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Abstract: Lipedema is a chronic disorder that mainly affects women. It is often misdiagnosed, and
its etiology remains unknown. Recent research indicates an accumulation of macrophages and a
shift in macrophage polarization in lipedema. One known protein superfamily that contributes to
macrophage accumulation and polarization is the macrophage migration inhibitory factor (MIF)
family. MIF-1 and MIF-2 are ubiquitously expressed and also regulate inflammatory processes in
adipose tissue. In this study, the expression of MIF-1, MIF-2 and CD74—a common receptor for both
cytokines—was analyzed in tissue samples of 11 lipedema and 11 BMI-matched, age-matched and
anatomically matched control patients using qPCR and immunohistochemistry (IHC). The mRNA
expression of MIF-1 (mean 1.256; SD 0.303; p = 0.0485) and CD74 (mean 1.514; SD 0.397; p = 0.0097)
were significantly elevated in lipedema patients, while MIF-2 expression was unaffected (mean 1.004;
SD 0.358; p = 0.9718). The IHC analysis corroborated the results for CD74 expression on a cellular
level. In conclusion, our results provide first evidence for a potential involvement of the MIF family,
presumably via the MIF-1-CD74 axis, in lipedema.

Keywords: lipedema; macrophage migration inhibitory factor; CD74; cytokine

1. Introduction

Lipedema is defined as a chronic disorder that mainly affects women, with an esti-
mated prevalence in the female population at around 10% [1–3]. Lipedema is classified
according to stages I–III and IV when accounting for a mixed lipo-lymphedema type
and according to morphology (I–V) [1,4]. First onset of clinical manifestations and symp-
toms is usually linked with stages of hormonal changes such as puberty, pregnancy or
menopause [1]. Typically, patients will present a disproportionate distribution of adipose
tissue in a bilateral symmetrical manner of the extremities without affecting the trunk,
hands or feet [2]. Other clinical features include pain, tenderness, tendency of bruise,
hematoma formation and, most importantly, resistance to mass reduction through exercise
or dietary measures [4]. Unfortunately, it still remains a relatively under- or misdiagnosed
condition, sometimes being mistaken for obesity.

While the exact etiology remains unknown, many factors have been suggested to
contribute to the development of lipedema. One reported factor is genetic predisposition,

Metabolites 2023, 13, 1105. https://doi.org/10.3390/metabo13101105 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo13101105
https://doi.org/10.3390/metabo13101105
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0003-0973-6084
https://orcid.org/0000-0002-7302-210X
https://orcid.org/0000-0003-2089-3830
https://orcid.org/0000-0003-2996-2652
https://doi.org/10.3390/metabo13101105
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo13101105?type=check_update&version=1


Metabolites 2023, 13, 1105 2 of 13

with over 50% of the affected patients having at least one first-degree relative suffering
from lipedema [1,5]. Other possible contributors have been identified by Al-Ghadban et al.
in a study comparing adipose and skin tissue from patients with and without lipedema [6].
The authors observed a significant increase in adipocyte area, number of macrophages
in adipose and skin tissue, number of blood capillaries and increased capillary diameter
in lipedema patients. However, neither lymphangiogenesis nor increased numbers of T
cells were observed. It was hypothesized that lipedema patients suffer from a capillary
structural defect with the excess fluid provoking a hypertrophy of the adipocytes, causing
an inflammation. In return, the inflammation provokes nerve fibers and fibrosis, resulting
in pain and the impaired possibility of weight loss. We not only confirmed these findings
recently in ten lipedema patients but also reported an aberrant lipid metabolism as well
as gene expression that were associated with macrophages [7]. Regarding the involved
molecular players in lipedema, Siems et al. found a marked increase in vascular endothelial
growth factor (VEGF)-A, which is a known inducer of angiogenesis [8]. More recently,
we discovered increased levels of VEGF-C, a potent inducer of lymphangiogenesis, and
a decrease in VEGF-A and VEGF-D levels in lipedema patients [9]. By analyzing gene
expression, we identified a downregulation of Tie2 and FLT4 (VEGFR-3), which is coherent
with increased macrophage infiltration. However, we interestingly did not observe morpho-
logical changes in lymphatic vasculature. These findings suggest that macrophage-derived
cytokines known to be involved in inflammatory processes, angiogenesis, lymphangiogen-
esis and other functions such as metabolism and the recruitment of immune cells might
play an important role in the development of lipedema.

Another distinct characteristic of lipedema is the increased population of M2-polarized
macrophages and low-grade inflammation [9]. The generally accepted nomenclature for M1
and M2 polarization is “classically activated” and “alternatively activated”, respectively.
M1 macrophages are considered pro-inflammatory, whereas M2 macrophages take on
a more anti-inflammatory role [10]. Interestingly, this aspect is distinct from the classic
inflammatory state of adipose tissue in obese patients, which is mostly composed of M1
polarized macrophages [10]. However, lipedema and obese patients share common traits
like adipose tissue hypertrophy and the accumulation of inflammatory cells, especially
macrophages [11].

In this context, the MIF superfamily, which is composed of cytokines and receptors
playing crucial roles in the recruitment of macrophages and their polarization, might be of
significant importance in lipedema [12–14].

The macrophage migration inhibitory factor (MIF-1), which was first described over
half a decade ago, is a pleiotropic cytokine involved in many immune and inflammatory
processes [15]. MIF-1 is widely expressed and is a known upstream mediator of innate
immunity and inflammatory regulator in the human body. MIF-1 has the ability to mediate
its functions by interacting with cluster of differentiation 74 and 44 (CD74/CD44) as
well as the chemokine (CXC)-motif receptors CXCR2, CXCR4 and CXCR7 or receptor-
independently through JAB1 [16–20].

Although described as early as 1995 [21], the true function of the D-dopachrome
tautomerase (D-DT or MIF-2) was only recently reported. It acts as a structural and
functional homolog to MIF-1 [22]. MIF-2 shares pro-inflammatory features with MIF-1 in
diseases and conditions such as sepsis and also binds to CD74 [23].

Despite its homologous action, other studies have revealed distinct or even inverse
MIF-1/-2 action in cardiovascular disease, autoimmune disease, obesity, adipose tissue
inflammation and wound healing [11,13,22,24,25]. More specifically, MIF-1 promotes while
MIF-2 alleviates adipose tissue inflammation [11].

Given the predominant presence of macrophages in lipedema, an involvement of the
MIF axis regarding the pathophysiology of lipedema seems logical. In this study, we evalu-
ated the expression of MIF-1, MIF-2 and their receptors CD74, CXCR2 and CXCR4, which
were investigated in lipedema patient samples, suggesting their possible involvement in
the development of this still not fully understood and underdiagnosed disease.
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2. Materials and Methods
2.1. Patients

Our study was conducted according to the principles of the Declaration of Helsinki,
and the protocols have been approved by the Ethical Committee of the University Hospital
Goettingen, Goettingen, State of Lower Saxony, Germany (Nr. 23-11-17), prior to patient
recruitment. Prior to surgery, patients had been informed in detail in oral and written form
and had provided their written informed consent. Tissue samples were collected from
lipedema and control female patients, which were BMI-matched, age-matched and anatom-
ically matched by harvesting them from the proximal portion of the thighs. Lipedema
was diagnosed according the criteria of Wold et al., which was also used in our previous
study [26,27]. These criteria were met by all patients included in this study.

2.2. Tissue Collection

The collection of tissue samples was conducted during the surgical procedure, which
was performed via liposuction. The samples were directly fixed for a duration of 4 h in 4%
PFA/PBS at 4 ◦C. Afterwards, the specimens were embedded in paraffin and were cut for a
histopathological analysis.

2.3. RNA Extraction and qPCR

RNA isolation and cDNA transcription was performed according to the same protocol
used in one of our earlier studies [9]. The primers used for the qPCR analysis are provided in
Table S1. The applied protocol and thermal cycler were the same as in the aforementioned
study, which included the use of the RNeasy Lipid Tissue Mini Kit (Qiagen, Hilden,
Germany) for RNA isolation, cDNA RT2 First Strand Kit (Qiagen, Hilden, Germany) for
cDNA transcription, FastStart SYBR Green Master Mix (Roche, Basel, Switzerland) for
the PCR reactions and CFX 96 C100 Thermal Cycler (Bio-Rad Laboratories, Hercules, CA,
USA) [9]. GAPDH and B2M served as housekeeping genes, and the calculation of the fold
changes of gene expression was performed using the ∆∆CT method [28]. The qPCR results
of all target genes were normalized against each of the two housekeeping genes.

2.4. Immunohistochemistry and Histology

Staining was performed using an automated IHC system on formalin-fixed and
paraffin-embedded tissue of representative sections that were cut into 2 µm thick samples
according to the protocol used in a study of the Institute of Pathology and Molecular
Pathology, University Hospital Zurich, using a Ventana Benchmark XT automated staining
system (Roche Tissue Diagnostics, Basel, Switzerland) [29]. The samples were loaded either
in the Bond-Max system (Leica Microsystems, Wetzlar, Germany) or BenchMark Ultra
system (Roche Tissue Diagnostics, Basel, Switzerland).

The following antigenes were targeted with antibodies: MIF-1 (Abcam, Cambridge,
UK), CXCR2 (Thermo Fisher, Waltham, MA, USA) and CXCR4 (Abcam, Cambridge, UK).
MIF-2 and CD74 antibodies were provided by the Bernhagen lab, 81377 Munich, Germany.

The staining assessment was performed according to the study of He et al. [30]; it in-
cluded the Remmele score, which is calculated by multiplying the intensity and percentage
of staining. Expression was considered negative or low when the score ranged from 0 to 2
and positive or strong when the score was >2.

2.5. Statistical Analysis

The statistical analysis was performed as in one of our previous publications [27]
using GraphPad Prism V8.0 (GraphPad Software, San Diego, CA, USA). A linear regression
analysis was performed using the Pearson correlation coefficient and two-tailed p-values.
A non-parametric unpaired Mann–Whitney U test was performed for non-Gaussian dis-
tribution, whereas a two-tailed Student’s t-test was performed for Gaussian distribution.
Sample sizes and statistical analyses are indicated in the figure legends unless otherwise
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mentioned. p < 0.05 was accepted as statistically significant when compared with BMI-
matched, age-matched and anatomically matched control patients.

3. Results
3.1. Patients

A total of 22 patients were selected for tissue analysis, all of which were female. The
patients included 11 diagnosed with lipedema (L) and 11 control (C) patients. Both cohorts
were age-matched, BMI-matched and anatomically matched. The patient characteristics
are summarized in Table 1.

Table 1. Summary of patient data.

Number of cases 22 p-value
Lipedema group 11

Control group 11

Sex
Female 22
Male 0

Mean age (years) 0.9824
Lipedema group 47.18, 95%CI: 41.20–53.35

Control group 47.27, 95%CI: 40.43–53.93

Mean weight (kg) 0.4603
Lipedema group 78.00, 95%CI: 70.26–95.30

Control group 82.88, 95%CI: 70.96–85.04

Mean BMI (kg/m2) 0.7530
Lipedema group 27.98, 95%CI: 25.12–32.21

Control group 28.61, 95%CI: 26.15–30.05

Lipedema stage
Stage I 0
Stage II 5
Stage III 6
Stage IV 0

3.2. Expression Analysis Using qPCR and Correlation with BMI

The samples of both groups were analyzed using qPCR (primers are summarized
in Table S1). Compared with the housekeeping genes and control group, the lipedema
patients showed a statistically significant overexpression of MIF-1 (mean 1.256; SD 0.303;
p = 0.0485) and CD74 (mean 1.514; SD 0.397; p = 0.0097). A separate comparison of stage II
and III lipedema with the control group resulted in a significant overexpression of CD74 in
stage II lipedema (mean 1.703; SD 0.3959; p = 0.0071) and a significant overexpression of
MIF-1 in stage III lipedema (mean 1.370; SD 0.3266; p = 0.0383). The results are illustrated in
Figures 1–3. A linear regression analysis was performed, and the Pearson correlation coeffi-
cient (r) and p-values (two-tailed) were determined to establish if there was a correlation
between BMI and MIF-1 as well as CD74; there were no significant correlations. MIF-1
showed r-squared values of 0.06777 for the control group and 0.003002 for the lipedema
group. The p-values were 0.4987 (C) and 0.8805 (L). For CD74, the r-squared values were
0.09642 (C) and 0.05269 (L), and the p-values were 0.4161 (C) and 0.5524 (L). The results are
illustrated in the Supplementary Materials (Figure S1).
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Figure 3. Results of mRNA expression levels in the subcutaneous tissue of stage III lipedema (L;
n = 6) and control patients (C; n = 11). * signifies p ≤ 0.05.

3.3. Immunohistochemistry (IHC)

A histopathological analysis was performed to further investigate the increased MIF-
1 and CD74 levels of the lipedema tissue samples. MIF-1, MIF-2, CD74, CXCR2 and
CXCR4 staining were employed (Figure 4). The staining showed no significant difference
in scores for MIF-1 (mean (L) 1.909 ± 0.302 and (C) 1.909 ± 0.539; p = 0.99), MIF-2 (mean
(L) 5.727 ± 0.905 and (C) 5.363 ± 1.690; p = 0.5384) and CXCR4 (mean (L) 2.455 ± 1.128 and
(C) 1.818 ± 0.982; p = 0.2137) expression in the cytoplasm and membrane of adipocytes
and in the macrophages between the two groups, as illustrated in Figure 4. However,
the histological analysis of CD74 did confirm the results of overexpression in lipedema
patients (mean (L) 7.727 ± 1.849 and (C) 5.181 ± 1.601; p = 0.0026). Furthermore, expression
of CXCR2 was significantly increased in the control group (mean (L) 6.727 ± 1.618 and
(C) 10.09 ± 1.868; p = 0.0002). The results and IHC expression scores are summarized in
Figure 5.
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Figure 4. Immunohistochemistry subcutaneous adipose tissue of a lipedema case (A–E) and control
patient (F–J). Arrowheads always indicate the expression of the stained protein. (A,F) Staining of
CD74. (B,G) Staining of the widely expressed MIF-1 in the cytoplasm of adipocytes and macrophages
as well as in secreted form. (C,H) Staining of MIF-2 and (D,I) CXCR2, also in the cytoplasm of
adipocytes and macrophages as well as in secreted form, with the latter showing strong expression
for both groups. (E,J) Very weak staining of CXCR4 in both groups.
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taneous tissue of lipedema (L; n = 11) and control (C; n = 11) patients. ** signifies p ≤ 0.01 and
*** p ≤ 0.001.

4. Discussion

We were able to highlight a statistically significant overexpression of MIF-1 and
its receptor CD74 on an mRNA level in the subcutaneous adipose tissue of lipedema
patients. This is in line with the findings of previous studies that emphasized an increase
of MIF expression in inflamed adipose tissue [10,14,31]. Furthermore, we were also able to
confirm that MIF-2 was unaltered, which interestingly is not completely congruent with
the current literature regarding adipose tissue inflammation in obesity, wound healing and
autoimmune disorders [13,32,33]. The precise function of MIF-1 and CD74 in lipedema
remains unclear. MIF-1 is known to be secreted by preadipocytes, mature adipocytes and
macrophages of the adipose tissue and promotes size and number increase in mature
adipocytes as well adipogenesis [11]. The MIF superfamily is a known key driver in the
polarization and recruitment of macrophages [12], which led us to theorize that it could be
involved in the development or, at least, sustainment of lipedema, therefore making it of
significant relevance. It is ubiquitously expressed and functions as an upstream mediator
of inflammatory processes [15]. The members include MIF-1, MIF-2 (D-DT) and their
main receptor CD74. Both MIF-1 and MIF-2 are produced by macrophages and stored
in preformed vesicles for rapid release in the presence of inflammatory stimuli, and they
have an autocrine effect on macrophages. Our IHC stainings did confirm an increase in
CD74 expression, whereas MIF protein expression appeared unaltered when compared
with the control group. This discrepancy may be rooted in the constitutive MIF storage in
preformed intracellular pools, which is rapidly released upon stimulation and therefore not
reliably measured in samples [34,35]. Earlier studies revealed increased protein and mRNA
levels of MIF-1 in inflamed subcutaneous adipose tissue. Moreover, the MIF superfamily
plays an important role in the cell mobilization and polarization of macrophages during
inflammation [31,36]. In fact, MIF-1 is a known M1-polarizing pro-angiogenic factor [11,36].
It is known to recruit inflammatory macrophages; moreover, overexpression is associated
with a worse outcome in sepsis [12]. As already mentioned above, a deficiency in MIF-2
has a pro-inflammatory effect; however, it rather alleviates inflammation in adipose tissue
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and does not possess the same effect on the migration of macrophages like MIF-1, which is
achieved through the activation of CXCR2, amongst others [11–13].

However, when considering unchanged MIF-2 levels, an MIF-1-driven CD74 activa-
tion contributing to adipose tissue inflammation and macrophages skewed towards the
M1 phenotype may be postulated. This hypothesis, of course, demands further elucida-
tion. Chan et al. recently reported M1 polarization by CD74 and related insulin resistance
and adipose tissue inflammation [37]. However, the adipose tissue inflammation cascade
through MIF-CD74 may be context-dependent as our earlier studies have provided evi-
dence for a downregulation of CD74 in inflamed adipose tissue from critical wounds [24].
How MIF-1 and CD74 promote the adipose tissue hypertrophy in lipedema is also un-
known. However, it was shown that CD74, which builds a complex with CD44, fosters cell
survival and inflammation [23,38], which may apply to adipose tissue in lipedema patients.
The staining of CXCR4 demonstrated low expression rates for both groups. Yao et al.
showed that a deficiency in CXCR4 actually exacerbated obesity and exacerbated chronic
adipose inflammation via increased macrophage infiltration, and it even compromised the
thermoregulation of brown adipose tissue in a mouse model [39]. Our selected population
is obese by definition, which could explain the low or very low expression of CXCR4. On
the other hand, CXCR2 showed strong positive expression for both groups; however, it was
significantly increased in the control group. CXCR2 expression on blood neutrophils was
found to be significantly increased in obese patients in a study conducted by Kopasov et al.
in which they took samples from the subcutaneous tissue and blood of patients undergoing
an abdominoplasty [40]. They hypothesized that the increased expression of chemokines
and chemokine receptors in obese patients could be a possible predisposition for post-
operative complications like impaired wound healing due to the chronic inflammation
already present in the subcutaneous adipose tissue. Further in vivo studies discovered
using mouse models that inducting CXCR2 was found to worsen steatohepatitis [41] and
antagonizing CXCR1 and CXCR2 protected mice from metabolic disease by a modulation of
the inflammatory process [42]. Moreover, Dyer et al. were able to determine that knocking
out CXCR2 in mice resulted in a significantly reduced number and size of subcutaneous
adipocytes, further underlining the role of the MIF superfamily in adipogenesis [43].

Lipedema is a chronic disorder with a typically disproportionate distribution of adi-
pose tissue in the lower extremities, mainly affecting women [1–3]. Diagnosis remains
difficult to this day as it is frequently confounded with obesity; however, we have been able
to demonstrate significantly increased serum levels of cholesterol, low-density lipoprotein
and triglycerides in a previously conducted study [7]. The specific etiology and patho-
physiology of lipedema remains unknown. An increasing number of publications suggest
the critical presence and potential role of macrophages in lipedema. This is depicted
through the histologic assessment and expression profile analysis of subcutaneous tissue
and through the quantitative evaluation of systemically circulating cytokines [6,7,27]. In
terms of cytokines, it has been previously shown that lipedema patients have increased lev-
els of interleukin (IL) 11, IL-28A and IL-29, with the latter two being known to be secreted
by macrophages; however, IL-6, IL-18 and tumor necrosis factor superfamily 14 have been
shown to not be overexpressed in lipedema as highlighted in two of our previous studies,
which included the same tissue samples investigated in the work presented here [7,27,44].
Of these cytokines, IL-11 is known to regulate adipogenesis and is mostly secreted by
stromal vascular cells, which are present in increased numbers in the adipose tissue of
lipedema patients [45,46]. Other cytokines involved in lipedema are VEGF-A, VEGF-C and
VEGF-D, which affect angiogenesis and lymphangiogenesis [8,9]. Nevertheless, the search
for a lipedema-specific biomarker is still ongoing. Another seemingly typical feature of
lipedema is the low-grade inflammation characterized by the infiltration of M2-polarized
macrophages [9], which is distinct from the M1 polarization in obesity [10]. We were able
to highlight this in a previous study by detecting significantly increased gene expression
levels of CD163 within the same lipedema tissue samples [9]. Building on these results
and using the same cohort, we investigated the M2 macrophage levels using cytometry by
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time-of-flight and IHC and demonstrated significantly increased numbers of M2/CD163+
macrophages in lipedema compared with the control group [47].

Our present work illustrates an initial study to elucidate the role of the MIF superfam-
ily in lipedema and to increase the understanding of lipedema. The current study is limited
by a low number of enrolled patients and by exclusively selecting lipedema stages II and III,
which does not present the whole spectrum of this disease. To compensate for these limita-
tions, we chose matched characteristics such as BMI and age in both of the analyzed groups
to create homogeneous and comparable populations [9,47]. Also, the study is of descriptive
nature in its current form as it does not elaborate on the functional consequences of MIF
family involvement in lipedema. Despite a great bulk of evidence that supports an active
involvement of MIF-1 in adipose tissue inflammation and related diseases such as obesity,
some studies were not able to substantiate this claim [11,48,49]. A context-dependent regu-
lation of MIF-1 during adipose tissue inflammation may be likely as we showed a distinct
upregulation of MIF-1 in inflamed adipose tissue from wounds earlier [14]. The precise
effect of a potential MIF-1-CD74 link in lipedema necessitates further in-depth analysis.
The binding of MIF-1 to CD74 in the presence of the coreceptor CD44 has several pro-
inflammatory effects, such as the activation of MAPKs [50]. One prominent downstream
mediator of the MIF-1-CD74 interaction is the downstream monocyte chemoattractant
protein 1 (MCP-1) upregulation, e.g., through the p38 MAPK [50]. MCP-1 in return is a key
chemokine secreted by macrophages that induces ASC proliferation and at the same time in-
hibits adipogenesis, which may play a role in lipedema [51]. Other downstream molecules
or pathways that may play a role in lipedema include p-NF-κB and p-STAT3 as both have
known correlations with obesity and adipose inflammation. In obesity, fatty acids are
elevated, which in turn activate the expression of NF-κB-associated genes/cytokines such
as IL-6 [52]. The serum level of lipids in lipedema are significantly increased, and IL-6 has
been shown to be expressed in lipedema; however, it is not overexpressed when compared
with obese patients [7,27], and it can activate p-STAT3 in the adipose tissue [53], which
again can contribute to the production of pro-inflammatory cytokines and chemokines
such as MCP-1 and IL-6, which can further perpetuate inflammation in adipose tissue.
Therefore, a correlation between lipedema and these pathways/downstream molecules is
very probable and could be of interest for future investigations, which was not possible in
our study due to our very limited sample supply.

Lipedema seems to have a distinct systemic cytokine profile; however, to date, there is
no specific biomarker for the diagnosis. The MIF superfamily is systemically measurable
and has been described as a possible biomarker in sepsis and cancer. However, we do
not believe that MIF-1 or CD74 will fill this role when it comes to lipedema because
it is ubiquitously expressed in the presence of inflammation and because the specific
inflammatory process seems to be localized in the adipose tissue of the affected limbs.
Nevertheless, the serum levels of the MIF superfamily in lipedema should be investigated,
and our results need to be supported by a larger sample size. Our discovery might, however,
very well be important for the further understanding of lipedema.

5. Conclusions

In conclusion, we showed that MIF-1 mRNA, CD74 mRNA and their cellular levels
are increased in the subcutaneous adipose tissue of lipedema patients, whereas MIF-2
expression remains unchanged. Furthermore, we demonstrated that CXCR2 expression was
increased in IHC results, especially in the control group, which almost exclusively included
obese patients. Staining of CXCR4 contrarily showed a decreased expression in both
groups. These results may indicate an involvement of MIF-1 in the inflammatory process
and recruitment of inflammatory cells and potentially also in the macrophage polarization
in lipedema, possibly representing yet another piece in the puzzle for understanding the
pathophysiology of lipedema. As the present study is purely descriptive, specific MIF-1
and CD74 action must be dissected in additional experiments.
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