51]. LPC is a structural lipid produced by the
digestive gland, derived from phosphatidylcholine and used to build cell membranes.
LPE is also a membrane component but is additionally implicated in cell signalling and
enzyme activation, whereas PE is particularly abundant in the internal layer of the cellular
membrane. Different saccharides were also abundant in male and female organs like the
digestive gland, the gonads and the gills (Figure 3B). Saccharides are primary metabolites
associated with numerous biological processes and functions in molluscs, such as growth,
reserve storage, tissue architecture, immunity, energetic metabolism, and energy storage;
they form a major part of mollusc tissue extracts [53]. Saccharides present a large structural
variability depending on mollusc species and organ [53], as also suggested by the present
study showing different molecular clusters of saccharides specific to the gonads (blue)
compared to the gills (green) of D. polymorpha (Figure 3B). The specificity of saccharides
within the gonads was especially marked in females, as seen in the molecular network
diagram (Figure 3B).

Interestingly, the molecular network representation also revealed that glutathione was
predominantly present in the gonads, with higher concentrations in females (Figure 3).
Glutathione (GSH) is a ubiquitous antioxidant tripeptide implicated in detoxification and
cellular homeostasis. Previous studies reported that gonadal tissues of bivalves contained
high GSH concentrations relative to other tissues, particularly during reproductive peri-
ods. GSH helped to maintain the health of the gonads and protected the gametes from
oxidative damage during fertilization and development [54,55]. A high GSH content in the
gonads has been reported to ensure reproductive success in oysters, Crassostrea virginica by
decreasing the susceptibility of gametes and embryos to metal toxicity [55]. In vertebrates,
a high GSH content in the gonads during oocyte maturation is a reliable indicator of oocyte
viability, as it is essential for male pronucleus formation during fertilization and embryo
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pre-implantation, ensuring embryo development and preventing embryonic cellular apop-
tosis [56]. The bivalves used in our study were at the onset of gametogenesis (January) [57],
which may have influenced the GSH contents stored in the gonads for oocyte protection.
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Figure 2. Principal component analysis (A1,B1,C1,D1) and volcano plots (A2,B2,C2,D2) of the
metabolite data from gonads, digestive glands, gills, and mantles of male (n = 12, blue) and female
(n = 12, red) D. polymorpha. The variance of the PCA is given on the axis of PC-1 and -2. In the
volcano plots, the fold changes in intensity of individual metabolites between males and females are
plotted on the x-axis (fold change ≥ 2) with the significance of the differences between males and
females (p < 0.1) being determined by t-test (y-axis). The statistical significance for down-regulated
metabolites is indicated in blue and for up-regulated metabolites in red for females compared to
males (the statistically unvarying metabolites are shown in pale grey, p < 0.1).
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Figure 3. Molecular networks generated from 579 MS/MS spectra obtained from the gonads, 
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GNPS and t-SNE tools. The diagram displays connected metabolites sharing a structural similarity 
based on the similarity of their respective fragmentation patterns. Annotated compounds are 

Figure 3. Molecular networks generated from 579 MS/MS spectra obtained from the gonads, digestive
glands, gills, and mantle of D. polymorpha males (n = 12) and females (n = 12), using the GNPS and
t-SNE tools. The diagram displays connected metabolites sharing a structural similarity based on
the similarity of their respective fragmentation patterns. Annotated compounds are indicated in the
dashed-line circles. Relative concentrations of annotated compounds are indicated in (A) each tissue
(in green for gills, in red in digestive glands, in blue in gonads and in turquoise in mantles), and
(B) in each sex (in blue in males and in red in females).
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3.2. Analysis of Annotated Analytes from Male and Female D. polymorpha Tissues

The heatmap with hierarchical clustering of 198 putatively annotated analytes iden-
tified by MS/MS in the four organs of male and female mussels (Figure 4) revealed the
same general discriminative patterns seen with the whole set of 2634 analytes previously
observed (Figure 1). Globally, the metabolome of each tissue significantly differed from
those of the other tissues (PERMANOVA p < 0.01, Table 2A). The heatmap also revealed
that the metabolic profiles were first discriminated among the four tissue types and sec-
ond between males and females (Figure 4). Considering only the 198 annotated analytes,
no obvious sex-related differences were seen in the mantle and in gills, whereas a slight
discrimination in the digestive gland was visually detectable on the heatmap, although
it was not statistically significant (pairwise PERMANOVA p > 0.05, Table 2B). Only the
gonads showed a clear molecular sexual dimorphism (pairwise PERMANOVA p < 0.05,
Table 2B), but to a lesser extent than what was seen in the previous analysis (annotated
and not annotated). In general, the distribution pattern of putatively annotated analytes
appeared globally representative of the one observed with all analytes.

Metabolites 2023, 13, 1046 11 of 18 
 

 

  F.Model R2 p-Value 
  15.433   0.55109 0.001 

Pairwise Female vs. Male  Pairwise.PERMANOVA 
  F.Model R2 p-Value 

Gonads 2.65 0.11 0.048 
Digestive gland 1.38 0.06 0.207 
Gills 0.63 0.03 0.587 
Mantle 0.47 0.02 0.930 

 
Figure 4. Heatmap with hierarchical classification of 198 putatively annotated metabolites measured 
by MS/MS in the digestive glands (red), gills (green), gonads (dark blue), and mantle (light blue) of 
male (n = 12) and female (n = 12) D. polymorpha. 

Overall, the gonads presented the largest number of significantly discriminated 
analytes (n = 36) between males and females among the 198 putatively annotated analytes. 
All observed analyte classes were discriminated, especially those comprising various 
nucleic acids, lipids and amino acids (Figure 5). The highest number of discriminated 
analytes occurred in females, especially for amino acids and nucleic acids. For example, 
eight annotated amino acids among the nine significantly discriminated exhibited higher 
concentrations in females than in males, mostly in the gonads (Figure 5). 

Figure 4. Heatmap with hierarchical classification of 198 putatively annotated metabolites measured
by MS/MS in the digestive glands (red), gills (green), gonads (dark blue), and mantle (light blue) of
male (n = 12) and female (n = 12) D. polymorpha.
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Table 2. Results of PERMANOVA analyses of the MS/MS peak list of the 198 putatively annotated
analytes for comparisons of their relative quantity according to tissue (A) and sex (B). Significant
p-values are indicated in bold (p < 0.05).

(A)

Tissues PERMANOVA

F.Model R2 p-Value

33.193 0.51978 0.001

Pairwise Tissues Pairwise.PERMANOVA

F.Model R2 p-Value

Digestive gland vs. mantle 71.45 0.61 0.001

Gills vs. mantle 38.68 0.46 0.001

Digestive gland vs. gonads 32.07 0.41 0.001

Gills vs. digestive gland 28.14 0.38 0.001

Gonads vs. mantle 18.14 0.28 0.001

Gills vs. gonads 17.47 0.28 0.001

(B)

Sex PERMANOVA

F.Model R2 p-Value

15.433 0.55109 0.001

Pairwise Female vs. Male Pairwise.PERMANOVA

F.Model R2 p-Value

Gonads 2.65 0.11 0.048

Digestive gland 1.38 0.06 0.207

Gills 0.63 0.03 0.587

Mantle 0.47 0.02 0.930

Overall, the gonads presented the largest number of significantly discriminated an-
alytes (n = 36) between males and females among the 198 putatively annotated analytes.
All observed analyte classes were discriminated, especially those comprising various
nucleic acids, lipids and amino acids (Figure 5). The highest number of discriminated
analytes occurred in females, especially for amino acids and nucleic acids. For example,
eight annotated amino acids among the nine significantly discriminated exhibited higher
concentrations in females than in males, mostly in the gonads (Figure 5).

The digestive gland contained 31 significantly discriminated analytes, principally
represented by lipids (equally abundant in males and females, depending on the molecule),
saccharides, and nucleic acids (most abundant in males). Those analytes whose concen-
trations differed between the sexes were probably involved in gender-specific metabolic
pathways. The gills and the mantle contained the lowest number of significantly sexually
discriminated analytes (19 and 15, respectively) with higher concentrations of amino acids
in females and higher concentrations of lipids in males in gills, and mostly higher concentra-
tions of amino acids and structural lipids in female mantles. The observation that male and
female mussels showed several sex-specific modulated metabolites suggests that they may
have different protective mechanisms against various stresses. These sexual differences may
result in substantial physiological changes, but could also influence measurable biomarkers
or targeted toxicological endpoints and induce data variability, particularly if the gonads
or digestive glands are investigated. Now, further studies on the metabolome of digestive
glands and gonads of both sexes would be interesting to describe the metabolic differences
and thus increase our understanding of sex-specific responses to specific pollutants and
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their ecotoxicological consequences on natural populations. The genetic background of
zebra mussel populations is already known to act as a confounding factor in studies of
biomarkers, because of different individual responses to contamination [17,58]. Therefore,
population genetics, sex of the organism, and type of tissue studied should be carefully
considered prior to an ecotoxicological or physiological investigation.

Among the sexually differentiated lipids that were annotated in the present analysis,
several were structural lipids belonging to LPE and LPC classes, which account for about
half of the known phospholipids in freshwater bivalves [51]. Among the top 25 most
discriminated analytes regardless of tissue type, three LPCs were at higher concentrations
in females, whereas two LPEs were at higher concentrations in males (Figure 5). These
intrinsic biological differences in lipid content between male and female mussels may be
associated with their specific needs during the reproductive cycle. This specificity would
result in unique differences in their respective lipid regulation process induced by exposure
to stress. A previous study performed on the marine mussel, Mytilus galloprovincialis,
exposed to polluted effluents showed a gender-specific modulation of various LPCs and
LPEs, with a general trend of up-regulation in males and down-regulation in females [59].

Among all tissues, but mainly in the gonads, the concentrations of five cholic acid
derivatives, the putatively named methyltestosterone, norethisterone, estradiol, trimege-
stone, and 19-nor-5-androstenediol, and oxymesterone were higher in males (Figure 6).
Many cholic acid derivatives were found in the top 25 most discriminated analytes re-
gardless of tissue type (Figure 6). The presence of molecules related to the steroid hor-
mones that play a critical role in vertebrate reproduction has been previously observed
in molluscs [60,61]. Their origin and function are still debated, but these potential sexual
hormones are either thought to be absorbed through the diet or synthesized by the molluscs
themselves from the steroid precursors, cholesterol or pregnenolone [62–64]. Molluscs
have been shown to share some steroidogenic and steroid metabolic pathways with verte-
brates. Three steroids, progesterone, testosterone, and 17β-estradiol, have been proposed
as functional hormones in gastropods and bivalves [65,66], including D. polymorpha [67,68].
Such gender-specific differences in concentrations of endocrine-active metabolites may
influence the response of D. polymorpha to contaminant exposure. However, it remains
important to note that the putative annotation obtained from the present investigation
cannot be considered as a genuine molecular identification, but rather provides insights
into the molecular structure of these analytes as cholic-acid-related components, according
to the annotations from spectral databases. Various isobaric cholic-acid-related derivatives
can have the same mass and similar fragmentation patterns, and therefore cannot be differ-
entiated in our present analysis because of the lack of specific spectral information for these
molecules in public databases. Thus, the hypothesis that these gender-specific metabolites
could be steroid compounds acting as potential sexual hormones or prohormones involved
in steroid metabolic pathways in D. polymorpha remains to be confirmed.

Our study showed that several lipids could be discriminated between male and female
organs in the sexual maturation (pre-spawning) period, and we predict a quantitative or
qualitative evolution of these sexual differences along the entire spawning cycle of the zebra
mussel. The lipid content in dressenids has already been shown to fluctuate annually in
synchrony with the gametogenic cycle, exhibiting high concentrations of lipophilic organic
compounds in fully mature individuals during late spring and summer, and a decrease in
the post-spawning period [69].
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Figure 5. List of most discriminated metabolites among the 198 annotated molecules between males
and females according to their molecular family and to the different tissues. The metabolites with
concentrations higher in females are shown in red, while those higher in males are shown in blue.
The darker the color the greater the fold change. Statistically significant results (ANOVA, p < 0.01)
are indicated with a star.
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D. polymorpha males and females. The metabolites expressed principally in males are shown in
green and in females in red. Abundances (mean area of the MS peak ± SD, n = 12) of the top four
metabolites in the digestive glands, gills, gonads, and mantle are depicted in box plots (green for
males and red for females).

Sex hormone concentrations in some bivalves are also dependent on gonadal stage
and seasonal variation, suggesting their possible role as endogenous modulators of game-
togenesis [66,70]. It would be worthwhile to characterize the sexual molecular dimorphism
in zebra mussels along the entire reproductive cycle. This information might allow us
to compensate for intrinsic confounding factors related to an organism’s maturity cycle
when performing specific analyses on males and females using sexually dimorphic or-
gans like gonads and digestive glands of D. polymorpha. Sexual molecular dimorphism in
D. polymorpha should also be investigated in a natural setting (caged), as it is presumed that
environmental factors such as temperature, food availability, and pollutants may influence
the (eco)toxicological response [29,68,69].

4. Conclusions

A deeper knowledge of the sexual molecular dimorphism of a model animal may
help strengthen ecotoxicological research through a better understanding of the observed
variability of molecular responses to various environmental stressors. This study revealed
a significant sexual molecular dimorphism in the gonads, and to a lesser extent in the
digestive glands, of the ecotoxicological model organism D. polymorpha (zebra mussel).
Such differences in the metabolome may influence biomarker responses to anthropogenic
pollution or abiotic and biotic stresses and induce bias in interpreting data if the gonad or
the digestive gland is targeted for analyses without regard to sex. Sexing individual mussels
prior to sampling is difficult, but the risk of errors in data interpretation can be reduced by
following physiological responses in gills or in the mantle for lowering inter-sex molecular
dimorphism influences. Data provided by the present study may help in developing
specific protocols and data interpretation for ecotoxicological or biosurvey investigations
using D. polymorpha. Information on the various metabolite concentrations among organs
from both sexes may also be a powerful tool for identifying new molecules of interest and
increasing basic knowledge for further physiological or biomarker investigations.
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