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Abstract: Methodologies for the synthesis and purification of metabolites, which have been de-
veloped following their discovery, analysis, and structural identification, have been involved in
numerous life science milestones. The renewed focus on the small molecule domain of biological
cells has also created an increasing awareness of the rising gap between the metabolites identified
and the metabolites which have been prepared as pure compounds. The design and engineering
of resource-efficient and straightforward synthetic methodologies for the production of the diverse
and numerous metabolites and metabolite-like compounds have attracted much interest. The variety
of metabolic pathways in biological cells provides a wonderful blueprint for designing simplified
and resource-efficient synthetic routes to desired metabolites. Therefore, biocatalytic systems have
become key enabling tools for the synthesis of an increasing number of metabolites, which can then
be utilized as standards, enzyme substrates, inhibitors, or other products, or for the discovery of
novel biological functions.

Keywords: metabolite synthesis; biocatalytic systems; product recovery; isotope-labelled metabolites;
metabolite-like compounds

1. Introduction

Traditional knowledge of bioresources for microbial, plant and animal metabolites, as
well as their processing and application, has been contributing tremendously to quality of
life for thousands of years. Small molecular weight natural products have accompanied
humankind and supported their quality of life in highly relevant areas, such as nutrition, di-
agnostics and therapy of diseases, dyes, cosmetics, and well-being, with an ever-increasing
knowledge base. Numerous achievements have been made in terms of the isolation and
purification of metabolites from natural bioresources and the elucidation of their molecular
structures, demonstrating their large structural diversity. Renewed interest in the small
molecule domain of biology [1] and the structures and functions of natural products and
metabolites have brought the spotlight back onto metabolism [2]. With the great variety of
small molecular weight compounds formed by the metabolism of biological cells, such as
human and animal-derived metabolites, natural products from microbes and plants [3], as
well as the large number of derivatives formed by the metabolism of biological cells from
synthetic new molecular entities, a unified definition of ‘metabolite’ as a small molecular
weight compound formed by the metabolism of a biological cell is used here. Manifold
interactions between metabolites and other biomolecules, such as proteins, DNA, RNA, or
other metabolites, within the same as well as between other biological cells, are of much
fundamental interest for biological sensing, controlling and regulating processes at the
genetic, epigenetic, transcriptomic, and proteomic levels. As precise experimental investi-
gations of metabolites and their interactions with other biomolecules, such as their role as a
substrate, inhibitor, or activator of an enzyme, are only possible by having available and
pure metabolites, synthetic access is essential.
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The concept of the metabolome [4], coined 25 years ago, has contributed to revitalizing
interest in metabolites and metabolic pathways. Analyses of large numbers of metabolites
have been facilitated by significant advances in powerful analytical methodologies with
high information content [5–7], such as mass spectrometry (MS) [8] and nuclear magnetic
resonance (NMR) [9], on which known and unknown metabolites can be based. A growing
number of large databases are focusing on: (a) metabolite analysis using MS [8] or NMR [10];
(b) metabolites, metabolic pathways, natural products, and small molecules of biological
interest [11–13]; and (c) species-specific metabolites and metabolic pathways (see Table 1
for a selection of species-specific metabolite databases) [14–23], providing fast access to
information on the increasing number of identified metabolites and metabolic pathways.

Table 1. Selection of Species-specific Metabolite Databases.

Biological
Species

Name of Species-
Specific

Metabolite Database

Abbreviation
of Metabolite

Database Name

Website of
Metabolite
Database

Reference Accessed Date
for the URL

Human Human Metabolome
Database HMDB https://hmdb.ca/ [14] accessed on 16 July

2023

Human
Microbiome

Human Microbial
Metabolome Database

i
MiMeDB https:

//mimedb.org/ [15] accessed on 16 July
2023

Escherichia coli Escherichia coli
Metabolome Database ECMDB http://www.

ecmdb.ca/ [16] accessed on 16 July
2023

Pseudomonas
aeruginosa

Pseudomonas aeruginosa
Metabolome Database PAMDB

http:
//pseudomonas.
umaryland.edu/

[17] accessed on 16 July
2023

Streptomyces sp. Streptomyces Natural
Products Database StreptomeDB

http://www.
pharmbioinf.uni-

freiburg.de/
streptomedb/

[18] accessed on 30 July
2023

Cyanobacteria

Comprehensive
database

of secondary
metabolites

from cyanobacteria

CyanoMetDB
https:

//zenodo.org/
record/7922070/

[19] accessed on 30 July
2023

Myxobacteria Myxobacterial Natural
Product Database MyxoDB

https://www.
myxonpdb.sdu.

edu.cn/
[20] accessed on 30 July

2023

Yeast Yeast Metabolome
Database YMDB http:

//www.ymdb.ca/ [21] accessed on 16 July
2023

Bovine Bovine Metabolome
Database BMDB https:

//bovinedb.ca/ [22] accessed on 16 July
2023

Tomato Tomato Metabolome
Database TOMATOMET

http:
//metabolites.in/

tomato-fruits/
[23] accessed on 24 July

2023

The development of analytical methodologies for identifying biologically active
metabolites and the interactions between metabolites and proteins and other
biomolecules [24–26] offers great opportunities for delineating the molecular mechanisms
of numerous biological processes. These include the activities of proteins and their modula-
tion by activators, inhibitors, allosteric regulation, or post-translational modification; the
sensing of metabolites by riboswitches or post-transcriptional modification of RNA; and
controlling gene expression.

The use of isotopes for labelling small molecules continues to be essential for ana-
lytical methodologies, from measuring metabolite concentrations in biological matrices
and determining metabolite fluxes in biological organisms to the discovery of metabolic
pathways [27–29]. Biocatalytic systems have therefore been important for the synthe-
sis of isotope-labelled metabolites, whether through whole cell systems or isolated en-
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zymes [30,31]. Synthesis has also been key for proving the correct molecular structure [32]
and for the production of larger amounts of the pure metabolite [33,34]. While synthetic
organic chemistry provides a significant repertoire of well-established reactions, safety,
and health, environment and sustainability aspects have become of increasing importance
in the industrial manufacturing processes of metabolites [35]. Improving resource and
energy efficiency, reducing risks and the extensive use of natural resources, and avoiding
the use of toxic chemicals are major planetary issues for sustainable development. Catalytic
reactions provide novel, green, and sustainable methodologies for powerful and resource-
efficient synthetic chemistry. This has also been convincingly demonstrated by recent
Nobel Prizes in chemistry which were awarded in 2018 to Frances Arnold for directed
evolution of enzymes [36] and in 2021 to Benjamin List [37] and David McMillan [38] for
the development of asymmetric organocatalysis. Fundamental and mutually beneficial
inspirations can originate from the interface and interactions between biocatalysis and
organocatalysis [39]. Metabolic pathways used by biological organisms to prepare valuable
metabolites from the raw materials available in their environment have also been success-
fully utilized and developed into industrial bioprocesses for manufacturing of metabolites,
metabolite-like compounds, non-natural chemical entities, and metabolites thereof [40–42].
The metabolic pathways, which start from highly functionalized biobased raw materials
instead of hydrocarbons, also provide inspirations for biocatalytic defunctionalization
reactions in transitioning towards raw materials from bioresources [43]. However, the
desired use of biobased raw materials also needs to consider other goals, such as biodiver-
sity, sustainability, and supply chain issues, if biologically endangered and rare biological
species are required or the amount and quality of the biobased raw material is variable and
subject to various environmental factors [44]. Therefore, the molecular and engineering
fundamentals of how nature achieves the biosynthesis of metabolites using biocatalytic
reactions in microbes, plants, animals, and humans have attracted much interest as a
blueprint for optimized biocatalytic systems of metabolite production [45].

The purpose of this work is to provide an overview of design and engineering ap-
proaches for biocatalytic systems in metabolite production and their application in manu-
facturing processes. The significance of biocatalytic systems for metabolite production is
connected with the general strategic advantages of using biocatalysis in synthesis, such as
their high selectivity and shortened synthetic routes [46].

2. Design and Engineering of Biocatalytic Systems

Biocatalytic system design and engineering towards the synthesis of metabolites starts
with route selection and includes the preparation of suitable biocatalysts and raw materi-
als, reaction engineering, process integration, intensification, and scaling of the selected
metabolite manufacturing processes [35]. The main aim of this work focuses on designing
and engineering biocatalytic systems in order to produce metabolites. Great progress has
been made in delineating natural and engineering synthetic metabolic pathways, advanced
methodologies and tools for finding and applying biocatalysts, and last but not least prod-
uct recovery and purification. These significant advances along a whole bioprocess and
workflow have brought biocatalytic systems into a privileged position. Biocatalytic systems
are being used for producing not only natural metabolites, but also metabolite-like com-
pounds; metabolites derived from the transformation of new chemical entities by biological
organisms and isotope-labelled metabolites.

Having synthetic access to a metabolite or metabolite-like compound, or even more
convenient, having an already available pure product, has been and continues to be highly
important and relevant [47,48] for a number of reasons, as shown in Figure 1A for funda-
mental and applied sciences, as well as for a great variety of applications in industry and
medicine, as shown in Figure 1B.
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medical and diagnostic applications. (B) For applications in industry, where usually large quantities 
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biomarkers for diagnostic purposes and therapeutic drug monitoring or drug abuse. In medicinal 
chemistry, a diversity of test compounds and standards are needed for studying biological activity 
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distribution, metabolism, excretion, and toxicity of novel molecular entities. 

In view of millions of protein sequences, genomic enzymology tools are highly 
valuable for generating clues and hypotheses to guide experiments towards the correct 
assignment of enzyme and metabolic functions, as the functions of a significant fraction 
of protein sequences are unknown, uncertain, or even misassigned [49]. The final proof of 
the assignments is not possible without experimental verification of the predicted enzyme 
functions. This requires the availability of the corresponding metabolites a) as enzyme 
substrates to demonstrate their conversion into the predicted product and to perform the 
enzyme activity assays, and b) for the discovery of novel biological functions. In the case 
of chiral enzyme substrates or products, or for investigations of enzymatic reaction 
mechanisms, enantiopure metabolites can resolve fundamental questions and provide 
more detailed insights. Applications in industry are growing and include food 
supplements, pharmaceuticals, flavors, fragrances, cosmetics, dyes, and agrochemicals. 
The excellent chemo-, regio-, and stereoselectivity and mild reaction conditions of 
biocatalytic systems, which avoid protection–deprotection schemes, are environment 
friendly and safe to use. This is advantageous for the use of reactions requiring toxic 
chemicals, heavy metals, or the introduction and removal of protecting groups in 
chemocatalytic or stoichiometric reactions. 

There are also disadvantages to overcome for biocatalytic systems when substrate 
and product concentrations are limited by solubility in aqueous media or enzyme 
inhibition. In these cases, a reaction type corresponding to a well-established key 
functionalization reaction in organic chemistry requires intense elaboration of a suitable 
biocatalytic systems for a selected substrate to product conversion due to the narrow 
substrate scope of the biocatalyst. Stability issues, for biocatalysts as well as for substrates 
and products, need to be checked, and in case of fragile biologically active metabolites, 
suitable operating windows for the reaction and workup must be selected. Improving 
energy and resource efficiency in manufacturing metabolites, such as reducing energy use 
and avoiding protection–deprotection schemes in lengthy chemical synthesis from fossil-
based raw materials or minimizing biological waste in low-yield extractive procedures 

Figure 1. Selected reasons for the synthesis of metabolites and metabolite-like compounds. (A) For
academic research applications in basic and applied sciences, where small quantities are usually
needed, for example in biochemistry and other life sciences for the analysis of metabolic pathways,
the discovery of unknown biological pathways, in preclinical research and development, and medical
and diagnostic applications. (B) For applications in industry, where usually large quantities are
needed of active ingredients and intermediates of pharmaceuticals, vitamins, flavors, fragrances,
dyes, or agrochemicals. In clinical chemistry, standards are needed for blood and urine tests of
biomarkers for diagnostic purposes and therapeutic drug monitoring or drug abuse. In medicinal
chemistry, a diversity of test compounds and standards are needed for studying biological activity
and efficacy, metabolism, and pharmacokinetics, and for determining the parameters of absorption,
distribution, metabolism, excretion, and toxicity of novel molecular entities.

In view of millions of protein sequences, genomic enzymology tools are highly valu-
able for generating clues and hypotheses to guide experiments towards the correct assign-
ment of enzyme and metabolic functions, as the functions of a significant fraction of protein
sequences are unknown, uncertain, or even misassigned [49]. The final proof of the assign-
ments is not possible without experimental verification of the predicted enzyme functions.
This requires the availability of the corresponding metabolites (a) as enzyme substrates
to demonstrate their conversion into the predicted product and to perform the enzyme
activity assays, and (b) for the discovery of novel biological functions. In the case of chiral
enzyme substrates or products, or for investigations of enzymatic reaction mechanisms,
enantiopure metabolites can resolve fundamental questions and provide more detailed
insights. Applications in industry are growing and include food supplements, pharmaceu-
ticals, flavors, fragrances, cosmetics, dyes, and agrochemicals. The excellent chemo-, regio-,
and stereoselectivity and mild reaction conditions of biocatalytic systems, which avoid
protection–deprotection schemes, are environment friendly and safe to use. This is advan-
tageous for the use of reactions requiring toxic chemicals, heavy metals, or the introduction
and removal of protecting groups in chemocatalytic or stoichiometric reactions.

There are also disadvantages to overcome for biocatalytic systems when substrate and
product concentrations are limited by solubility in aqueous media or enzyme inhibition. In
these cases, a reaction type corresponding to a well-established key functionalization reac-
tion in organic chemistry requires intense elaboration of a suitable biocatalytic systems for a
selected substrate to product conversion due to the narrow substrate scope of the biocatalyst.
Stability issues, for biocatalysts as well as for substrates and products, need to be checked,
and in case of fragile biologically active metabolites, suitable operating windows for the
reaction and workup must be selected. Improving energy and resource efficiency in manu-
facturing metabolites, such as reducing energy use and avoiding protection–deprotection
schemes in lengthy chemical synthesis from fossil-based raw materials or minimizing bio-
logical waste in low-yield extractive procedures from biobased raw materials, is essential
in building more resilient and sustainable manufacturing routes to metabolites. A resilient
manufacturing route to a metabolite means a route with a robust and stable production
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process with the ability to effectively cope with changing boundary conditions, respond,
and maintain reliable manufacturing. The molecular transformations catalyzed by enzymes
and metabolic pathways in nature, as well as the great advances of biocatalysis, provide a
blueprint and rich sources of knowledge for designing and engineering biocatalytic systems
for the synthesis of metabolites.

Biocatalytic systems using whole cells have been developed into numerous fermen-
tation processes as well as biotransformation processes at large industrial scales for the
production of metabolites [50–53]. Fermentation processes use the cultivation of microbial
whole cells in a fermenter containing the medium with the nutrients required for cell
growth and product biosynthesis, followed by subsequent product recovery and purifica-
tion, while biotransformation processes make use of microbial whole cells in a resting state
for transforming an advanced intermediate to the product under physiological conditions.
The vast knowledge base and the rich diversity of biocatalytic whole-cell systems have led
to biocatalytic metabolite production through suitable growing or resting whole cells (see
Figure 2). Metabolic engineering and synthetic biology enable improvements in titer, rate,
and space–time yield of metabolite synthesis from the starting materials (a) by increasing
the performance of the biosynthetic pathways to the metabolite, and (b) by deleting any
biocatalytic degradation reaction of the final metabolite and of any metabolic intermediates.
Biocatalytic whole-cell systems are also connected with a high degree of complexity, which
can be reduced by using cell-free biocatalytic systems (see Figure 2) in different forms
of purification, from crude cell-free extracts to isolated and purified enzymes. Whatever
biocatalytic system is considered, bioprocess design and engineering need to address and
optimize various parameters such as biocatalytic pathway selection, form and status of the
biocatalysts, reaction engineering, downstream processing, and purification of the metabo-
lites [35,54]. Cell-free biocatalytic systems have the advantage of reducing the bioprocess
complexity through the absence of interfering and degrading enzymes or the removal of
mass-transfer limitations for substrates and products [54].
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Figure 2. Basic types of biocatalytic systems for the synthesis of metabolites and metabolite-like compounds.

While the step economy of a biosynthetic pathway is already considered in the design
phase, possible improvements such as complexity reduction, intermediate purification
steps, and the number of separate reactors needed are also taken into account by the degree
of process integration involved in biocatalytic metabolite synthesis. Depending on how
many reaction steps are needed for transforming the starting materials to the metabolites,
one-step to multistep enzymatic reactions are developed, if possible in one pot. If all the
enzymatic reactions of a biosynthetic pathway can be performed well, enzymatic total
synthesis can be achieved [55].

3. Synthesis of Naturally Occurring Metabolites

The milestone discoveries that small molecules of life could not only be isolated
from nature, but could also be synthesized in the laboratory from inorganic chemical
precursors, started the new era of synthetic organic chemistry [56]. The synthesis of urea
by Friedrich Wöhler in 1828 [57] or acetic acid by Hermann Kolbe in 1845 [58] were clear
demonstrations that organic compounds, which are found and formed naturally in living
organisms, could be prepared starting from inorganic materials. This sparked tremendous
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interest in synthetic organic chemistry, and impressive advances have been achieved in
the art and science of total synthesis of numerous more complex natural products (see
Figure 3), such as cholesterol and penicillin [59–63]. Total synthesis has not only been key
to the final proof of structures and to correcting mistakenly assigned structures [64], but it
has also been a key driver for novel synthetic methods in organic chemistry, which remain
at its heart up to the present time [65].
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The tools and methodologies used for broadly applicable synthetic reactions, either
reactions which are already well established or newly discovered and emerging reactions
from modern organic chemistry, have enabled the total synthesis of an impressive number
of naturally occurring metabolites [66–69] to be synthesized from very simple structures
without any stereogenic centers into the most complex metabolites (see Figures 3 and 4).
Synthesizing naturally occurring polycyclic metabolites, such as steroids, from simple
building blocks has attracted much interest [66]. The first total synthesis of cholesterol was
described by R.B. Woodward, whereby the methyl-3-ketoetio-allo-cholanate synthesized
previously was converted via cholestan-3-ol, cholestane-3-one, and 4-cholesten-3-one into
cholesterol [67,68]. With large amounts of industrially manufactured cholesterol extracted
from animal-derived raw materials, new short and straightforward synthetic routes start-
ing from non-animal-derived biobased raw materials are of much interest, such as the
conversion of plant-based diosgenin to cholesterol in four steps [69]. Overcoming the
great challenges of the chemical synthesis of vitamin B12, a microbial metabolite of high
molecular complexity (see Figure 4), has not only resulted in many significant discoveries
and novel methods on the road to that goal, but has led to the epochal milestone of its first
total synthesis by the research groups of Alfred Eschenmoser in Zurich and R.B. Woodward
in Cambridge [70,71]. The identification of the microbial enzymes and the aerobic and
anaerobic enzymatic pathways to vitamin B12 in nature [72] have shown the power of
biocatalytic total synthesis and are also of fundamental interest in the context of the origin
of vitamin B12 and related compounds [73].
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The tremendous task of establishing the complete stereochemistry and total synthesis
of the marine natural product palytoxin (see Figure 5), which has a molar mass of 2680 and
contains 63 stereogenic centers as well as four trans- and three cis-carbon-carbon double
bonds, has been achieved by Yoshito Kishi and coworkers [74].
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In this pioneering work and landmark achievement, eight building blocks were cou-
pled in seven reactions to the fully protected palytoxin carboxylic acid containing 43
protecting groups in total, from which the palytoxin carboxylic acid was obtained in a 35%
overall yield after removal of the protecting groups [74]. The palytoxin carboxylic acid was
then treated with acetic acid in order to obtain the corresponding δ-lactone, which was then
converted into the final palytoxin [74]. The development of new chemical reactions, such as
the powerful Fe(III)-mediated coupling of catharanthine and vindoline to anhydrovinblas-
tine, which may perhaps be also involved in the natural plant biosynthesis of vinblastine,
has enabled the synthesis of vinblastine (see Figure 3) and related compounds in 8 to 13
reaction steps [75]. Total synthesis without using protecting groups is of significant interest
for reducing the complexity, cost, and number of steps, as shown in the synthesis of marine
natural products [76].

The milestone discoveries of living microbial whole cells [77], their biosynthetic capa-
bilities, and the elucidation of the organic chemistry of the underlying biocatalytic reactions
exerted by cell-free extracts [78] have started the era of synthetic biochemistry (see Table 2
for an overview of the natural metabolites covered in this review, with their respective
pathways involved).

Although the biological formation of urea is known, the elucidation of urea biosynthe-
sis in animals from ammonia and carbon dioxide [79,80] required major scientific break-
throughs. Early preparative applications of biocatalysts focused on particular reactions,
such as stereoselective sugar oxidation through the use of microbial whole cells, stereoselec-
tive carbonyl reductions using baker’s yeast or alcohol dehydrogenases, kinetic resolutions,
or desymmetrization reactions using hydrolases such as pig liver esterase (PLE).

With the tremendous development of recombinant enzymes and enzyme engineering,
a range of biocatalytic reaction platforms have become the first choice, such as asymmetric
ketone reductions catalyzed by recombinant ketoreductases at a large scale. Numerous
bioprocesses have been developed to an industrial large scale (see Figure 6) for producing
naturally occurring metabolites, such as citric acid [81] and other organic acids, steroids [82],
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beta-lactams and other antibiotics [83], L-carnitin and other amino acids [84,85], vita-
mins [86], and microbial metabolites such as anticancer and immunosuppressant drugs [87].
Bioprocesses for functionalized and modified steroids, steroidal intermediates, and metabo-
lites provide shortened routes compared with chemical synthesis and have been well estab-
lished in the pharmaceutical industry for decades [88]. 17β-estradiol has been obtained
with greater than 99% diastereomeric excess and a 64.8% yield through stereoselective
reduction of estrone using Saccharomyces cerevisiae whole cells [89]. Industrial bioprocesses
for the efficient production of 4-androstene-3,17-dione and related metabolites from phy-
tosterols at high substrate concentrations [90] make these metabolites attractive precursors
for the sustainable production of steroids from plant-based raw materials [82]. Therefore,
the selective biocatalytic reduction of 4-androstene-3,17-dione to testosterone has attracted
much interest among the various biocatalytic routes to testosterone. From an efficient and
complete conversion of 4-androstene-3,17-dione at a substrate concentration of 28.8 g L−1,
the product testosterone has been obtained with a purity of greater than 97% in 10 h [91].
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Of particular interest for steroid bioprocesses are biocatalysts, which are able to
catalyze highly selective reactions such as the regio- and stereoselective biocatalytic hy-
droxylation of unique C(sp3)-H positions of the steroid backbone [92], for example, the
17α-hydroxylase, the 21-hydroxylase, and the 11β-hydroxylase in the conversion of pro-
gesterone to hydrocortisone [93]. Bioprocesses for the biocatalytic synthesis of steroidal
compounds from simple carbon sources are emerging [94], and the biocatalytic cyclization
of linear precursors to the steroid backbone catalyzed by cyclases in one step is notewor-
thy [95]. Cyclases are also involved in the biocatalytic synthesis of all vitamin E components;
α-, β-, γ-, and δ-tocopherol; and α-, β-, γ-, and δ-tocotrienol. Additionally, bioprocesses
using in vitro plant cell cultures are of much interest [96] for the preparation of enantiomer-
ically pure vitamin E components such as (R,R,R)-α-tocopherol. A new route to vitamin
E has been established at a large scale by combining biocatalytic and chemical routes,
such as the chemical synthesis of α-tocopherol via isophytol from β-farnesene, which is
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manufactured through fermentation [97]. Route shortening is also of much interest for the
synthesis of lipid mediators, and a stereoselective biocatalytic Baeyer–Villiger oxidation
and a diastereoselective ketoreductase-catalyzed enone reduction have been key steps in a
chemoenzymatic synthesis strategy for prostaglandins [98].

Natural metabolites continue to be highly important as sources for small molecule
pharmaceuticals for treating diseases such as infectious diseases, cancer, cardiovascular
diseases, diabetes, glaucoma, or multiple sclerosis [99], and large-scale manufacturing is key
for adequate supply. Therefore, efficient and reliable bioprocesses for metabolites have been
important to replace: (a) extraction processes from endangered biological species which may
become extinct and which may give yields depending on various environmental factors, or
(b) non-sustainable production procedures combining extraction from biological species
and synthetic modifications. A sustainable plant cell fermentation process for producing
the natural diterpenoid paclitaxel (registered trade name Taxol(R)) at an industrial large
scale (see Figure 7) preserves Taxus plants and is able to provide the required amounts of
this Taxus species metabolite, which the WHO lists as an essential medicine and is used in
cancer treatment [100,101]. The cell culture medium contains a simple monosaccharide as a
carbon source, one or more amino acids as a nitrogen source, and a silver ion or complex,
jasmonic acid methyl ester, auxin-related growth regulators, and phenylpropanoid pathway
inhibitors like 3,4-methylenedioxy-6-nitrocinnamic acid for enhancing the production of
taxol [100]. Human health and the quality of life of a large number of people around the
world have greatly benefitted from a long history of dedicated work to discover and develop
small molecules, such as artemisinin and avermectins, formed by biological organisms as
gifts from nature for their use as anti-infectives in the 20th century [102,103]. It is, however,
not the time for complacency today, as the appearance of new infectious agents, human
negligence, and economic boundary conditions require actions towards the discovery,
development, and reliable production of novel anti-infectives [104–106].
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Beyond the manufacturing of metabolites through bioprocesses at industrial large
scales such as anticancer drugs, anti-infectives, and other pharmaceuticals for human
health [83,87], biomanufacturing of a variety of other metabolites such as vitamins [86,107],
flavors, and fragrances [108] has become increasingly attractive for various industrial
sectors [109]. Fermentation using Pseudomonas denitrificans or Pseudomonas freudenreichii
strains downstream and purification processes has been developed for the manufacturing
of vitamin B12 at an industrial large scale [109]. The efficient enzymatic cyclization of
(E,E)-homofarnesol, which can be produced from the fermentation product (E)-β-farnesene,
to the fragrance ingredient (-)-ambrox catalyzed by engineered squalene hopene cyclase at
an industrial scale (see Figure 8) represents a significant improvement in carbon efficiency
and sustainability [108].
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Another important area is the synthesis of metabolites for analytical or diagnostic
applications, such as the use of metabolites in analytical or diagnostic devices, as stan-
dards, or for measuring enzyme activities. The synthesis of metabolites which act as
ionophores has been of much interest for the analysis and monitoring of biomedically
and environmentally relevant ions via ion-selective electrodes and sensors [110], for exam-
ple, the biomanufacturing of highly pure nonactin as a neutral ionophore in monitoring
ammonium ions [111,112].

Metabolites also need to be synthesized for analytical investigations involving the
measurement of enzyme activities, such as the analysis of enzyme activities relevant to clin-
ical chemistry, food analysis, enzymology, enzyme production, environment, verification
or discovery of novel enzyme functions, development of enzyme inhibitors, or the analysis
of activating, signaling, or regulatory functions.

Energy metabolism and glycolytic pathways are central to biological organisms, and
the metabolites of the monosaccharide catabolic pathways are essential. It is therefore
desirable to synthesize, in pure and stable form, the metabolites (see Figure 9) of the
most common pathways for the breakdown of D-glucose, the Emden–Meyerhof–Parnas,
the Entner–Doudoroff, and the pentose phosphate pathway, because these are central to
kingdoms of life.
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The enantiomerically pure metabolite D-glyceraldehyde-3-phosphate, which occurs
in all the three most common D-glucose catabolic pathways, as well as the enantiomeri-
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cally pure L-glyceraldehyde-3-phosphate, which is toxic to cells, have been synthesized
from their corresponding aldehydes through biocatalytic ATP-dependent phosphorylation
using enantiocomplementary kinases and phosphoenol pyruvate/pyruvatekinase for re-
generating ATP. Glycerol kinase has been used in the enantioselective phosphorylation
of L-glyceraldehyde [113,114], which could be prepared through glycerol dehydrogenase-
catalyzed resolution of racemic glyceraldehyde [115,116]. Dihydroxyacetone kinase has
been found as the corresponding enantiocomplementary enzyme to enantioselectively cat-
alyze the phosphorylation of D-glyceraldehyde [117]. The enolase substrate D-glycerate-2-
phosphate has been prepared by phosphorylating D-glycerate using recombinant glycerate-
2-kinase, ATP as cofactor, and phosphoenolpyruvate/pyruvatekinase for ATP regener-
ation [118]. In the pentose phosphate pathway, D-xylulose-5-phosphate has been pre-
pared through two different routes; either through transketolase-catalyzed condensation
of D-glyceraldehyde-3-phosphate [119,120] with hydroxypyruvate, which serves as irre-
versible C2-donor, or through xylulokinase-catalyzed ATP-dependent phosphorylation
of D-xylulose [121,122]. This latter approach has also been extended to the synthesis of
L-xylulose-5-phosphate by using an enantiocomplementary xylulokinase [121]. In the D-
tagatose catabolic pathways, D-tagatose-6-phosphate 1-kinase-catalyzed phosphorylation
of D-tagatose-6-phophate enabled the preparation of the central metabolite D-tagatose-
1,6-diphosphate [122]. A characteristic metabolite for the Entner–Doudoroff pathway is
2-keto-3-deoxy-6-phosphogluconate, which can be synthesized in one step by eliminating
water from 6-phosphogluconate using 6-phosphogluconate dehydratase [123]. In a sim-
ilar way, metabolites of other monosaccharide non-phosphorylative catabolic pathways
can be synthesized in a straightforward way from the corresponding sugar acid, such
as 2-keto-3-deoxy-D-galactonate from D-galactonate or 2-keto-3-deoxy-D-xylonate from
D-xylonate using D-xylonate dehydratase [124]. D-gluconate dehydratase-catalyzed water
elimination from D-gluconate allows for the straightforward preparation of 2-keto-3-deoxy-
D-gluconate [125]. In energy metabolism, the high energy of the phosphorus–nitrogen
bond in phosphagens is a key energy source. Selective biocatalytic synthesis enables
straightforward access, such as in the one step synthesis of Nω-phospho-L-arginine [126].

Biocatalytic methods are also very useful in synthesizing a number of key metabolites
from other metabolic pathways. Shikimic acid-3-phosphate can be prepared through shiki-
mate kinase-catalyzed ATP-dependent phosphorylation of shikimic acid and ATP regener-
ation using phosphoenolpyruvate and pyruvate kinase [127]. Pyridoxamine-5’-phosphate
was synthesized from pyridoxal-5-phosphate through biocatalytic transamination using an
ω-transaminase [128]. The biocatalytic L-arginine addition reaction to fumaric acid enabled
efficient one-step access to the urea cycle metabolite L-argininosuccinate [129,130].

Biocatalytic methods have also been of much interest for the synthesis of vitamin D
metabolites. Highly selective side-chain hydroxylation of vitamin D3 in the 25-position
has been achieved at a laboratory scale using different biocatalytic approaches, such as
cytochrome P450 monooxygenases, complex electron donors, and oxygen in whole-cell
systems [131,132], through hydrogen peroxide-dependent peroxygenase [133], or through
ferricyanide-dependent biocatalytic hydroxylation using a vitamin D3 hydroxylase as
cell-free extract or as purified enzyme from Sterolibacterium denitrificans [134]. Efficient
biocatalytic production of 573 mg of 25-hydroxyvitamin D3 per liter has been achieved
using nisin-treated cells of Rhodococcus erythropolis containing an engineered vitamin D3
hydroxylase from Pseudonocardia autotrophica (573 mg of 25-hydroxyvitamin D3 per liter
within 2 h) [131], and by using a Bacillus cereus strain (830 mg of 25-hydroxyvitamin D3
per liter within 60 h) [132]. A facile ferricyanide-dependent hydroxylation using a vitamin
D3 hydroxylase, either as a cell-free extract or as purified enzyme from Sterolibacterium
denitrificans, has enabled a simplified preparation of 25-hydroxyvitamin D3 in a yield
greater than 99% at a 1 mM substrate concentration [134]. The biocatalytic synthesis
of 1α,25-dihydroxyvitamin D3 (calcitriol) from vitamin D3 has been achieved through
double hydroxylation of vitamin D3 using whole cells of Pseudonocardia sp., with more
than 30% yield and a titer of approximately 62 mg L−1 [135]. Biocatalytic hydroxylation of
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25-hydroxyvitamin D3 catalyzed by 25-hydroxyvitamin D3 24-hydroxylase and formation
of 24R,25-dihydroxyvitamin D3 have been demonstrated on an analytical scale [136].

The 25-hydroxyvitamin D2 has been obtained as the sole product in a 90% yield
through the regioselective hydroxylation of vitamin D2 catalyzed by a peroxygenase from
Coprinopsis cinerea [133]. An engineered triple variant of CYP105A1 with increased 1α-
hydroxylase activity has enabled the formation of 1α,25-dihydroxyvitamin D2, while an
engineered double variant of CYP105A1 showed increased 26-hydroxylase activity and
was best for the formation of 25,26-dihydroxyvitamin D2 [137]. Whole cells of Bacillus
megaterium expressing the highly selective vitamin D2 hydroxylase CYP109E1 were used
for the biocatalytic two-step hydroxylation of vitamin D2, whereby a titer of 12 mg L−1

of 24R,25-dihydroxyvitamin D2 was obtained in 48 h [138]. Simple biocatalytic routes are
also of special interest for disease-specific metabolites in order to support and simplify the
diagnostics, for example, of inborn errors of metabolism, cancers, and cardiovascular and
metabolic diseases [139–141].

4. Synthesis of Isotope-Labelled Metabolites

The use of radioactive isotopes such as 3H (tritium), 14C, or 32P has been instrumental
for the discovery of major metabolic pathways, such as the path of carbon in photosynthe-
sis [142]. Biocatalytic methods, which have been developed for the synthesis of metabolites
labelled with a radioactive isotope at a specific position, such as tritium- or 14C-labelled
NAD+ or 14C-labelled nicotinamide riboside [143,144], can also be translated to meth-
ods for the synthesis of the corresponding metabolites labelled with a stable isotope at a
specific position, such as 13C-labelled NAD+ or 13C-labelled nicotinamide riboside [144].
In contrast to radioactive labels, working with stable isotope labels such as the biogenic
isotopes 2H (deuterium), 13C, 15N, or 18O does not involve any health hazards and is not
subject to regulations regarding radiation safety. The technology of isotope separation has
enabled a continuous increase in the production of stable isotopes of light elements [145].
Compounds in which an atom like 1H, 12C, 14N, or 16O is replaced by a corresponding
isotope with a higher atomic mass are of significant interest to numerous applications,
because the chemical structure and physical properties remain unchanged. Major types of
applications of labelling with stable isotopes, such as 2H, 13C, or 15N in stable bonds, in
which the label is non-exchangeable under physiological conditions, are related to biolog-
ical cells in both health and disease. These applications include quantification methods
for specific metabolites, methods for analyzing metabolic fluxes and pathways, and the
localization of metabolites through imaging methods. For quantification methods, which
are important in diagnostics, stable isotope labelled metabolites, drugs, or metabolite like
molecules are preferable. Alternatively, other approaches may be followed, like chemically
labelling the unlabeled analytes using derivation reagents containing stable isotopes or
employing quantitative NMR of native metabolites [146]. For stable isotope tracer methods,
the analysis of carbon metabolic fluxes and pathways [147] and stable isotope resolved
metabolomics [146]. This is important for analyzing disease-specific metabolic pathway
alterations, such as cancer cell metabolism [148]. For these methods, as well as for imaging
methods of biological and pathological processes [149,150], the 13C-labelled precursors
or nutrients such as universally 13C-labelled D-glucose can be used for in vivo labelling.
Metabolites labelled with an equal number of stable isotope atoms but at different positions
can be distinguished using NMR as isotopomers. Metabolites which differ by their isotope
number and composition can be distinguished through MS as isotopologues [146].

The impressive advances of highly sensitive MS and NMR instrumentation, with
their powerful methodologies and analyses with high information content, have shifted
the interest to the use of the stable isotopes 2H, 13C, 15N, or 18O [151,152]. As isotope
separation is demanding and requires highly specialized equipment and facilities for the
production of stable isotope-labelled starting chemicals with high chemical and isotopic
purity, the precious stable isotope-labelled starting materials should then be fully utilized
for the synthesis of the desired metabolites. Therefore, highly selective synthetic methods
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are needed, which are able to efficiently incorporate to a high degree the stable isotope
from the starting material into a defined position of the product and to completely convert
the starting material to the target metabolite. The thermodynamics of biochemical reac-
tions and the universe of biocatalysts provide a significant knowledge base from which
suitable biocatalytic reactions for selective labelling with stable isotopes can be selected
(see Figure 10).
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Biocatalytic methods for site- and stereoselective deuteration are of much interest
for short routes to deuterated metabolites, for example, in the synthesis of selectively
deuterated phosphatidyl-sn-glycerol, amino acids deuterated in the α- and/or β-position,
deuterated NAD+/ NADH cofactors, or deuterated aldehydes [153–157]. The biocatalytic
synthesis of 3′,4′,5′,5′-tetradeuterated 5-phospho-D-ribosyl α-1-pyrophosphate (PRPP) was
prepared from 3′,4′,5′,5′-tetradeuterated D-ribose through ribokinase-catalyzed phospho-
rylation and PRPP synthetase-catalyzed pyrophosphorylation [158]. The tetradeuterated
PRPP was then converted through multistep enzymatic processes in high yields to the
3′,4′,5′,5′-tetradeuterated nucleotides ATP, CTP, GTP, and UTP [158].

The synthesis of 13C-labelled metabolites has been very useful for various metabolomics
applications, such as for growing cells on media containing 13C-labelled carbon sources as
nutrients [159], for detailed investigations of cellular metabolism and the functional proper-
ties of complex metabolic networks through 13C-based metabolic flux analysis [27,160], or
for overcoming matrix effects in accurate and reliable metabolite analyses and quantitative
metabolomics [161]. The key to these applications and the discovery of novel biosynthetic
pathways like the deoxyxylulose phosphate pathway [162] has been the synthesis of 13C-
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labelled biochemicals, such as 13C-labelled acetate or isotope isomers (isotopomers) of
D-glucose, where specific 12C-atoms are replaced by their 13C-isotopes. Enzymatic methods
have facilitated access to 13C-labelled metabolites, such as monosaccharides [163], as well
as 13C-labelled amino acids [164–167]. The use of very simple and inexpensive 13C-labelled
precursors is thereby attractive, such as 13C-labelled pyruvate for the enzymatic synthesis
of 13C-labelled aromatic amino acids [168]. Direct utilization of 13carbon dioxide is not
only of significant interest for investigating the metabolism of photosynthetic organisms,
but also for the biocatalytic synthesis of 13C-labelled biochemicals, such as 13C-labelled
L-malate [169].

As many natural products contain nitrogen, the introduction of the stable nitrogen
isotope 15N is very useful for discovering natural products and characterizing their biosyn-
thetic pathways and metabolic intermediates [170]. Biocatalytic synthesis of 15N-labelled
metabolites has been achieved in a straightforward way by introducing a stable isotope
from 15NH4 salts, by using biocatalytic systems with isolated enzymes, or by making use
of biosynthesis in whole cells growing in media containing 15NH4 salts. A very efficient
NAD+-dependent amino acid dehydrogenase-catalyzed preparation has been demon-
strated through the synthesis of 15N-labelled L-serine, L-methionine, and L-glutamic acid
from the corresponding α-keto acids using alanine dehydrogenase, leucine dehydrogenase,
and glutamate dehydrogenase, respectively, whereby NADH regeneration was performed
using the glucose/glucose dehydrogenase system [171]. The four 15N-labelled cobalamin
standards hydroxocobalamin, adenosylcobalamin, methylcobalamin, and cyanocobalamin
have been prepared through biosynthesis by growing Propionibacterium freudenreichii whole
cells in a chemically defined medium containing (15NH4)2SO4 instead of (14NH4)2SO4 [172].

In addition to using a single type of stable isotope for labelling, biocatalytic synthesis
has also been attractive for the introduction of more than one type of stable isotope. Pentose
phosphate and purine pathway enzymes, together with biocatalytic regeneration cycles
for nucleoside triphosphate, folate, aspartate, glutamine, and NAD+, have been utilized
for labelling purine nucleotides with 13C and 15N [29]. This flexible and robust one-pot
biocatalytic system enabled the preparation of uniformly 13C- and/or 15N-labelled GTP, or
13C-labelled ATP in the C2- and C8-position from labelled serine, ammonium, glucose, and
carbon dioxide [30].

5. Synthesis of Pharmaceutical Drug Metabolites

The development of new molecular entities for the effective treatment of human
diseases with minimized side effects requires an understanding of its interactions with the
biological cells of humans and their microbiome. The investigation of potential in vitro
and in vivo pharmaceutical drug metabolism involving human and microbial enzymes, the
biocatalytic reactions converting administered pharmaceutical drugs to derived metabolites,
and the identity and biological activity of pharmaceutical drug metabolites, are of key
importance to the treatment response, drug safety, and side effects. Knowledge about
pharmaceutical drug metabolism reactions, data on drug metabolizing enzymes, and
structures of drug metabolites has been growing significantly over the past years, as
shown by their increasing numbers in the DrugBank database and its most recent version
DrugBank 5.0 [173]. The complexity of pharmaceutical drug metabolism is increased
further because pharmaceutical drugs not only interact with human metabolism but also
with the human microbiome [174], as demonstrated by the biotransformation capabilities
of the human gut microbiome towards numerous pharmaceutical drugs [175–177].

When applications of a pharmaceutical drug candidate show that it is enzymatically
converted, from the site where it is administered to the desired drug action site, to a less
active drug metabolite, this results in a poor treatment response and requires further drug
development. For optimizing drug effectiveness while minimizing side effects, ensuring
correct dosing, and avoiding drug overdoses of therapeutics with undesirable side effects,
therapeutic drug monitoring has become an important tool for precision medicine, where
isotope-labelled drugs are routinely used as reference standards for LC-MS/MS-analyses
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in clinical chemistry. Although pharmaceutical drug metabolism often leads to inactivation,
there are also cases where therapeutic benefits may derive from biotransformation to a
pharmacologically more active metabolite [178], for example, when a prodrug with better
cell permeability is enzymatically converted to the active pharmaceutical in diseased cells.
Pharmacologically inactive, or less active by three orders of magnitude, small molecular
weight compounds, which are enzymatically converted in vivo to their active pharmaceuti-
cals, have been developed through different paths. They have been discovered by chance,
from rescuing a drug discovery project, or by designing a prodrug [179]. Chemically re-
active or toxic drug metabolites have received increased attention, and the investigation
of potential side effects, safety, and toxicity issues of pharmaceutical drug metabolites,
which may potentially be formed through biotransformations in the human body, has also
evolved with the “Metabolites In Safety Testing” (MIST) guidance and the framework
for identifying, quantifying, and assessing human drug metabolite safety [180–182]. The
investigations of the possible effects of such modified drugs require sufficient amounts
of pure drug metabolites; therefore, straightforward methods for their synthetic access
are highly desirable and can be highly significant for the timeline of projects. As selective
chemical modification of complex drugs with stereocenters may be challenging [183], using
biocatalysts which are involved in human drug metabolism provides an attractive selective
approach [184].

When the orally active synthetic pharmaceutical drug dydrogesterone is used for treat-
ing progesterone deficiency and various gynecological conditions, human metabolism is
responsible for the formation of the drug metabolite 20α-dihydrodydrogesterone. This drug
metabolite has been prepared through the efficient stereo- and regioselective reduction of
dydrogesterone (see Figure 11) catalyzed by recombinant human 20α-hydroxysteroid dehy-
drogenase AKR1C1 expressed in Schizosaccharomyces pombe [185]. With chemical reduction
of the C20-keto group in dydrogesterone leading only to the 20β-dihydrodydrogesterone,
biocatalytic reduction is key for obtaining 20α-dihydrodydrogesterone, which is also phar-
macologically active [185]. The drug metabolite (S)-fingolimod-phosphate, which is a
modulator of sphingosine 1-phosphate receptor 1, is formed in vivo through sphingosine
kinase 2-catalyzed phosphorylation (see Figure 6) of the drug fingolimod, which has been
approved as a pharmaceutical drug for the therapy of multiple sclerosis in more than
80 countries [186]. As different forms of mycophenolic acid have various therapeutic
applications as pharmaceutical drugs, for example, as immunosuppressants, their phar-
macologically active metabolite, mycophenolic acid acylglucuronide has attracted interest,
as it also inhibits inosine monophosphate dehydrogenase II like mycophenolic acid [187].
For the biocatalytic synthesis of the acylglucuronide of mycophenolic acid, only horse
liver homogenate was found to catalyze the glucuronidation of mycophenolic acid, using
UDP-glucuronic acid as donor, but the acylglucuronide was formed in a 1:1 mixture with
the 7-O-glucuronide [187]. Through the optimization of the reaction temperature, the con-
centrations of the liver homogenate, and the UDP-glucuronide, the degree of conversion
was increased to 54% and an acylglucuronide to 7-O-glucuronide ratio of 4.9:1 could be
obtained, leading to the drug metabolite mycophenolic acid acylglucuronide (see Figure 11)
in a >95% purity and a 34% isolated yield [187].

Biocatalytic transformations of synthetic pharmaceutical drug derivatives through
human metabolism in vivo are important aspects in the design of prodrugs in order to over-
come barriers in delivering and releasing the parent drug, and to improve cell permeability
and water solubility [188].

Although many drug metabolites are pharmacologically inactive or much less active
than their parent drugs, as exemplified by the pharmacologically inactive 7-O-glucuronide
of mycophenolic acid as the major mycophenolic acid metabolite in humans, ensuring
synthetic access is important [189]. The 7-O-glucuronide of mycophenolic was obtained
with 97% purity through biocatalytic glucuronidation of mycophenolic acid using horse
liver homogenate as the biocatalyst and UDP-glucuronic acid as the donor [187].
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Chemically reactive drug metabolites, which are formed by human metabolism, can
react with relevant molecules of biological cells and lead to functional changes and adverse
drug reactions [190]. In the drug metabolism of the nonsteroid anti-inflammatory drug
diclofenac, which is used for treating rheumatoid disorders, the two metabolic pathways of
the cytochrome P450-catalyzed oxidation to the corresponding chemically reactive quinone
imine metabolites and the enzymatic glucuronidation are thought to be involved in several
adverse drug reactions [191,192]. Cytochrome P450 enzymes have been shown to catalyze
the drug conversion to chemically reactive metabolites, which can cause toxic effects, such
as the oxidation of acetaminophen to the toxic metabolite N-acetyl-p-benzoquinone imine
catalyzed by human cytochrome P450 2E1, 1A2, and 3A4 [192–194].

6. Synthesis of Metabolite-like Compounds

The concepts of natural product-likeness [195,196] and metabolite-likeness [197,198]
are attractive because the transport of natural products, nutrients, and metabolites is om-
nipresent in biological organisms. Natural-product-like and metabolite-like structures have
been found to be present in a significant number of approved pharmaceutical drugs [99,199].

Variations in metabolite and natural product structures have attracted increasing
interest due to the functional group differences which have been found to exist between
natural products and synthetic molecules [200], the changing structural characteristics and
properties of approved pharmaceutical drugs over time [201,202], and the interactions
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between metabolites and natural products with target proteins, including biosynthetic and
transport proteins [203]. With the increasing knowledge about specific interactions between
metabolites of the human microbiome and human disease-relevant biomolecules such as
ligand–receptor or enzyme inhibitor–enzyme interactions, the concept of utilizing micro-
bial metabolites as rich molecular spaces is very attractive for discovering metabolite-like
compounds as novel pharmaceutical drugs for highly precise therapies and the derisking
of adverse drug reactions [204,205]. The development of metabolite-like compounds from
bacterial tryptophan metabolism for discovering novel ligands which bind directly to the
pregnane X receptor and are not cytotoxic is of much interest for further development and
opens up a wide range of opportunities [206]. Excellent biocatalytic tools and method-
ologies have been developed for synthesizing non-natural chiral amino acids with high
enantioselectivity, and the diversity of possible functional groups and chiral centers in non-
natural amino acids is attractive for their use as fragments in small molecule pharmaceutical
drugs (for some examples, see Figure 12) for the therapy of diseases [207–210].
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Biocatalytic reactions for highly stereoselective formation of carbon–carbon bonds is
of central importance for the synthesis of both natural metabolites as well as metabolite-like
compounds (see Figure 12), but practical applications are not very common [208]. The
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thermodynamic advantage of decarboxylative carbon–carbon bond formation, as discussed
previously in the context of transketolase-catalyzed reactions, has been demonstrated by
reactions catalyzed by the enzyme UstD and its evolved variants [210]. This leads to the
stereoselective formation of a series of γ-hydroxy-α-amino acids from various aldehy-
des and L-aspartic acid with the release of carbon dioxide (see example in the middle of
Figure 12). The thermodynamic equilibrium of a stereoselective aldol reaction catalyzed
by an engineered deoxyribose 5-phosphate aldolase has been overcome by coupling it to
the subsequent reactions in the biocatalytic synthetic route to islatravir (see example at the
bottom of Figure 12) and removing the inorganic phosphate side product [211]. Numerous
advances have been achieved in recent years in stereoselective alkylations, acylations, ox-
idative carbon–carbon coupling reactions, cyclizations, and carbene transfer reactions [212].
The synthesis of various pyrroloindolines has been achieved through the regio- and stere-
oselective methylation of various indoles at their C3-position when catalyzed by the S-
adenosyl-L-methionine (SAM)-dependent methyltransferase PsmD from Streptomyces grise-
ofuscus, whereby SAM was regenerated by methyliodide and halide methyltransferase from
Chloracidobacterium thermophilum [213]. Recombinant trans-α-hydroxybenzylidenepyruvate
hydratase-aldolase (NahE) has been demonstrated to catalyze stereoselective Michael addi-
tion reactions of pyruvate to various β-nitrostyrenes, from which then the corresponding
β-aryl-γ-nitrobutyric acids can be obtained [214].

The advances in the characterization and engineering of enzymes catalyzing routine
reactions in organic chemistry laboratories, such as Diels–Alder reactions, Claisen, and
Cope rearrangements are very promising for translating biocatalytic complexity-generating
reactions into routine operations [215]. The development of highly active Diels-Alderases
from nature, through engineering, and by design for catalyzing highly stereoselective
intermolecular [4+2] cycloaddition reactions is of great interest for the synthesis of natural
products [216,217] and for catalyzing abiological hetero-Diels–Alder reactions [218]. Their
versatility has been increased by reversing the exo-selectivity of natural Diels-Alderases to
the endo-selectivity of an engineered Diels-Alderase, catalyzing the intermolecular [4+2]
cycloaddition of the same substrates with high enantioselectivity and broadening the scope
of the dienes and dienophiles accepted as substrates [219].

Combining biocatalytic and chemical reaction steps in chemoenzymatic syntheses
offers new opportunities for overcoming challenges and diversifying metabolite structures.
Advances have been achieved in the synthesis of diversified compounds of the plant
metabolite cis-(+)-12-oxophytodienoic acid [220], a variety of non-natural nucleosides and
nucleoside building blocks (see Figure 12), as well as in the synthesis of nucleoside analogue
drugs through enzymatic cascades [221,222].

7. Discussion

The growing number of metabolite structures identified in biological organisms and
the renewed interest in the elucidation of the fundamental roles and useful properties of
metabolites have also increased the necessity of developing analytical and synthetic meth-
ods and tools for a great diversity of metabolites. The identification of natural metabolic
pathways has provided great starting points for the development of straightforward bio-
catalytic synthesis routes inspired by nature. Biocatalytic systems offer particular benefits
not only for producing naturally occurring metabolites but also for stable isotope-labelled
metabolites, drug metabolites, and non-natural metabolite-like compounds. The molecular
economy and reduced complexity of highly selective and protecting group-free biocat-
alytic reactions have enabled resource-efficient and robust production procedures for these
metabolite classes. When the extraction yields of naturally occurring metabolites from
biological resources are rather low and quite variable, or if challenging and lengthy chem-
ical routes using protection–deprotection schemes require significant purification steps,
biocatalytic production procedures using recombinant biocatalysts are a preferred choice.
The strategic advantages of biocatalytic systems enable the fast generation of molecular
complexity through shorter synthetic routes in a straightforward way, as demonstrated
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by the development of the biocatalytic synthesis of the antiviral compound islatravir. The
cascade of the three biocatalytic reaction steps leading to a single stereoisomer of islatravir
from achiral 2-ethinylglycerol (see Figure 12) shortens the number of reaction steps to less
than half of the reaction steps reported in previous routes [211].

Engineering enzymes towards desired activities and selectivities under certain reaction
conditions and the combination of the necessary enzymes in a cascade reaction enable us
to overcome unfavorable thermodynamic equilibria, enzyme inhibition, and the isolation
of intermediates. Minimizing the time for the development, manufacturing, and supply
of a compound in high demand and urgently needed is always very critical, but it has
been even more crucial during the COVID-19 pandemic. The fast development of a short
scalable biocatalytic route to the antiviral agent Molnupiravir using engineered ribosyl-1-
kinase and uridine phosphorylase as key enzymes was impressive [223]. The advantages of
utilizing a biocatalytic reaction cascade for preparing complex non-natural small molecules
in one pot have also been demonstrated through the efficient biocatalytic synthesis of
the cyclic dinucleotide MK-1454 using three engineered kinases and an engineered cyclic
guanosine–adenosine synthase as key enzymes [224]. An isolated yield of 62%, based
on the starting material of the nucleotide monothiophosphates, has been achieved for a
single diastereomer of MK-1454 without the use of any protecting group [224]. When
manufacturing at larger scale is needed due to increasing demand, raw materials, resource
efficiency, and reliability issues have become increasingly important. Sustainability benefits
can also be achieved when biological resources which are rare or in danger of becoming
extinct are preserved and abundant bio-based resources are used for metabolite production
using biocatalytic systems.

Excellent opportunities appear for exploring uncharted territory regarding novel
metabolites and their biological functions [225], natural product drugs [226,227], and
metabolite-like compounds. Discovering and characterizing novel enzyme functions and
pathways from nature, as well as engineering and evolving enzymes which catalyze
reactions that are new to nature [228,229], are important for extending the frontiers of
biocatalytic reactions in syntheses. Unlocking the power of enzymes can transform the
synthesis of metabolites, natural products, and non-natural small molecules derived thereof
in various ways, from individual enzymatic reactions in chemoenzymatic synthesis to their
full utilization in enzymatic total synthesis [230–232].

8. Future Directions

With the rising gap between the number of known metabolites and the number of
metabolites whose syntheses have been reported, there are more than enough concrete
problems to be solved, such as the synthesis of important metabolites with high biological
activity and inherent instability, or biologically active metabolites which are synthesized
by bifunctional enzymes carrying synthetic and degrading functions within the same
protein. Rapid advances in enzyme engineering and computational methodologies have
been outlined and appear promising on the road towards the design of robust enzymes
with desired enzyme functional properties [233]. Many roads can lead to discovering novel
enzymes from nature, such as guiding the correct assignment of enzyme functions to gene
annotations and domains of unknown functions on genomes [234–236], unlocking natural
product biosynthetic enzymes from metagenomes [237], or identifying missing enzymes in
biosynthetic pathways to metabolites [238]. Mining microbial genomes for biosynthetic
gene clusters [239] and deciphering precise genome–metabolome relationships of bacteria
and fungi are very promising approaches for finding novel biosynthetic enzymes and
pathways to novel metabolites [240–243]. Advanced metabolic engineering and synthetic
biology tools and methodologies [244] and efficient gene expression to highly functional
and fit-for-use enzymes are key for engineering novel biocatalytic pathways in viable
and sustainable production processes. Therefore, the future of synthesizing naturally
occurring metabolites [245,246], metabolite-like compounds, drug metabolites, and stable
isotope-labelled metabolites using biocatalytic systems looks bright.
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Table 2. Overview of Natural Metabolites covered in this review.

Metabolites Metabolic Pathway Reference

Acetic acid Carbon metabolism [58]
(-)-Ambrox Homofarnesol cyclization [108]

4-Androstene-3,17-dione Steroid biosynthesis [90]
L-Argininosuccinate Urea cycle [129,130]

Artemisinin Artemisinin bioynthesis [103]
Avermectin Polyketide biosynthesis [102]

Azadirachtin Tetranortriterpenoid biosynthesis [61]
Cholesterol Steroid biosynthesis [67,69]
Citric acid Citrate cycle (TCA cycle) [81]

1α,25-Dihydroxyvitamin D2 Steroid biosynthesis [137]
1α,25-Dihydroxyvitamin D3 Steroid biosynthesis [135]

24R,25-Dihydroxyvitamin D2 Steroid biosynthesis [138]
24R,25-Dihydroxyvitamin D3 Steroid biosynthesis [136]

17β-Estradiol Steroid biosynthesis [89]

L-Glyceraldehyde Pentose and glucuronate
interconversions [115,116]

D-Glyceraldehyde-3-phosphate
Embden-Meyerhof-Parnas pathway
Carbon fixation in photosynthesis

Pentose phosphate pathway
[117]

L-Glyceraldehyde-3-phosphate Isomerase bypass [113,114]
D-Glycerate-2-phosphate Embden-Meyerhof-Parnas pathway [118]
25-Hydroxyvitamin D2 Steroid biosynthesis [133]
25-Hydroxyvitamin D3 Steroid biosynthesis [131–134]

2-Keto-3-deoxy-D-galactonate Galactose metabolism [124]

2-Keto-3-deoxy-D-gluconate
Non-phosphorylative

Entner-Doudoroff pathway Pentose
phosphate pathway

[125]

2-Keto-3-deoxy-6-phosphogluconate Entner-Doudoroff pathway
Pentose phosphate pathway [123]

2-Keto-3-deoxy-D-xylonate Pentose and glucuronate
interconversions [124]

Palytoxin Palytoxin biosynthesis [74]
Penicillin V Penicillin biosynthesis [59]

Nω-Phospho-L-arginine Phosphagen pathway [126]
Pyridoxamine-5’-phosphate Vitamin B6 metabolism [128]
Shikimic acid-3-phosphate Shikimate pathway [127]

D-Tagatose-1,6-diphosphate Galactose metabolism
D-Tagatose pathway [122]

Taxol Taxol biosynthesis [63,100,101]
Testosterone Steroid biosynthesis [91]

Urea Urea cycle [57,79,80]
Vinblastine Indole alkaloid biosynthesis [75,238]
Vitamin B12 Cobalamine biosynthesis [70–73,107]

D-Xylulose-5-phosphate Pentose phosphate pathway [119–121]

L-Xylulose-5-phosphate Pentose and glucuronate
interconversions [121]
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