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Abstract: Recently, a clinical blood metabogram was developed as a fast, low-cost and reproducible
test that allows the implementation of metabolomics in clinical practice. The components of the
metabogram are functionally related groups of blood metabolites associated with humoral regulation,
the metabolism of lipids, carbohydrates and amines, lipid intake into the organism, and liver function,
thereby providing clinically relevant information. It is known that the gut microbiota affects the blood
metabolome, and the components of the blood metabolome may affect the composition of the gut
microbiota. Therefore, before using the metabogram in the clinic, the link between the metabogram
components and the level of gut microorganisms should be established. For this purpose, the
metabogram and microbiota data were obtained in this work for the same individuals. Metabograms
of blood plasma were obtained by direct mass spectrometry of blood plasma, and the gut microbiome
was determined by a culture-based method and real-time polymerase chain reaction (PCR). This
study involved healthy volunteers and individuals with varying degrees of deviation in body weight
(n = 44). A correlation analysis determined which metabogram components are linked to which gut
microorganisms and the strength of this link. Moreover, diagnostic parameters (sensitivity, specificity
and accuracy) confirmed the capacity of metabogram components to be used for diagnosing gut
microbiota alterations. Therefore, the obtained results allow the use of the metabogram in a clinical
setting, taking into account its relationship with gut microbiota.

Keywords: metabogram; gut microbiota; gut microbiome; metabolomics; blood; diagnostics; mass
spectrometry; clinical blood test; personalized metabolomics; clinical metabolomics

1. Introduction

The advent of clinical metabogram is a response to the challenge of introducing
metabolomics into clinical practice [1,2]. The metabolome is a global biochemical profile of
biological objects, which reflects all the biochemical processes occurring in the body and
which dynamically changes under the influence of both internal and external factors. The
metabolome of blood, which is a connecting medium for all cells of the body, can justifiably
be called the “molecular phenotype” of the whole organism, reflecting all the processes
taking place in the body, whether it be features inherent in genes that are realized through
translation and then transcription in enzymes, the products of which are metabolites [3,4].

Despite the fact that metabolomics, which measures the sets of metabolites that form
the metabolome, has existed for more than two decades, and the methods used in it are
already perfect in many respects; however, its use in medicine is extremely limited. One
of the reasons for this is precisely the perfection of measurements—the accurate measure-
ment of many metabolites at a single run [5], resulting in the complexity of metabolomic
measurements, which is the reason for their high cost, duration of execution, complexity of
data processing, problems of standardization and reproducibility of measurements [6,7].
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Such characteristics are not consistent with clinical tests, where the speed of execu-
tion, low cost, reproducibility and interpretation of results accessible to physicians are the
obvious requirements [7]. The metabogram is a compromise solution—a simplified way
to analyze the blood metabolome with the execution parameters of clinical tests [8]. This
is achieved by replacing the identification and analysis of individual metabolites by pro-
cessing groups of metabolites. This is based on the assumption that covariant metabolites
have similar, or at least unidirectional, causes and therefore, to a certain extent, can be
evaluated jointly.

This assumption was confirmed in previous work [8]. The seven main covarying
groups of blood metabolites that are used to form the metabogram components describe
70 percent of blood metabolome variance and have compositional specificity and biological
meaning. The composition of groups was established by determining its enrichment with
metabolite classes. In addition, clinical tests were used as monitors of the state of the body
to explain the biological meaning of these groups. Now, to quickly assess up to 70 percent of
the variance in the blood metabolome, it is enough to take sets of mass spectrometric peaks
assigned to these groups, convert their intensities to a Z-score, average them in each group
and thus obtain a state (normal, upregulated or downregulated) of blood metabolome
components (Figure 1) [8].

Figure 1. Workflow for obtaining a personal blood metabogram. Sampled blood, after sample prepa-
ration in order to separate the metabolome fraction, is subjected to direct-infusion mass spectrometry
(DIMS). The resulting mass peaks are aligned with the characterized sets of mass spectrometric peaks
corresponding to the components of the metabogram (predesigned template of personal metabo-
gram), and their intensities are converted into Z-score scales and averaged over each group to obtain
metabogram components showing the state (normal, upregulated or downregulated) of the blood
metabolome (i.e., clinically relevant information). Adapted from [8].

The clinical significance of this approach was demonstrated in previous work in-
volving volunteers with metabolic disorders of varying severity associated with various
degrees of obesity [9]. However, the blood metabolome is affected by many factors, among
them the genome, diet and gut microbiota [10]. Moreover, blood metabolites may also
affect some of these factors, e.g., it is suggested that the gut microbiota composition is
affected by steroids [11–14]. Therefore, to implement a clinical blood metabogram, it is
necessary to link the components of the metabogram with these factors so the interpretation
of the metabogram is more scientifically justified. In this work, the linkage between the
components of the metabogram and the gut microbiota was studied.

2. Materials and Methods
2.1. Subjects

Healthy, underweight, overweight and obese volunteers (total n = 44) were examined
by the Clinic of Medicinal Nutrition at the Federal Research Centre of Nutrition, Biotech-
nology and Food Safety (Moscow, Russia). The groups of cases included volunteers with
obesity of varying stages with a diagnosis of E 66.0, according to the International Classifica-
tion of Diseases (obesity of exchange-alimentary origin). Subject selection, blood sampling,
mass spectrometry analysis and gut microbiota analysis were conducted within the frame
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of a previous metabolomics study conducted in 2020 [15] and supported by the Program of
the Presidium of the Russian Academy of Sciences (“Proteomic and Metabolomic Profile of
Healthy Human”).

2.2. Mass Spectrometry Analysis of Blood Samples

Venous blood sampling, sample preparation, mass spectrometry analysis, mass spectra
processing were conducted as described previously on the same equipment (maXis hybrid
quadrupole time-of-flight mass spectrometer with an electrospray ionization source) and
with the same materials [15]. Standardization of mass peak intensities was performed
by dividing the intensity by the standardization value, which was calculated for each
peak separately as follows: a 50 Da range (which started at 25 Da before and ended at
25 Da after the m/z of the mass peak) was selected; all peaks inside the range were sorted
in a descending order according to their intensities; the intensity of the 150th peak was
selected as the standardization value. Standardized intensities improved the further use
of correlation analysis due to the correction of ion suppression of peak intensities [15].
Standardized mass lists were normalized by applying the normalize function (which brings
the sum of the intensities of the peaks in the spectrum to 1) of the Matlab program (version
R2019a, MathWorks, Natick, MA, USA). Alignment of the m/z values of the mass peaks
between different mass spectra was performed as described previously [16]. The alignment
algorithm used was previously specially developed and tested for the high-resolution
mass spectra of blood metabolites obtained by direct-infusion mass spectrometry (DIMS)
and implemented as an iterative process based on the detection of correlation of mass
spectrometry peak patterns.

2.3. Design of Metabogram (Template for Personal Metabograms)

The design of the metabogram using a reference cohort of healthy subjects was con-
ducted in previous work, and the details of this are described in [8]. Briefly, to design the
metabogram, blood plasma samples of 48 healthy subjects (reference cohort) were analyzed
using DIMS (Figure 1). After data preprocessing (alignment, standardization and normal-
ization), the resulting lists of mass peaks were analyzed using principal component analysis
(PCA). The sets of mass peaks corresponding to the highest positive or lowest negative
principal component coefficients (loadings) formed the blood metabolome components
(BMCs). The sets of mass peaks for the first seven BMCs, explaining approximately 70% of
blood metabolome variance, formed the metabogram components and were further used as
template for quick-producing personal metabograms. Applying metabolite set enrichment
analysis (MSEA) [17], the composition of metabogram components was determined by
identifying the chemical classes with which they are enriched (Figure 2). To clarify the
biological specificity of the metabogram components, clinical blood tests (n = 71) were
used. Due to the fact that the principal components have positive and negative coefficients
(loadings) involved in the formation of the metabogram components, each metabogram
component has two Z-score scales reflecting their measure, called “positive” and “nega-
tive”, respectively. The Z-score is a common way of representing data on a unitless scale
and is the raw score minus the population mean, divided by the population standard
deviation. With a normal distribution, the Z-score is connected to the p-values; for example,
1.64 corresponds to p = 0.05 (one-tailed), which is thought to be the cutoff for statistical sig-
nificance and enables the detection of the sample’s deviation from the population. Z-scores
of the metabogram components in the −1.64 to +1.64 range are in the normal range; up-
and downregulation correspond to higher and lower Z-score values, respectively.

The components of the metabogram are functionally related groups of the blood
metabolites associated with humoral regulation (component 1 called “regulatory”), lipid–
carbohydrate metabolism (component 2), phospholypolysis (component 3 called “phos-
pholipolytic”), lipid–amine metabolism (component 4), the level of different metabolites
including oxidized fatty acids (component 5 called “eicosanoid”), lipid intake into the
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organism (component 6 called “alimentary”) and liver function (component 7 called “hep-
atic”), thereby providing clinically relevant information.
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Figure 2. Composition of the clinical blood metabogram components. Adapted from [8].

2.4. Personal Metabograms

Personal metabograms, which are in fact the prototype of the result of a clinical
laboratory test, were obtained using the study cohort (see Section 2.1), which consisted
of subjects with normal, overweight and obese bodies. The mass lists were standardized,
normalized and then aligned with the m/z values of the metabogram template (i.e., with
seven m/z sets corresponding to seven metabogram components) developed using the
reference cohort (see Section 2.3). Then, the Z-scores for the metabogram components,
reflecting the increase or decrease in the concentration of metabolites comprising them, were
calculated using the mass peak intensities (by averaging the Z-scores for peaks belonging
to the same metabogram component) [8]. Figure 3 shows an example of a metabogram.
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    Metabogram

  Component # Var. Component Name Z-score
Positive Negative
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5 4.9% Eicosanoid 2.58 −0.94
6 4.2% Alimentary −1.30 −0.16
7 3.6% Hepatic 0.31 −1.47

Figure 3. An example of a clinical blood metabogram. The Z-score value is a measure of the
metabogram component (from −1.64 to +1.64 is the normal range). “Up-” and “downregulation”
of the blood metabolic groups related to metabogram components correspond to higher and lower
Z-scores, respectively. The deviated components of the metabogram are selected by background
color: red indicates upregulation in the corresponding metabogram component; yellow indicates
downregulation in the corresponding metabogram component. “Var” column shows the percentage
of the variance explained by the metabogram component. Adapted from [9].
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2.5. Gut Microbiota Analysis

Sampling, transportation and storage of the test material were carried out in accor-
dance with the methodological recommendations “Taking, transporting, storing clinical
material for PCR diagnostics” developed by the “Central Research Institute of Epidemiol-
ogy” of the Federal Service for Surveillance on Consumer Rights Protection and Human
Wellbeing (Moscow, 2012). For the study, samples of the feces after natural defecation
were used. The study is carried out before the start of taking antimicrobial drugs and
immunomodulators or 12–14 days after the end of taking the drugs. Exclusion criteria:
women during menstruation; patients who took 3–4 days before the study laxatives, castor
or Vaseline oil, used an enema or rectal suppositories. For 1–3 days before sampling,
patients followed a diet that excluded foods that enhance fermentation processes in the
intestines, lactic acid products, alcohol and also excluded the use of antibiotics and bacte-
rial preparations (containing bifidobacteria, lactobacilli, E. coli, etc.). Fecal samples were
taken into a sterile plastic container. The container with the material was delivered to the
laboratory and stored at +2–8 ◦C until the start of the study. The time from taking the
material to the start of the culture-based study did not exceed 6 h. After taking a part of
the sample for culture analysis, the samples were frozen at −20 ◦C for further real-time
polymerase chain reaction (PCR) analysis.

2.5.1. Gut Microbiota Analysis by Culture-Based Method

Gut microbiota was determined by inoculation of selective culture media. The in-
oculation algorithm with appropriate dilutions and incubation times is summarized in
Table 1. One gram of fecal sample was homogenized in 9 mL of thioglycol–phosphate
buffer (composition: KH2PO4—4.5 g/L (Chimmed, Moscow, Russia), Na2HPO4·2H2O4—
15.1 g/L (Chimmed, Russia), agar—1 g/L (FBSI SSC PMB, Obolensk, Russia), thioglycolic
acid—0.4 mL (Merck, Rahway, NJ, USA), 1 n NaOH was used for pH adjustment to pH
6.8). Subsequent tenfold serial dilutions were made in 9 mL of thioglycol–phosphate buffer.
For detection of bifidobacteria and sulfite-reducing clostridia, 1 mL of the required dilu-
tions (Table 1) were inoculated in the tubes with semiliquid media, for detection of other
groups of microorganisms, 50 µL of dilutions were inoculated on the surface of the agar
differential-diagnostic culture media with subsequent spreading with a sterile spatula. All
media were prepared following the manufacturer’s instructions. Just before the start of
the work, the thioglycol–phosphate buffer and semiliquid media were heated on a boiling
water bath for 15 min and cooled to 40–45 ◦C to reduce the dissolved oxygen content. For
the determination of anaerobic microorganisms, bifidobacteria, sulfite-reducing clostridia,
lactic acid bacteria and bacteroides, incubation was carried out under anaerobic conditions
using gas-generating bags for chemical oxygen binding “AnaeroGen™” (Oxoid). The an-
tagonistic (acid-forming) activity of bifidobacteria was assessed by determining the pH of
the culture fluid (corn–lactose medium) on the 5th day of incubation using a pH meter. The
criteria were pH limits: less than 4.5—antagonistically active bifidobacteria; 4.6–5.1—weak
antagonism; more than 5.1—absence of antagonistic activity.

Table 1. Conditions for gut microbiota analysis by culture-based method.

Groups of
Microorganisms Culture Media Dilutions Incubation

Enterobacteria Endo agar
(Biokompas—S, Moscow, Russia)

10−3, 10−4, 10−5, 10−6

50 µL
37 ◦C, 24 h

Enterobacteria utilizing citrate Simmons Citrate Agar
(Biokompas—S, Russia)

10−4, 10−5

50 µL
37 ◦C, 4 days

Bacteroides
Bacteroides Bile Esculin Agar with

Bacteroides Selective Supplement (FD062)
(HiMedia, Mumbai, India)

10−4, 10−5, 10−6, 10−7

50 µL
37 ◦C, 48 h,

anaerobic conditions
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Table 1. Cont.

Groups of
Microorganisms Culture Media Dilutions Incubation

Total number of aerobic
microorganisms,

hemolytic microorganisms

Columbia Blood Agar (HiMedia) with 5%
v/v sterile defibrinated sheep blood

10−5, 10−6

50 µL
37 ◦C, 48 h

Total number of anaerobic
microorganisms,

hemolytic anaerobes

Columbia Blood Agar (HiMedia) with 7%
v/v sterile defibrinated sheep blood

10−6, 10−8

50 µL
37 ◦C up to 7 days

Lactic acid bacteria MRS agar with sorbic acid additive
(Biokompas—S)

10−4, 10−5, 10−6, 10−7

50 µL
37 ◦C, 3 days

Enterococci Kanamycin esculin azide agar
(105222) (Merck)

10−4, 10−6

50 µL
37 ◦C, 48 h

Staphylococci Baird-Parker Agar with egg yolk and
tellurite additive (Biokompas—S)

10−3, 10−5

50 µL
37 ◦C, 48 h

Bifidobacteria Corn–lactose medium (Biokompas—S) 10−7, 10−8, 10−9, 10−10

1 mL
37 ◦C, 5 days

anaerobic conditions

Sulfite-reducing clostridia Iron–sulfite medium (Biokompas—S) 10−6, 10−7, 10−8, 10−9

1 mL
37 ◦C, 5 days

anaerobic conditions

Yeasts and molds Sabouraud agar (Biokompas—S)
with streptomycin

10−1, 10−2, 10−3

50 µL
30◦C, 5 days

2.5.2. Gut Microbiota Analysis by Real-Time PCR

Besides the cell-based method, the gut microbiota was determined through the gut
microbiome (collection of intestinal microbial genes) analysis. Gut microbiome was de-
termined by using a kit “Colonoflor-16” (Alfalab LLC, St. Petersburg, Russia). The kit is
intended for quantitative assessment of the state of microbiocenosis of the large intestine in
children and adults by polymerase chain reaction with fluorescent detection of amplifica-
tion results in real time. The studied material is fecal samples. The kit makes it possible to
detect the DNA of obligate representatives of the microbiota of the large intestine as well
as opportunistic microorganisms including:

Normal flora and anaerobic microorganisms:

• Total bacteria
• Lactobacillus spp.
• Bifidobacterium spp.
• Faecalibacterium prausnitzii
• Bacteroides thetaiotaomicron
• Bacteroides spp./Faecalibacterium prausnitzii ratio

Opportunistic microorganisms that cause inflammation, diarrhea and dyspepsia:

• Klebsiella pneumoniae
• Klebsiella oxytoca
• Enterobacter spp. and Citrobacter spp.
• Clostridium difficile
• Clostridium perfringens
• Staphylococcus aureus
• Proteus vulgaris and Proteus mirabilis
• Candida spp. yeast

Pathogenic microorganisms, causative agents of acute intestinal infections:

• Escherichia coli enteropathogenic
• Salmonella spp.
• Shigella spp.

Microorganisms as markers of disease (their detection or change in the number can
signal various pathological conditions):
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• Fusobacterium nucleatum
• Parvimonas micra

DNA extraction from fecal samples was performed using the “AmpliSens® DNA-sorb-
C” kit (AmpliSens, Moscow, Russia) in accordance with the manufacturer’s instructions,
with the additional use of a disintegrator (“1600 MiniG®” (SPEX SamplePrep, Metuchen,
NJ, USA) and special tubes containing 100 µm quartz beads, 1.4 mm zirconia beads and
4 mm quartz beads (2303-MM3, SPEX SamplePrep). Real-time PCR amplification and
detection were performed using “CFX96 Real Time System” (BIO-RAD, Hercules, CA,
USA), the values of cycle quantification (Cq) were calculated automatically by the “CFX
manager” software, the interpretation of the obtained results was performed using the
“Colonoflor” software provided with the reagent kit.

2.6. Correlation Analysis

The link between metabogram components and the level of gut microorganisms
was revealed by a correlation analysis. Spearman’s correlation between the Z-scores of
the metabogram components showing their up- and downregulation and the gut micro-
biota test results for each person were calculated using the corr function of the Matlab
program. The Cohen scale [18] identified a correlation of 0.5 as being on the cusp of
“medium/moderate” (0.30–0.49) and “large/strong” (0.50–1.00). The function also returned
the p-values for testing the hypothesis of no correlation against the alternative hypothesis
of a nonzero correlation.

2.7. Plotting Links between Metabogram Components and Gut Microbiota

The correlation coefficients between the components of the metabogram and the level
of microorganisms in the gut microbiota were used to construct a distance matrix using the
pdist function of the Matlab program. Correlation was chosen as a distance measure. To
project the components of the metabogram along with the components of the microbiota
onto a two-dimensional plane, classical multidimensional scaling was used by applying
the cmdscale function from Matlab. The eigenvalue e returned by the function allowed for
an estimate of the minimum number of dimensions required for a correct reflection of the
original data. The points on the plot corresponding to the components of the metabogram
and microorganisms of the microbiota were connected by dashed lines, the thickness of
which reflects the absolute value of the correlation between them. The color of the line
codes the positive or negative value of this correlation. Lines were drawn for correlation
coefficients >0.3 and <−0.3.

2.8. Diagnostic Parameters

To assess the diagnostic potential of the metabogram for diagnosing gut microbiota
deviations from the norm, the following diagnostic parameters were evaluated: sensitivity—
the percentage of correctly identified positive results (the deviation is correctly assigned
to the metabogram component with a Z-score out of the threshold value); specificity—the
percentage of correctly identified negative results (the deviation from the normal range
is correctly not assigned to the metabogram component with a Z-score not exceeding the
threshold value); and accuracy—the percentage of correctly identified positive and negative
results.

The ROC curve was built by the perfcurve function (Matlab), which also returned
sensitivity and specificity values for diagnostics depending on the selected threshold
Z-score value and the optimal Z-score value for heist diagnostic accuracy.

3. Results
3.1. Studied Subjects

Forty-four volunteers—healthy, underweight, overweight and with obesity according
to the World Health Organization’s classification of obesity by BMI—were examined by the
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medical board at the Federal State Budgetary Institution “Nutrition and Biotechnology”
(Moscow, Russia). Table 2 summarizes the cohort characteristics.

Table 2. Study cohort characteristics.

Subjects Age
(Years)

Body Mass Index
(kg/m2)

Gender
(Number)

Cohort for culture-based method testing of gut microbiota
Males (Normal—9, Overweight—7, Obesity—9) Males 30.4 ± 6.8 1 Males 27.7 ± 5.3 Males—25

Females (Underweight—2, Normal—9, Overweight—5,
Obesity—2) Females 30.3 ± 5.2 Females 24.9 ± 7.1 Females—18

Cohort for real-time PCR testing of gut microbiota
Males (Normal—6, Overweight—5, Obesity—7) Males 30.9 ± 7.0 Males 27.7 ± 4.4 Males—18

Females (Underweight—2, Normal—5, Overweight—4,
Obesity—1) Females 31.6 ± 5.0 Females 24.4 ± 6.5 Females—12

1 mean ± standard deviation.

3.2. Mass Spectrometry Data for Metabograms

Mass spectrometry of blood plasma generated typical mass spectra of the low-molecular-
weight fraction of blood. Up to about m/z 600, peaks of metabolites of various classes
and above m/z 600, intense peaks of various phospholipids were observed. On average,
~9.3 thousand peaks were detected in the spectrum. Aligned and standardized mass lists
are presented in Table S1. These mass spectrometry data were used to obtain personal
metabograms for all subjects participating in the study (Figure 4).

3.3. Metabogram Components Connection with Gut Microbiota Studied by Culture-Based Method

In accordance with clinical practice for microbiota assessment, the amounts of both
resident protective populations of the intestinal microbiota (lactobacilli, bifidobacteria, bac-
teroides, lactose-fermenting enterobacteria), opportunistic transient populations (hemolytic
microorganisms, citrate-assimilating enterobacteria, staphylococci, yeasts and molds) and
commensal clostridia and enterococci were evaluated in this study (Table S2). Statistical
data for the gut microbiota test results calculated for males and females separately are
presented in Table S3. The correlation of the metabogram components with gut microbiota
assessed by a culture-based method is presented in Figure 5. In this figure, there are no
data on coagulase positive staphylococci since this type of bacteria was not detected in the
analysis (see Table S2).

In males, yeasts were the most correlated with metabogram components (10 out of
14 values show a positive or negative correlation). Next come bifidobacteria, bacteroides
and staphylococci (Figure 5a). For women, the relationship between the components of
the metabogram and the gut microbiota is more pronounced and systemic. Positive 1,
negative 2 and 4 components generally positively correlate with all microorganisms, for
many of which the correlation coefficient is >0.3. Furthermore, positive 4 and negative 1
and 6 components generally negatively correlate with all microorganisms, and some of
them correlate with a correlation coefficient of <−0.3. Yeasts, bifidobacteria and bacteroides
also correlate with metabogram components as for males. However, the correlation of
enterobacteria and bacteroides with the components of the metabogram in women was
more pronounced than in men (Figure 5b). Thus, an association of the blood metabolome,
reflected in the metabogram, with the human gut microbiota assessed by a culture-based
method was revealed, and this relationship is different for men and women.
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Metabogram components

positive negative
1 2 3 4 5 6 7 1 2 3 4 5 6 7 Gender Stage CM PCR

−0.68 −0.12 −0.01 0.60 −0.50 0.49 −0.57 1.07 −1.12 −0.53 −1.34 0.34 0.64 0.06 M Normal ●
0.32 −0.14 −0.34 −0.91 −0.46 −0.17 0.17 −1.06 0.68 0.05 0.54 −0.17 −0.70 0.01 M Normal ●
0.89 −1.35 −0.94 −0.64 −0.38 −0.92 −0.76 −0.48 −0.43 0.85 −0.70 −0.57 −0.50 −0.28 M Normal ●
0.05 0.38 0.19 −0.79 1.19 −1.29 1.90 −1.60 1.78 2.03 2.01 −1.32 −1.25 1.18 M Normal ● ●

−1.36 −1.32 −1.30 −0.77 −1.61 −1.41 −0.38 0.03 0.77 −0.77 −0.01 −0.19 −0.21 2.07 M Normal ● ●
0.62 −0.99 0.22 1.23 1.21 −0.35 −1.20 0.98 −0.69 0.09 −1.01 0.34 0.70 0.76 M Normal ● ●

−0.90 −0.30 −0.56 −0.53 −1.60 −0.64 −0.05 0.20 0.92 −2.15 0.48 −0.13 −0.48 1.66 M Normal ● ●
−0.74 1.39 2.08 1.24 0.57 0.91 0.77 0.56 −0.13 −1.29 0.16 0.45 0.99 1.05 M Normal ● ●
1.72 1.34 1.81 1.24 0.79 1.66 −0.47 0.08 −1.22 0.21 −0.80 1.75 0.47 0.19 M Normal ● ●
0.21 0.35 −0.18 −0.55 −0.20 0.22 0.88 −1.09 0.02 1.91 0.21 −0.15 −0.78 −0.83 M Overweight ●
1.06 0.26 0.35 −1.30 0.72 0.58 1.87 −1.54 0.59 0.40 1.63 0.05 −1.28 −0.91 M Overweight ●

−0.54 0.69 0.62 −1.66 −0.17 −1.34 1.82 −1.26 0.44 −1.15 1.42 −2.15 −1.01 −0.79 M Overweight ● ●
−2.02 1.01 2.03 1.99 0.27 −0.22 1.85 1.29 0.41 −0.06 1.34 0.67 1.40 1.26 M Overweight ● ●
−1.19 −1.40 −0.91 −0.42 −0.61 −1.56 −0.67 0.37 0.99 −0.12 0.74 −0.94 0.11 2.01 M Overweight ● ●
−0.52 −0.43 −0.94 −1.30 −1.13 −0.40 0.89 −0.88 1.58 −0.24 1.65 −0.79 −1.11 1.33 M Overweight ● ●
1.65 −0.21 −1.12 −1.29 −0.01 0.63 −0.45 −0.80 −0.01 −0.52 −0.09 −0.03 −1.28 0.52 M Overweight ● ●
0.03 0.70 −0.03 0.42 0.35 0.83 0.35 0.51 −0.66 1.08 −0.71 0.16 0.51 0.41 M Obesity ● ●
0.44 −0.67 −0.88 −1.58 −1.43 1.10 0.08 −0.98 0.39 −1.50 0.52 0.12 −1.15 −0.14 M Obesity ● ●

−1.27 −1.39 −0.34 0.80 0.28 −1.27 −0.79 0.87 −0.22 0.31 −0.37 −0.34 0.56 0.52 M Obesity ● ●
−2.23 −0.68 0.36 1.53 −0.08 −0.71 −0.78 2.03 −0.93 −1.88 −0.84 0.01 1.44 1.02 M Obesity ● ●
0.87 1.86 2.21 1.85 1.81 1.36 0.26 0.17 −1.07 1.67 −0.89 0.60 0.35 0.11 M Obesity ● ●
0.70 1.42 1.26 −0.97 0.72 1.02 1.72 −1.34 −0.09 −1.25 0.73 −0.96 −1.48 −0.75 M Obesity ● ●
1.82 0.17 −0.11 −0.80 0.27 1.48 −0.14 −1.12 −0.82 −0.66 −0.70 0.06 −0.88 −1.32 M Obesity ● ●

−0.83 −0.35 0.69 1.43 0.10 0.27 −0.65 2.05 −0.67 −0.93 −0.44 0.14 1.26 1.15 M Obesity ●
−1.06 0.73 1.05 2.57 −0.04 1.55 −0.52 1.59 −1.50 0.86 −1.48 2.40 0.68 0.31 M Obesity ●

−0.19 0.49 0.37 0.78 −0.53 1.58 −1.33 0.22 −1.14 0.09 −1.60 0.98 0.47 0.81 F Underweigh ● ●
−0.71 −0.24 −1.11 −1.52 −0.59 −0.80 1.13 −0.95 1.91 0.04 1.74 −1.69 −1.00 −0.85 F Underweigh ● ●
−0.08 −0.31 −0.08 −0.02 0.33 −0.35 −0.63 −0.16 −0.98 0.51 −0.92 −0.96 −0.01 −0.89 F Normal ●
−2.29 0.49 0.67 2.11 −0.21 1.18 −0.71 1.57 −0.63 0.22 −0.83 1.64 1.30 0.87 F Normal ●
0.74 1.57 0.44 0.02 1.79 0.85 1.00 −1.26 −0.01 1.96 0.19 −0.38 −0.76 −1.61 F Normal ● ●

−1.46 0.28 1.04 1.81 1.16 −0.30 0.04 1.39 −0.40 0.52 −0.52 −0.17 1.67 1.44 F Normal ●
−1.80 −1.00 −0.42 0.65 −0.70 −1.06 −1.17 1.17 −0.52 −1.02 −0.62 0.19 0.84 0.47 F Normal ●
0.22 −1.18 −0.52 0.76 −0.21 0.19 −1.47 1.13 −0.67 −0.43 −0.94 0.81 1.05 0.85 F Normal ● ●
0.54 −1.38 −1.49 −0.65 −1.20 −0.02 −0.75 0.00 0.02 −0.35 −0.25 0.50 −0.21 −0.13 F Normal ●
1.95 0.33 −0.04 −0.16 0.43 2.38 −1.28 −0.01 −0.55 −1.40 −0.74 1.60 0.18 −0.32 F Normal ●
0.63 1.33 1.22 −0.01 0.91 −0.58 1.63 −0.26 −0.53 0.26 0.25 −1.06 −0.51 −0.92 F Normal ● ●

−0.09 −0.17 −0.94 −1.82 −1.12 −0.31 0.76 −1.36 1.72 −0.64 1.74 −0.71 −1.56 1.29 F Normal ● ●
−0.14 1.22 0.83 0.80 0.50 1.16 −0.19 0.13 −0.97 1.05 −0.84 0.91 0.30 −0.20 F Overweight ● ●
−0.99 −1.03 −0.64 0.12 −0.48 0.10 0.75 0.53 1.48 0.59 1.53 0.50 0.19 1.61 F Overweight ● ●
0.03 −0.48 −0.26 1.15 0.42 −0.05 −0.86 0.71 −0.96 0.76 −1.46 0.06 0.89 0.32 F Overweight ●

−0.84 −0.51 0.32 1.31 −0.14 0.00 −1.27 1.38 −0.93 −1.35 −1.07 0.27 0.65 0.29 F Overweight ● ●
−1.39 0.09 0.51 1.43 −0.95 0.85 −0.82 1.48 −1.25 −1.35 −1.34 0.79 0.59 0.47 F Overweight ● ●
−1.26 0.17 −0.15 −0.05 −0.09 0.52 0.86 0.39 −0.47 −0.61 −0.41 −0.26 0.26 0.24 F Obesity ● ●
−2.10 −0.94 0.39 2.04 −1.35 −0.15 −0.60 1.98 −0.65 −1.58 −0.81 0.49 1.78 0.93 F Obesity ●

Figure 4. Metabogram data for subjects participating in the study. Each row with digital values
corresponds to the Z-scores of the metabogram components for an individual (“positive” from 1 to
7 and “negative” from 1 to 7; see example in Figure 3), presented as a row. Z-score is a measure of
the metabogram components (from −1.64 to +1.64 is the normal range; up- and downregulation
correspond to higher and lower Z-score values, respectively). Background color coding: red indicates
upregulation in the corresponding metabogram component; yellow indicates downregulation in
the corresponding metabogram component. Labels: M, male; F, female; CM; culture-based method;
PCR, real-time polymerase chain reaction method; (•) subjects whose gut microbiota was tested by
culture-based method; (•) subjects whose gut microbiota was tested by real-time PCR.
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      ──────────────────────Males────────────────── (a) 

         metabogram components
positive negative

1 2 3 4 5 6 7 1 2 3 4 5 6 7
MICROBIOTA

Enterobacteriaceae −0.19 0.01 0.17 0.16 0.19 −0.12 0.09 −0.03 0.18 0.15 0.19 −0.07 0.01 0.14
Staphylococcus −0.17 0.04 0.11 0.41 0.15 0.02 −0.14 0.33 −0.31 0.20 −0.39 0.29 0.38 0.09
 Enterococcus −0.11 0.24 0.25 0.25 0.24 0.08 −0.01 0.16 −0.22 0.03 −0.17 0.02 0.19 −0.01

             Aerobic bacteria −0.13 0.22 0.17 0.01 0.12 −0.09 0.34 −0.21 0.21 0.24 0.24 −0.23 −0.12 −0.08
Anaerobic bacteria 0.06 0.03 −0.01 −0.16 −0.18 0.07 0.16 −0.11 0.11 −0.02 0.19 −0.14 −0.19 −0.18

 Hemolytic aerobic bacteria     −0.15 0.11 0.12 0.00 0.11 −0.21 0.19 −0.20 0.27 0.08 0.30 −0.29 −0.10 −0.01
Hemolytic anaerobic bacteria     0.02 −0.06 0.01 0.15 −0.16 0.30 −0.33 0.27 −0.35 −0.07 −0.37 0.15 0.08 −0.04

Lactobacillus 0.06 0.06 0.06 −0.10 0.02 −0.09 0.09 −0.24 0.07 0.12 0.11 −0.35 −0.21 −0.31
Citrate-assimilating Enterobacteria 0.19 0.23 0.19 −0.06 0.25 0.33 0.20 −0.14 −0.07 0.22 0.09 0.04 −0.20 −0.15

Bifidobacteria 0.09 0.44 0.15 −0.07 0.17 0.29 0.54 −0.22 0.23 0.30 0.26 0.14 −0.28 −0.08
Sulfite-reducing Clostridia −0.11 0.30 0.35 0.10 0.23 0.04 0.32 −0.11 0.07 0.14 0.23 −0.05 −0.06 −0.06

Yeasts 0.31 0.59 0.52 0.39 0.39 0.60 0.01 0.07 −0.54 0.23 −0.44 0.46 0.21 −0.38
Bacteroides −0.04 0.28 0.44 0.13 0.11 0.46 0.05 0.20 −0.23 −0.31 −0.04 0.32 0.04 −0.02

Antagonistic activity of Bifidobacteria −0.16 0.00 0.15 0.18 0.04 0.29 −0.18 0.37 −0.30 −0.34 −0.22 0.29 0.31 0.08

      ─────────────────────Females───────────────── (b) 
         metabogram components

positive negative
1 2 3 4 5 6 7 1 2 3 4 5 6 7

MICROBIOTA
Enterobacteriaceae 0.46 0.05 −0.21 −0.39 0.20 −0.01 0.27 −0.34 0.36 0.15 0.33 −0.25 −0.42 −0.30

Staphylococcus 0.39 −0.11 −0.10 −0.07 0.15 −0.09 0.05 −0.18 0.27 0.12 0.19 −0.05 −0.16 −0.30
 Enterococcus 0.29 −0.11 −0.18 −0.17 −0.03 0.03 −0.08 −0.21 0.12 −0.17 0.07 0.06 −0.18 −0.34

             Aerobic bacteria 0.23 −0.03 −0.06 −0.22 0.01 0.00 0.24 −0.18 0.27 −0.16 0.31 −0.19 −0.35 −0.19
Anaerobic bacteria 0.09 0.17 0.23 0.09 0.20 −0.31 0.26 −0.14 0.07 0.24 0.09 −0.33 −0.06 0.10

 Hemolytic aerobic bacteria     0.23 −0.06 −0.01 −0.18 −0.10 −0.05 0.24 −0.19 0.27 −0.20 0.34 −0.15 −0.36 −0.20
Hemolytic anaerobic bacteria     0.06 −0.11 −0.13 −0.09 −0.20 −0.26 0.13 −0.16 0.02 0.02 0.06 −0.16 −0.13 0.09

Lactobacillus 0.38 −0.12 −0.08 −0.17 −0.18 −0.05 −0.24 −0.26 −0.08 −0.22 −0.05 0.06 −0.20 −0.19
Citrate-assimilating Enterobacteria 0.45 −0.42 −0.32 −0.31 −0.16 −0.13 −0.22 −0.14 0.16 −0.42 0.14 0.09 −0.13 −0.14

Bifidobacteria 0.36 0.05 −0.17 −0.33 0.09 −0.29 0.22 −0.44 0.39 0.37 0.35 −0.22 −0.37 0.03
Sulfite-reducing Clostridia 0.43 0.04 −0.05 −0.27 0.31 −0.39 0.11 −0.36 0.18 0.27 0.20 −0.30 −0.32 −0.21

Yeasts 0.19 −0.01 −0.30 −0.33 −0.32 0.25 −0.32 −0.25 0.13 −0.31 0.03 0.35 −0.27 −0.11
Bacteroides 0.29 −0.06 −0.19 −0.33 0.06 −0.45 0.37 −0.42 0.61 0.09 0.53 −0.49 −0.41 −0.01

Antagonistic activity of Bifidobacteria 0.40 0.10 −0.18 −0.46 −0.23 0.11 0.12 −0.41 0.42 −0.20 0.47 0.06 −0.44 −0.03

Figure 5. Correlation between the level of gut microorganisms and the metabogram components
calculated for healthy individuals and individuals with various degrees of body weight deviation.
Each row represents the correlation coefficients between the Z-scores of an individual’s metabogram
components (“positive” from 1 to 7 and “negative” from 1 to 7; see Figure 3) and the results of
his microbiota tests. The level of microorganisms in fecal samples was assessed by a culture-based
method. Data are presented for males (a) and females (b). Correlation coefficients less than −0.3 and
greater than 0.3 are highlighted in green and red backgrounds, respectively. The p-values for testing
the hypothesis of no correlation against the alternative hypothesis of a nonzero correlation are
presented in Figure S1.

3.4. Metabogram Components Connection with Gut Microbiota Studied by Real-Time PCR

The correlation of the metabogram components with the gut microbiome (microbiota
assessed by a real-time PCR analysis) is presented in Figure 6. In the figure, there are no
data for Klebsiella oxytoca, Staphylococcus aureus, Clostridium difficile, Proteus vulgaris/mirabilis,
Candida spp., Salmonella spp., Shigella spp., Escherichia coli enteropathogenic (for women) and
Clostridium perfringens (for women) since these types of bacteria were not detected in the
analysis or detected in a small number of samples (see Table S2).

Figure 6 shows that the relationship between the components of the metabogram and
the gut microbiome is pronounced and different for men and women. It can be said that
all components are associated with certain measured microorganisms. Considering that
the components of the metabogram are ranked from 1 to 7 according to their coverage of
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blood metabolome variance, i.e., the first component is the weightiest, it can be said that
in males, the relationship with Klebsiella pneumoniae is the most pronounced, followed by
Faecalibacterium prausnitzii, Escherichia coli and Enterococcus spp.
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      ──────────────────────Males────────────────── (a) 
         metabogram components

positive negative
1 2 3 4 5 6 7 1 2 3 4 5 6 7

MICROBIOME
Total bacteria 0.03 −0.28 −0.32 −0.18 −0.16 0.03 −0.18 0.02 0.08 −0.30 −0.10 −0.01 −0.17 0.23

Lactobacillus  spp. 0.10 0.03 −0.03 0.36 0.27 −0.01 −0.15 0.23 −0.01 0.41 −0.29 0.25 0.18 0.38
Bifidobacterium  spp. 0.00 −0.20 −0.32 0.13 −0.13 0.06 −0.29 0.28 0.07 0.01 −0.20 0.41 0.18 0.51

Escherichia coli −0.16 −0.39 −0.18 0.35 0.14 −0.20 −0.44 0.42 −0.25 0.33 −0.47 0.10 0.40 0.20
Bacteroides fragilis  group 0.05 −0.31 −0.35 −0.30 −0.12 0.05 −0.12 −0.08 0.10 −0.29 0.03 −0.13 −0.23 0.09

Faecalibacterium prausnitzii −0.03 −0.34 −0.28 0.12 −0.15 0.12 −0.41 0.43 −0.12 −0.09 −0.31 0.40 0.33 0.30
Klebsiella pneumoniae −0.31 −0.31 −0.28 0.11 −0.16 −0.29 −0.26 0.34 0.10 0.17 −0.07 −0.14 0.20 0.20

Escherichia coli enteropathogenic 0.14 0.33 0.21 −0.01 0.02 0.42 0.40 −0.12 0.03 −0.11 0.27 0.18 −0.06 −0.11
Enterococcus  spp. 0.05 −0.04 0.05 0.37 0.44 −0.01 −0.18 0.38 −0.23 0.52 −0.43 0.27 0.38 0.09

Bacteroides thetaiotaomicron 0.16 0.07 0.03 −0.12 0.06 0.38 −0.02 −0.01 −0.27 −0.28 −0.21 0.17 −0.06 −0.22
Clostridium perfringens 0.00 −0.31 −0.54 −0.16 −0.30 −0.09 −0.35 0.04 −0.02 −0.03 −0.23 −0.11 −0.11 0.04

Enterobacter  spp. and Citrobacter  spp. −0.10 −0.24 −0.09 0.34 0.19 −0.16 −0.23 0.27 −0.13 0.35 −0.32 0.03 0.31 0.20
Parvimonas micra 0.05 0.18 0.17 0.18 −0.03 0.43 −0.09 0.06 −0.46 −0.23 −0.36 0.39 0.25 −0.20

B. fragilis  group / F. prausnitzii ratio 0.17 0.11 −0.17 −0.31 0.14 0.17 0.34 −0.32 0.10 0.14 0.18 −0.24 −0.41 −0.20

      ─────────────────────Females───────────────── (b) 
         metabogram components

positive negative
1 2 3 4 5 6 7 1 2 3 4 5 6 7

MICROBIOME
Total bacteria 0.01 0.53 0.46 0.10 −0.04 0.28 0.11 −0.12 −0.18 −0.03 −0.08 0.01 −0.11 −0.16

Lactobacillus  spp. 0.02 0.02 −0.06 −0.24 0.45 −0.33 0.30 −0.04 0.39 0.16 0.26 −0.42 −0.18 −0.28
Bifidobacterium  spp. −0.35 0.17 0.06 −0.16 −0.23 0.29 0.20 0.01 −0.06 −0.01 0.04 0.11 −0.22 0.29

Escherichia coli −0.19 0.08 0.12 −0.26 0.27 −0.22 0.34 0.09 0.21 0.15 0.19 −0.26 0.06 −0.28
Bacteroides fragilis group 0.21 0.37 0.30 −0.14 −0.07 −0.01 0.26 −0.20 0.00 −0.13 0.15 −0.27 −0.17 −0.16

Faecalibacterium prausnitzii 0.43 −0.04 0.24 0.22 0.19 0.22 −0.12 −0.04 −0.17 0.46 0.05 0.36 0.07 0.27
Klebsiella pneumoniae −0.65 −0.50 −0.45 −0.13 −0.04 −0.37 0.05 0.36 0.37 −0.19 0.20 −0.16 0.08 0.15

Enterococcus  spp. 0.57 0.19 0.42 0.39 0.43 0.15 −0.15 −0.05 −0.31 0.15 −0.19 0.13 0.13 −0.26
Bacteroides thetaiotaomicron −0.42 −0.33 −0.34 −0.07 −0.68 −0.58 0.06 0.06 0.23 −0.51 0.30 −0.31 −0.12 0.16

Enterobacter  spp. and Citrobacter  spp. −0.29 −0.26 −0.30 −0.33 0.13 −0.46 0.33 0.10 0.51 0.10 0.37 −0.40 0.00 −0.25
Fusobacterium nucleatum −0.20 −0.15 0.12 0.32 −0.19 −0.02 −0.28 0.40 −0.21 −0.28 −0.30 0.12 0.46 −0.01

Parvimonas micra 0.16 −0.01 −0.43 −0.76 0.18 −0.32 0.68 −0.54 0.82 0.36 0.86 −0.58 −0.73 −0.04
B. fragilis  group / F. prausnitzii ratio 0.02 0.17 0.10 −0.07 −0.35 −0.37 0.14 −0.12 0.06 −0.33 0.10 −0.40 −0.11 −0.22

Figure 6. Correlation of gut microbiome with metabogram components calculated for healthy
individuals and individuals with various degrees of body weight deviation. Each row represents the
correlation coefficients between the Z-scores of an individual’s metabogram components (“positive”
from 1 to 7 and “negative” from 1 to 7; see Figure 3) and the results of his microbiome tests. The level
of microorganisms in fecal samples was assessed by real-time PCR analysis. Data are presented for
males (a) and females (b). Correlation values less than −0.3 and greater than 0.3 are highlighted in
green and red backgrounds, respectively. The p-values for testing the hypothesis of no correlation
against the alternative hypothesis of a nonzero correlation are presented in Figure S2.

In women, as well as in the microbiota measured by a culture-based method, the
tendency remains in the microbiome measured by the real-time PCR: the association of the
microorganism level with the components of the metabogram is more diverse and differs
from that of men. Similar to men, there is also a pronounced link with Klebsiella pneumoniae,
Enterococcus spp. and Faecalibacterium prausnitzii. However, a less prominent link with
Escherichia coli and a stronger link with Parvimonas micra are detected.

3.5. Visualization of the Links between Metabogram Components and Gut Microbiota

The links between the components of the metabogram and the microorganisms in
the gut microbiota, which is the main goal of this study, were represented by projecting
the corresponding points onto a two-dimensional plane using classical multidimensional
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scaling. The eigenvalue e returned by the multidimensional scaling function validated the
accuracy of such a projection (for the first two dimensions, e is more than 50%). As a result,
Figure 7 accurately depicts on the plane the relationship between the components of the
metabogram and the microorganisms of the microbiota. In addition, lines were used to
represent the strength of the links, with the width of the lines reflecting the value of the
correlation coefficient between the points.
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Figure 7. Linkage of clinical blood metabogram components with gut microbiota. Multidimensional
scaling was used to build plots. Points labeled “P” and “N” correspond to positive and negative
metabogram components, respectively. The names of microorganisms indicated in red and blue
correspond to culture-based method and real-time PCR data, respectively. The linkage is shown
by dashed lines. The width of the line corresponds to the strength of linkage (corresponds to the
absolute value of the correlation coefficient), and the color of the line corresponds to a positive (red
line) or negative correlation (green line). Lines are drawn for correlation coefficients >0.3 and <−0.3.
The percentages of the eigenvalue e returned by the multidimensional scaling function are displayed
in parenthesis.

3.6. Diagnostic Potential of Metabogram Components

If the level of any microorganism in the gut microbiota is outside the normal range
for several examined volunteers, then this allows us to evaluate the diagnostic capacity
of the metabogram in relation to such a microorganism. In this study, yeasts measured
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by a culture-based method allowed this to be achieved. Figure 8 demonstrates that the
Z-score value of the positive component 6 of the metabogram allows diagnosing yeast
levels exceeding the norm (0–4 lg(CFU/g)) with an accuracy of 91%, sensitivity of 63% and
specificity of 97%.
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Figure 8. ROC curve for the diagnostics of yest levels exceeding the norm based on the Z-score value
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the maximum diagnostic accuracy value.

For the evaluation of diagnostic parameters for other microorganisms, an additional
study is needed using a cohort aligned with the number of patients with gut microorganism
levels outside the norm and patients with the normal level of the same microorganism.

4. Discussion

The challenges of implementing metabolomics in medicine [6,7] led to the concept of
simplifying the N-of-1 metabolomics study that was realized in a blood metabogram. The
metabogram approach makes it possible to abandon the identification of individual metabo-
lites, of which there are thousands in biological samples, which makes any metabolomics
study complex, time-consuming, laborious and expensive [8]. In the metabogram, only
groups of related metabolites are processed, which composition is quickly assessed by the
MSEA [17]. Thus, the complex identification of individual metabolites is replaced by a
group analysis. Moreover, the group level evaluation leads to increased reproducibility
of the data, so that the coefficient of variation (CV) [8] for the components of the metabo-
gram is unattainable for most individual metabolites [19] and fully complies with the
requirements to reproducibility for clinical laboratory tests.

The metabogram offers a variety of clinically relevant information from the blood
metabolite groups involving regulation, lipid–carbohydrate and lipid–amine metabolism,
eicosanoids, amino acids, lipid intake into the organism and liver function. The clinical
value of the metabogram was already confirmed in a previous study by assessing metabolic
alterations related to overweight and obesity [9]. However, before the metabogram is used
in the clinic, it is necessary to define how the components of the metabogram relate to the
gut microbiota due to its prominent impact on the blood metabolome [10]. For this, people
with various metabolic changes associated with various degrees of body weight deviation
were evaluated using the metabogram, and the obtained results were compared with their
gut microbiota composition. Overweight and obese people are good models of metabolic
alterations, which are well-described. The widespread presence of such people and the fact
that imbalance in the gut microbiota may be a factor leading to obesity [20–22] justified the
chosen cohort for linking the metabogram with the gut microbiota.

Up to 100 trillion microorganisms live in the gut, called the gut microbiota, which is
unique to each person and contains tens of times more cells and 100 times more genes than
the human body’s own genes [23,24]. The diversity of the gut microbiota requires a choice
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of microorganisms to link to the metabogram components. Since the metabogram is a way
of using metabolomics in clinical practice, it was worthwhile to investigate the relationship
with microorganisms routinely measured in clinics. It is these microorganisms that were
measured in this work by the culture-based method and using the “Colonoflor-16” kit for
the real-time PCR analysis, which is widely used in Russian clinics.

The results of this study showed a deep relationship between the metabogram compo-
nents and the gut microbiota, which fully corresponds to the scientific data available today.
It was observed that gender-specific differences in the gut microbiota are associated with
metabogram component values, in particular with the first metabogram component, which
is enriched with steroids (Figure 2).

Differences in the composition of the microbiota depending on sex have also been
established in numerous studies. Thus, newborn boys have a greater number of Bifidobac-
terium (Actinobacteria type) and Clostridiales bacteria (Firmicutes type) and a lower number of
Enterobacteriales bacteria (Proteobacteria type) [11,12]. At the same time, girls have a greater
diversity of gut microbiota compared to boys. This points to a possible role of steroid
hormones in shaping the composition of the microbiota. According to studies performed
in adults, young and middle-aged women have a greater diversity of gut microbiota than
men, and after 40 years, these differences cease to be significant [13,14]. A significant
strong direct relationship has been demonstrated between the estrogen levels and the taxo-
nomic diversity of bacteria within the Clostridia class. A South Korean study of 57 people
demonstrated a relationship between the levels of sex hormones such as testosterone and
estradiol and the composition of the gut microbiota [25]. Thus, at present, significant
gender differences in the composition of the gut microbiota associated with sex hormones
have been identified, which are consistent with the sex-specific linkage of the metabogram
components with the gut microbiota, especially component 1 due to the enrichment of this
component with steroid hormones (Figure 2).

The effect of gut microorganisms on the blood metabolome, due to the fact that
a significant part of the metabolites in the blood comes from the intestine, is also well
known and consistent with the results obtained. Thus, the total bacteria (changes in
nutrition or age-related changes, intestinal disorders), Lactobacillus spp. (imbalanced diet,
food allergy), Bacteroides fragilis and Bacteroides fragilis/Faecalibacterium prausnitzii ratio
(dysbiotic disturbances, intestinal inflammation), yeasts (systemic mycoses, non-invasive
mycotic process, specific dysbiosis, including by disorders of carbohydrate metabolism),
etc., correlated with the components of the metabogram.

Therefore, the goal of this study was achieved; it was confirmed that the compo-
nents of the metabogram are associated with the gut microorganisms. It was established
which components of the metabogram are most strongly associated with which types of
microorganisms. Therefore, when interpreting metabograms for their use in the clinic, this
information can be taken into account. It should also be noted that the blood metabogram,
as a new method for analyzing metabolomic data, gave an updated version of the relation-
ship between the gut microbiota and the human molecular phenotype expressed in the
blood metabolome. In particular,

• The difference between the sexes was clearly shown.
• A precise metric of the blood metabolome/gut microbiota relationship was provided

(the portion of the metabolome covered by each component of the metabogram is
indicated in the metabogram, and the strength of connection is expressed by the
correlation coefficient).

• New data about blood metabolome/gut microorganism relations were revealed (e.g.,
the strong connection of the metabolome with the yeast levels).

• A high diagnostic capacity of blood metabolites (by means of a metabogram) in relation
to gut microbiota was demonstrated.

Moreover, almost all deviations in the measured microorganisms are associated with
either malnutrition and/or intestinal pathologies. Therefore, the established connection
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between the components of the metabogram and gut microorganisms can be considered not
only in the interpretation of the metabogram but also in the diagnosis of intestinal diseases.

The outcomes of this research can also be assessed in light of fundamental knowledge.
The metabogram’s capacity to quantify the relationship between the blood metabolome
and microbiota revealed a strong linkage between them. This fact enables us to argue
that the blood metabolome, a global molecular biochemical phenotype, is the result of a
superposition of the body’s internal factors and gut microbiota composition. This finding
supports theories that attribute a significant role to the microbiota in how the human
body functions. The gut microbiota is even credited with the ability to change human
behavior, including eating habits [26–28], and, as a result, is associated with the metabolic
features of the organism and the risks of the most common diseases [29–31]. The established
significant link between the microbiota and the components of the metabogram, formed
by regulatory (steroids, eicosanoids) and nutritive (phospholipids, carbohydrates, amino
acids) substances, provides reliable proof for this. Given the expanded significance of the
microbiota, this fact places additional demands on the study and interpretation of the blood
metabolome as well as the evaluation of human health.

The limitations of the work include the fact that all known types of bacteria that affect
the blood metabolome [32,33], including in the obesity, were not investigated [20,34,35].
However, this was not the goal of this work and may in the future serve both as a more
complete disclosure of the potential of the metabogram and as a subject of study of the
influence of the microbiota on human health.

The prospect of further investigation of the metabogram lies in the study of the
relationship of its components with the genome. It is expected that this will be another
sign of the viability of the metabogram approach, and, as in the case of this work, it may
provide new knowledge about blood metabolome relationships. Another prospect is a
study of diagnostic parameters for a wide list of gut microorganisms and a more accurate
assessment of diagnostic parameters at different values of the metabogram components.
Such a study needs a cohort aligned in the number of patients with and without dysbiotic
disturbances in the microbiota.

5. Conclusions

The metabolome is the level of organization of biological systems directly related
to the global biochemical phenotype, the measurement of which for medical purposes is
long-awaited and promising. The clinical metabogram is such an attempt, as it has the
features of a clinical test in terms of performance and, as previously shown, carries clinically
significant information. However, the blood metabolome is closely related to the human
microbiota, and this relationship is shown in this work, which makes the interpretation of
the metabograms more complete. Moreover, being an effective method for the analysis of
blood, the metabogram allowed us to make a new global overview of the relationship of
the blood metabolome with the microbiota, bringing a lot of new scientific information.
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