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Abstract: Nonalcoholic fatty liver disease (NAFLD) currently represents one of the most common liver
diseases worldwide. Early diagnosis and disease staging is crucial, since it is mainly asymptomatic,
but can progress to nonalcoholic steatohepatitis (NASH) or cirrhosis or even lead to the development
of hepatocellular carcinoma. Over time, efforts have been put into developing noninvasive diagnostic
and staging methods in order to replace the use of a liver biopsy. The noninvasive methods used
include imaging techniques that measure liver stiffness and biological markers, with a focus on
serum biomarkers. Due to the impressive complexity of the NAFLD’s pathophysiology, biomarkers
are able to assay different processes involved, such as apoptosis, fibrogenesis, and inflammation,
or even address the genetic background and “omics” technologies. This article reviews not only
the currently validated noninvasive methods to investigate NAFLD but also the promising results
regarding recently discovered biomarkers, including biomarker panels and the combination of the
currently validated evaluation methods and serum markers.

Keywords: biomarkers; nonalcoholic fatty liver disease; nonalcoholic steatohepatitis; markers; sero-
logical markers; fibrosis

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of diseases associated
with metabolic disorders, which include entities from simple steatosis to nonalcoholic
steatohepatitis (NASH), with potential progression to liver cirrhosis and its complications.
There has been a notable increase in the global burden of obesity and associated metabolic
pathologies over the past years, including an increase in the prevalence of nonalcoholic
fatty liver disease (NAFLD), reaching an estimated global prevalence of 30% [1].

Considering the ongoing obesity epidemic, beginning in the early stages of life, and the
increase in various metabolic factors, the prevalence of NAFLD along with the proportion
of those with advanced liver disease is projected to continue to increase [2]. Indirect
estimations of the prevalence of NASH among NAFLD patients have reported varying
results, ranging from around 6% among NAFLD patients who underwent a random liver
biopsy to 59% among NAFLD patients with a clinical indication for a liver biopsy [3], with
an overall average prevalence of NASH estimated to be between 1.5% and 6.45% [4].

NASH is characterized by various pathophysiological changes in the liver, beginning
with hepatocyte stress, injury, apoptosis, and inflammation, leading to fibrosis [5]. In the
absence of early diagnosis and adequate management, NASH may progress to cirrhosis,
with a prevalence of severe F3 and F4 fibrosis related to NASH rapidly increasing in the
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US and globally [6]. There is an associated risk of liver-related morbidity and mortality,
which rises as the degree of liver fibrosis progresses [7]. NAFLD and NASH also negatively
impact the health-related quality of life, even in the precirrhotic stages [8], supporting the
demand for early diagnosis and effective treatments. Currently, a NASH diagnosis relies
on the use of a liver biopsy, with several criteria to be fulfilled for diagnosis, including
macrovesicular fatty changes of hepatocytes, ballooning degeneration of hepatocytes, and
infiltration of inflammatory cells [9]. Identification of NAFLD patients, and especially the
subgroup who progress to NASH among NAFLD patients, is essential in order to optimally
manage these cases, and various noninvasive tools have been developed in this regard,
although no unique biomarker is solely acknowledged to meet the requirements sufficiently.
The aim of this article is to review the currently validated biomarkers and scores and to
highlight the promising results regarding potential biomarkers and biomarker panels that
are useful in the evaluation of NAFLD and NASH.

2. Currently Used Noninvasive Methods for NAFLD Evaluation

Since NAFLD is related to metabolic syndrome, it can be initially managed by chang-
ing the lifestyle, but very few people can sustain this long-term, which is the reason why
as the condition progresses, physicians involve pharmacological therapy in patient man-
agement [10]. Therefore, the necessity of accurately establishing the stage of steatosis or
fibrosis is vital in correctly placing the diagnosis in a therapeutic context. At the moment,
the diagnosis is assessed by starting with the patient history, physical examination, and
laboratory tests. Medical comorbidities, such as obesity, diabetes, discovering features
of advanced liver disease such as a firm liver or dyslipidemia, and abnormalities in the
liver biochemistry like elevated aminotransferases, all represent arguments for screening
for NAFLD [11]. Abdominal ultrasonography is also a common modality to approximate
the liver steatosis grade in a patient with an incidental elevation of transaminases [12].
The Fibrosis-4 Index for Liver Fibrosis (FIB-4) is a score that is very helpful in detecting
patients with a higher risk of developing advanced fibrosis, and this is why it is used as a
first step in ruling out this stage of disease (it has a negative predictive value of 90–95%).
It is a very simple index that is based on age, platelet count, alanin transaminase (ALT),
and aspartate transaminase (AST) [13]. A statistically better test for progressive fibrosis
is the Enhanced Liver Fibrosis Panel (ELF) or imaging-based elastography methods such
as vibration-controlled transient elastography (VCTE), shear-wave elastography (SWE),
acoustic radiation force impulse (ARFI) imaging, and magnetic resonance elastography
(MRE). Increased liver stiffness can be a consequence of various processes, such as passive
congestion or inflammation, or it can be due to infiltrative disease, but the most important
is fibrosis [11].

VCTE or Fibroscan® represents the first elastographic method that has been FDA-
approved, and it is useful not only for assessing fibrosis but also for evaluating the steatosis
grade using a controlled attenuation parameter (CAP). SWE measures liver stiffness with
the help of ultrasonography as well as ARFI elastography. MRE is performed during
an MRI scan and similar to VCTE, it is able to assess steatosis with the assistance of an
additional parameter, the proton density fat fraction (PDFF) [14]. In a study conducted by
Cassinotto et al., the AUROC values for Supersonic Shear Imaging, FibroScan, and ARFI
for detecting advanced fibrosis F4 were 0.88, 0.87, and 0.84, respectively, leading to the
conclusion that the SWE prediction value is superior compared with VCTE and ARFI [15].
They also highlighted some factors that interfere with the accuracy of the liver stiffness
methods such as obesity, the presence of metabolic syndrome, or diabetes.

There are a plethora of currently available validated algorithms proposed for diag-
nosing and staging fibrosis such as the FibroTest, FibroMeter, Hepascore, NAFLD fibrosis
score, BARD score, AST/platelet ratio index (APRI), or Hepamet fibrosis score, which are
systematically presented in Table 1.
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Table 1. Currently used scores based on serum biomarkers to evaluate NAFLD, NASH, and liver fibrosis.

Parameters
Involved

FibroTest
[16]

FibroMeter
[10]

Hepascore
[16]

NAFDL
Fibrosis

Score [16]

BARD Score
[16]

AST/Platelet
Ratio Index

(APRI) * [17]

Hepamet
Fibrosis

Score [18]

Liver
function tests

Bilirubin
GGT

Serum levels
of ALT, AST

GGT
Bilirubin

AST/ALT
ratio

Serum
albumin level

AST/ALT
ratio

AST
elevation

AST (UI/L)
Albumin
(g/dL)

Anthropometric
data Age Body weight Age

Sex
Age
BMI BMI Age

Sex

Parameters
of metabolic
comorbidity

Fasting
glucose

Diabetes
mellitus
status

Fasting
glucose level

Diabetes
mellitus
status

Insulin
(µU/mL)
HOMA

Diabetes
mellitus
status

Glucose
(mg/dL)

Other
parameters

Apolipoprotein
A1
α2-

macroglobulin

Ferritin
Prothrombin

index

HA
a2-

macroglobulin
PLT count PLT count PLT (×109)

* (AST elevation/PLT count) × 100. ALT—alanine aminotransferase; AST—aspartate aminotransferase; BMI—
body-mass index; GGT—γ-glutamyl transpeptidase; HA—hyaluronic acid; PLT—platelet; HOMA—Homeostatic
Model Assessment for Insulin Resistance.

3. Emerging Biomarkers

The pathophysiology of NAFLD and NASH is extremely complex and includes several
processes. For each of these processes, several markers can be identified, contributing to
a large pool of biomarkers that are potentially useful in assessing disease severity and
progression (Figure 1).
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3.1. Biomarkers of Fibrogenesis

Fibrosis is one of the pathophysiological processes involved in advanced liver disease
and represents the excessive development of fibrous connective tissue in the liver, reflecting
the progression of NAFLD. During fibrogenesis and fibrinolysis, fragments of the extracel-
lular matrix (ECM) are released into the blood circulation, and measuring the serum level
of these molecules could evaluate the degree of liver fibrosis [19].

Hyaluronic acid (HA) is one of the most studied potential biomarkers for fibrosis in
NAFLD. In a clinical study including 79 patients with biopsy-proven NAFLD, Suzuki et al.
identified a significant correlation between the HA level and the degree of liver fibrosis.
This finding suggests that HA is only useful for detecting advanced stages of fibrosis
(AUROC = 0.89), and it is not relevant for a mild degree of fibrosis (AUROC = 0.67 for any
levels of fibrosis) [20]. Malik et al. also concluded that HA obtained a good AUROC (0.77)
only for advanced fibrosis [21]. Lydatakis et al. have determined the serum levels for HA
and laminin in a group of 50 patients with NASH, of which 23 were diagnosed with fibrosis
and 27 were without fibrosis [22]. For HA, the conclusion was consistent with the previous
research and for laminin, its inability to stage fibrosis was identified. Sakugawa et al.
also confirmed, with promising results, the usefulness of HA in diagnosing and staging
NASH and fibrosis [23]. Moreover, they spotlighted the fact that the association of HA and
type VI collagen 7S domain has a high negative predictive value (95.2%). According to
another study, HA obtained the best AUROC (0.885) for independently predicting severe
fibrosis [24].

Laminin represents another direct marker of matrix deposition, and it is an abundant
noncollagenous glycoprotein [10]. In the studies performed by V.N. dos Santos et al. [25]
and Ratziu et al. [26], respectively, significant values for AUROC, sensitivity, specificity, PPV,
and NPV were achieved. Regarding procollagen III amino-terminal peptide (PIIINP),
there are conflicting results. This peptide is released during the synthesis and deposition
of type III collagen, and Monarca et al. acknowledged that it is not a good discriminator
between NAFLD and ALD (alcohol-related liver disease) [17,27]. However, in 2013, a
study [28] validated its ability to detect and assess NASH (AUROC of 0.77–0.82 in patients
with F0-2 fibrosis and 0.82–0.84 in patients with F0-3 fibrosis).

Pro-C3 is the pro-peptide of type III collagen and a neo-epitope-specific competitive
ELISA for PIIINP [10]. According to Nielsen et al., it is specific for fibrogenesis rather
than degradation [29]. This molecule is correlated to the percentage of fibrosis and fat
(p = 0.01–0.0007) [30]. Daniels et al. not only confirmed that Pro-C3 increased with the
fibrosis stage (obtaining an AUROC of 0.81 for identifying patients with F3) but also
developed a Pro-C3-based score called ADAPT that accurately identified patients with
NAFLD [31]. The ADAPT score consists of combining age, diabetes status, platelet count,
and Pro-C3, and it has an AUROC higher than Pro-C3 alone (0.86). A relatively recent study
suggested that bariatric surgery could contribute to the decrease in the levels of Pro-C3 as a
result of improvements in metabolic and liver parameters [32]. A meta-analysis concluded
that Pro-C3 or a panel incorporating Pro-C3 has comparable diagnostic accuracy with the
currently validated ELF test or FIB-4, which are recommended by guidelines [33].

Chondrex (YKL-40) is another type of protein involved in extracellular matrix re-
modeling, and it is a feasible biomarker of liver fibrosis in NAFLD patients according to
Kumagai et al. [34]. Thrombospondin 2 (TSP2) has various functions including collagen
formation, and Kimura et al. analyzed the relation between NAFLD and serum TSP2 levels,
resulting in an AUROC of 0.82 for predicting severe fibrosis [35], while in the evaluation
conducted by Kozumi et al., an AUROC of 0.856 for predicting advanced fibrosis was
obtained [36].

As far as markers for fibrolysis are concerned, the tissue inhibitors of metallopro-
teinases 1 and 2 (TIMP-1, TIMP-2) are potentially useful markers for assessing fibrosis.
Abdelaziz et al. obtained promising values for sensitivity and specificity for both en-
zymes and an AUROC of 0.971 for TIMP-1 and 0.951 for TIMP-2 [37]. However, there is a
study [38] that revealed that there was no significant correlation between the serum level of
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TIMP-1 and the histological aspect. Measuring serum prolidase enzyme activity (SPEA),
NASH can be differentiated from simple steatosis with an AUC of 0.85. This enzyme,
which is involved in collagen breakdown, is correlated with the liver collagen content in
hepatic fibrosis [39,40]. The Enhanced Liver Fibrosis Panel (ELF) is a blood test consisting
of three markers of matrix turnover: hyaluronic acid, tissue inhibitors of metalloproteinase
1 (TIMP-1), and aminoterminal peptide of pro-collagen 3 (PIIINP), and it performs well in
detecting advanced fibrosis, with an AUROC of 0.90 [13].

Besides evaluating markers of matrix deposition and degradation, fibrosis can be
assessed through cytokines and chemokines such as the platelet-derived growth fac-
tor (PDGF), transforming growth factor (TGF)-alpha, and (TGF)-beta [41,42]. Regarding
endothelin-1 (ET-1), Degertekin et al. found a correlation with the stage of fibrosis and
also a significant relation among insulin resistance, ET-1 levels, and the grade of hepatic
fibrosis [43]. The PRTA score combines the platelet-derived growth factor receptor beta
(sPDGFRβ) levels with platelet counts and albumin and has a great diagnostic value for
advanced hepatic fibrosis, with an AUROC superior to Fib-4, APRI, and AST/ALT [44].

3.2. Biomarkers of Inflammation

The progression of NAFLD into NASH involves inflammatory mechanisms, which
can be evaluated through inflammatory markers and mediators such as high-sensitivity
C-reactive protein (hs-CRP), ferritin, tumor necrosis factor (TNF), interleukins, and others.
Even if some of these are not specific for liver inflammation, they are still useful for evalu-
ating the inflammatory metabolic state and the progression of the liver injury. The studies
on hs-CRP are conflicting [45], since there are results that show a correlation between the
serum level of hs-CRP and the presence of steatohepatitis and severe fibrosis [46–48], while
other studies highlight a weak relationship between the levels of hs-CRP and the degrees
of steatosis [49] or even no value of hs-CRP in discriminating between simple steatosis and
steatohepatitis [50]. It has been suggested that the accumulation of fat—both in the adipose
tissue and in liver steatosis—is leading to the high levels of CRP in obese patients [51].
Another biomarker currently available to evaluate inflammation and readily available
in clinical practice is ferritin, and its role in NAFLD has also been studied, with some
studies suggesting [52] that a serum level higher than 1.5 X the upper limit of normal is
associated with more severe histologic features and predicts the development to advanced
fibrosis [13].

Insulin resistance underlies the development of NASH, and TNF-alfa plays an im-
portant role in this condition as an inflammatory mediator [53]. A cross-sectional study
from China [54] demonstrated that TNF-alfa levels are associated with the development of
NAFLD and NASH. A few more studies are showing the correlation between the tumor
necrosis factor and the presence and severity of NASH [55–57]. However, in combination
with the assessment of IL-8 and pyroglutamate, the obtained values were more signifi-
cant [58,59]. Interesting results were acquired by measuring mRNA levels for TNF-alfa,
where a lower value for microRNA 144 (miR-144) seemed to be responsible for promoting
TNF-alfa induction [60].

Another proinflammatory cytokine is IL-6, for which there are indicative studies that
suggest its ability to detect inflammation-related nonalcoholic steatohepatitis [57,61]. In
addition, it has been observed that IL-6 has the capacity to determine advanced stages of
fibrosis [62]. Contrary to this, Haukeland et al. [63] discovered insignificant differences
between the serum levels of the group with simple steatosis and the group with NASH.
Coulon et al. [64], likewise, showed a weak correlation with NASH. However, both studies
and one other study [65] revealed promising results regarding NAFLD. Concerning the
role of other cytokines involved in the inflammation process, there is evidence for elevated
IL-8 serum levels in NASH too [66,67], and according to Darmadi, IL-12 is also associated
with the NAFLD ultrasound grading [68].

The cascade of inflammation involved in the pathogenesis of NAFLD and NASH
involves a complex network, which includes, besides the proinflammatory cytokines, the
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involvement of chemokines. Chemokines are secreted by various types of cells, namely,
the hepatic stellate cells, Kupffer cells, and portal fibroblasts. The chemokine activation
in NAFLD results in the modulation of hepatocyte proliferation, activation, extracellular
matrix remodeling, angiogenesis, and direct activation of stellate cells [69]. Since there are
more than 40 chemokines with action on more than 20 discrete receptors and conflicting
results in prior studies, using different methodologies, focusing on the relationship between
these complex molecules and NAFLD [70], it is difficult to draw a conclusion about their
current role as biomarkers of NAFLD. A systematic review and network meta-analysis
conducted by Pan X et al. concluded that increased concentrations of several chemokines
such as CCL2, CCL4, CCL20, CXCL8, and CXCL10 could be associated with the presence
of NAFLD [71], although further research is required to establish the potential place of
chemokines in the diagnostic biomarker panel for NAFLD and NASH.

Some research interest has been driven toward the study of plasma pentraxin 3 (PTX3),
which represents an acute-phase protein belonging to the PTX family, significantly associ-
ated with obesity, metabolic syndrome, and cardiovascular diseases [72,73]. There have
been some promising results, revealing the discriminatory power of PTX3 in detecting stage
3–4 NAFLD, with AUROC values of 0.850 [74], and also its ability to evaluate the degree of
liver fibrosis [75], with a further study showing the correlation between the values of PTX3
and NAFLD activity score and fibrosis stage [76]. However, conflicting data have been
reported, with a study performed by Maleki et al. [77] reporting results with no statistical
significant value of PTX3 in differentiating the degree of fibrosis and with more modest
results on the value of PTX3 as a sole biomarker of NAFLD (AUC-0.731); this suggests
that it is better used in combination with other biomarkers in order to improve diagnostic
accuracy [78].

The markers of inflammation with potential use as biomarkers in NAFLD include
other molecules involved in the complex inflammatory signaling, as is the case with the
vascular cell adhesion molecule 1 (VCAM-1). VCAM-1 is a surface protein that induces
adherence and extravasation of monocytes to blood vessels [79]. Vascular endothelial
dysfunction is a significant pathophysiological component of NASH pathogenesis, with
evidence from preclinical studies that endothelial inflammation is an early feature of
NASH, which precedes hepatic macrophage cell infiltration [80]. There is evidence of the
up-regulation of VCAM-1 expression in chronic inflammation both on the endothelial cell
surface and in other types of cells, such as macrophages, dendritic cells, and Kupffer cells
in the liver [81]. More recent evidence supports the hypothesis that VCAM-1 mediates
the transition from steatosis to endothelial dysfunction and inflammation by facilitating
the monocytes’ adhesion to the liver’s sinusoidal endothelial cells [82]. Because VCAM-
1 production is not confined to the liver sinusoidal endothelial cells, this protein may
affect the systemic inflammation that characterizes NAFLD [79]. Based on preclinical
evidence, there is an increasing interest in integrating VCAM-1 into the biomarker panel
for discriminating the progress of NASH. An analytical and clinical validation performed
by Kar et al. highlighted that VCAM-1 levels were statistically significantly increased in an
advanced fibrosis cohort compared with the mild and no fibrosis groups, demonstrating
good clinical performance as a biomarker of advanced fibrosis and outperforming IL-6,
CRP, TNFα, and chemokines [62].

Except for proinflammatory cytokines, there is evidence of the potential value of
several noninvasive markers involved in various processes, such as coagulation-related
markers. Plasminogen activator inhibitor-1 (PAI-1) belongs to the family of serine protease
inhibitors (serpins) and is an important regulator of the plasminogen/plasmin system. The
connection between PAI-1 and various diseases, including cardiovascular disease metabolic
alterations, inflammation, fibrosis, and neurodegenerative disease, has been described [83].
Considering its potential role in inflammation, in a study conducted by Ajmera et al. [66],
activated PAI-1 seemed to be the only marker significantly associated with the diagnosis of
NASH [17].
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3.3. Apoptosis Markers

The progression to NASH and fibrosis involves apoptotic cellular death. The extrinsic
pathway is mediated by death receptors, and the interaction between the plasma membrane
receptor and Fas ligand (FasL) activates the caspase cascades from which cytokeratin 18
(CK18), an intermediate filament protein within the hepatocytes, is cleaved in fragments
of approximately 30 kDa and 45 kDa, respectively [84,85]. Therefore, CK18 could be a
promising noninvasive biomarker for NASH because of the correlation between its serum
level and the degree of liver damage [86]. CK18 fragments can be investigated in two ways:
using immunostaining in liver tissue, or using monoclonal antibodies in plasma [87]. M30 is
the specific antibody for the 30 kDa fragment and reflects cell death through apoptosis. M30
has a sensitivity of 63.6% and a specificity of 87.2% (AUC = 0.710) for predicting histological
NASH [88]. High levels of CK fragments were identified in patients with NASH (AUROC
= 0.93) [89], and it was suggested that it can differentiate NASH from simple steatosis [90].
It has been demonstrated that this marker is an independent predictor for NASH [91], and
it is also correlated with the severity of the process [92,93]. A meta-analysis conducted
by Kwok et al. reported a sensitivity and specificity of 85% and 92%, respectively, for
diagnosing the F4 stage of disease using M30 [94].

Relevant data were also obtained regarding the ability of CK18 to evaluate the re-
sponse to treatment. The improvement in the liver in terms of the histological aspect was
correlated with the level of CK18 in two trials [13,95]. Nevertheless, Cussi et al. [96] sug-
gested that this biomarker is not yet suitable as a screening test, since the reported results
revealed lower values for sensitivity (58%) and NPV (49%) [97]. Unsatisfactory results were
obtained afterward as well [98]. In order to increase the accuracy of the diagnosis of NASH,
Chuah et al. [99] combined CK-18, aspartate aminotransferase (AST), and a homeostasis
model assessment (HOMA), which led to the MACK-3 panel with better results. Another
study reported an AUROC of 0.88 (in comparison with CK18 alone with an AUROC of
0.74) by combining metabolic syndrome, ALT, and CK18 [100]. Grigorescu et al. [101]
evaluated the triple combination of adiponectin, CK18, and IL-6 and obtained an even
higher AUROC (0.90).

The fibroblast growth factor 21 (FGF21) represents a type of endocrine fibroblast
growing factor, which due to its particular structure, is able to escape the cellular matrix
and enter the circulation to act as hormonal-like messengers [102]. FGF21 has been used
in combination with CK18 to improve the screening process of patients with NASH [103].
Moreover, in patients with biopsy-proven NASH, a higher serum level of soluble Fas (sFas)
and sFasL has been discovered compared with patients with simple steatosis [104], and
this is the reason why measuring soluble Fas together with CK18 fragments increases the
sensitivity (88%) and specificity (89%) in diagnostic processes [85,105]. A poor inter-test
reliability represents another problematic issue for using this biomarker as a screening test
at this moment, as suggested by Pimentel et al. [106]; therefore, it is not currently validated
for use as a specific biomarker.

3.4. Adipokines and Hormones

As previously mentioned, insulin resistance plays an important role in the patho-
genesis of NAFLD [107]. Adiponectin is an adipocytokine that regulates glucose levels
and fatty acid breakdown, and whose serum level is reduced in insulin-resistant states.
A meta-analysis conducted by Polyzos et al. [108] showed lower levels of adiponectin
in patients with NASH compared with the control group and even with NAFLD. It has
been proven that in subjects with a high likelihood of a fatty liver, adiponectin values
were 40% lower than in subjects with a low likelihood of a fatty liver [109]. The trend
was also observed in other studies [110,111]. Plasma adiponectin levels were associated
with the degree of hepatic steatosis and necroinflammation but not with the severity of
fibrosis [112]. Adiponectin was, again, negatively correlated with the stage of NASH in
obese patients [113]. Nevertheless, hypoadiponectinemia in NAFLD has been proven to
be the consequence of metabolic disturbances and fat accumulation in the liver more than
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just the severity of the disease [114,115]. A combined evaluation (serum adiponectin level,
HOMA-IR, and serum type IV collagen 7S) seemed to obtain even better results in terms of
sensitivity (94% vs. the sensitivity of adiponectin alone, 68%) [116]. As we mentioned in
the “CK-18” section, adiponectin may be also integrated into a panel alongside CK-18 and
IL-6 [101].

Among key players involved in insulin resistance, the value of the adipocyte fatty
acid-binding protein (AFBP) was assessed in the serum of NAFLD patients, and elevated
values were found in this patient category. Moreover, evidence suggests that AFBP could
predict fibrosis [117]. The same study reveals that lipocalin-2, another tissue-derived,
lipid-binding cytokine, can differentiate NAFLD from the control group as well, but it is not
able to distinguish NASH from simple steatosis. Ye et al. also found a correlation between
NAFLD and lipocalin-2 [118].

Visfatin is a multifunctional adipocytokine that is produced and secreted in visceral
fat, and it is correlated with metabolic syndrome [119]. The study conducted by Jarrar
et al. [111] suggests that visfatin and IL-6 may be co-regulated and identified lower values
of visfatin in NASH compared with simple steatosis. According to Aller et al. [120],
visfatin plasma concentrations could predict the presence of portal inflammation in NAFLD
patients. FGF-21 is increased in obese patients, and it is correlated with the hepatic fat
content and with the nonalcoholic fatty liver disease activity score [121]. As mentioned
beforehand, FGF21 could represent a helpful biomarker for NAFLD, with a reported
AUROC of 0.84 for detecting NAFLD [103] and with higher diagnostic accuracy when
combined with CK-18. A meta-analysis suggests its ability to detect NASH; however, the
number included was low, which weakens the strength of the conclusion [122]. Leptin
represents an adipocytokine involved in lipid accumulation and inflammation, and it
has been observed that it is a predictor for the severity of hepatic steatosis but not of
hepatic fibrosis [123]. Another study was, however, inconclusive [124]. Regarding resistin,
there are conflicting results. According to Argentou et al., it is negatively correlated
with the NAFLD activity score and steatosis grade but not with inflammation [113], as
Aller et al. [125] also claim. Nevertheless, a positive correlation was found between
resistin and the histological inflammatory score [126]. Dehydroepiandrosterone (DHEA)
is a steroid hormone that among other functions has been reported to augment insulin
sensitivity. It seems that DHEA could suggest the progression of NAFLD into NASH and
advanced fibrosis, considering the results of a study revealing lower levels of DHEA-s (the
sulfated form) in more histologically advanced NAFLD. The results were correlated with
age, as it is known that DHEA decreases with time [127]. Other significant results were
obtained regarding the insulin-like growth factor-binding protein 1 (IGFBP-1), as it has
been observed that IGFBP-1 was associated with the presence of advanced fibrosis, which
makes it a promising future biomarker [128].

3.5. Biomarkers of Lipid Oxidation

It has been established that the pathogenesis of NAFLD involves oxidative stress
characterized by an imbalance between prooxidants and antioxidants, leading to hepatic
injury and underlying the development of NASH. We can therefore potentially evaluate
the pathways and quantify the metabolites involved in this process in order to assess the
liver status [129]. This statement is supported by several clinical studies, where various
biomarkers of lipid oxidation have been studied. Several studies focusing on this topic
have included the evaluation of various markers, such as the total antioxidant response
and total peroxide level [130] and the measurement of 9- and 13- Hydroxyoctadecadienoic
acids (9- and 13-HODEs) and 9- and 13-oxoODEs, which are products of free-radical-
mediated oxidation of linoleic acid (LA) [131]. Their results suggest that although no
correlation was observed between the necroinflammatory grade and these oxidative status
parameters’ elevated values [130], the values of 9- and 13-HODEs and 9- and 13-oxoODEs
have been increased in patients with NASH [131], suggesting the potential use of these
parameters in diagnosing NASH. In the quest to capitalize on the role of oxidative stress in
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NAFLD progression, clinical studies identified that the serum level of malondialdehyde
(MDA) [132] is increased in NAFLD, as this highlights that lipid peroxidation represents
a marked process and, more than that, a decrease in the levels of antioxidants such as
Coenzyme Q10 (CoQ10) and CuZn-superoxide dismutase (SOD) [133]. Regarding antiox-
idant enzymes, erythrocyte GSH, SOD, and catalase seemed to be significantly lower in
biopsy-proven NAFLD [134], as did the serum paraoxonase 1 activity [132], with some
results suggesting that MDA and GSH potentially represent independent risk factors for
fibrosis in NASH [135]. Nevertheless, this could also be the case when only the oxidation
processes are increased in order to produce an imbalance [136]. Direct measurements of
oxidized LDL (ox-LDL) and thiobarbituric acid-reacting substances (TBARSs) revealed
elevated values in NASH [137]. Alkhouri et al developed a diagnostic score called Ox-
NASH, reporting its potential to predict the presence of NASH and also correlate with
NASH histology [138]. This score is calculated from the ratio of 13-HODE to linoleic acid,
age, BMI, and AST. Videla et al. emphasized the presence of oxidative stress in NAFLD
and especially in NASH by providing relevant data: reduced glutathione (GSH) content,
superoxide dismutase (SOD) activity, and the ferric-reducing ability of plasma (FRAP)
were decreased in this study [139]. In the same study, a potential role of the induction of cy-
tochrome P450 2E1 (CYP2EI) in the context of this condition was suggested because of the
significantly high values of these parameters compared with controls. Chtioui et al. [140]
also confirmed this finding by using a 6-hydroxychlorzoxazone/chlorzoxazone (CHZ) ratio
(CHZ test), but they highlight the fact that it is unable to differentiate steatohepatitis from
simple steatosis. At the same time, Orellana et al. [141] evaluated both liver Cytochrome
P450 2E1 (CYP2E1) (through Western blot) and CHZ hydroxylation in obese patients with
steatosis, and they also found an enhanced activity. Albano et al. [142] used the immune
response to assess the lipid peroxidation. They utilized circulating IgG against lipid per-
oxidation products such as titers of IgG against human serum albumin adducted with
malondialdehyde (MDA-HSA) or arachidonic acid hydroperoxide (AAHP) and against
oxidized cardiolipin (Ox-CL), and the levels seemed to be significantly higher in NAFLD
patients. An interesting finding was that the titers of these markers were independent of
the steatosis grade but in accordance with fibrosis.

Looking at oxidative stress from a different angle and targeting noninvasiveness in
the investigation, research on the role of oxidative stress in NAFLD has also included the
evaluation of volatile organic compounds (VOCs), which are considered markers of ox-
idative stress. Analyzing VOCs in exhaled breath seemed useful for indicating the presence
of NASH, with one study examining several VOCs: n-tridecane, 3-methyl-butanonitrile,
and 1-propanol. The obtained results were promising, with an AUROC of 0.77, a neg-
ative predictive value of 82%, and a positive predictive value of 81% in discriminating
NASH [143].

The role of all these biomarkers reflecting lipid oxidation in NAFLD is still to be
integrated into the biomarker panel, and their use in discriminating NAFLD stages is still
to be evaluated, with lipidomics appearing to be a promising lane in this direction.

3.6. Genetic Biomarkers

The fact that the prevalence and severity of NAFLD are variable among individuals
and ethnic groups (there are higher rates in Hispanic populations compared with Cau-
casians) points to the role of genetics in the pathophysiology of NAFLD [144], with a
twin study also implying the heritability of NAFLD [145]. There have been a significant
number of genome studies that provided great data on new potential biomarkers [90].
Both Younossi et al. and Sreekumar et al. have shown that there are genes with a signifi-
cantly differential expression in NASH [146,147]. Bragoszewski et al. conducted a study
regarding the expression of genes encoding mitochondrial proteins. They concluded that
the expression of HK1, UCP2, ME2, and ME3 appeared to be higher in NASH than in
NAFLD patients, whereas HMGCS2 and hnRNPK expression were contrarily lower [148].
Greco et al. [149] have also studied gene expression in NAFLD and discovered 1060 genes



Metabolites 2023, 13, 1115 10 of 26

related to carbohydrate, lipid, or amino acid metabolism that are significantly associated
with the liver’s fat content. An increased expression of the genes involved in inflamma-
tion and mitochondrial alterations was, again, highlighted by Chiappini et al. [150] in a
study that used high-density oligonucleotide microarray. The same method was used
by Yoneda et al. as well [151]. Not only are the genes involved in lipid metabolism and
inflammation over-expressed in NAFLD and NASH, the expression of the genes involved
in monocyte/macrophage recruitment is also increased, as Westerbacka et al. suggest [152].

In addition, the DNA copy number and deletion levels also appear to be associated
with the NAFLD settlement. The number of copies was significantly higher in NAFLD
patients compared with healthy controls, and 4977-bp deletion has been discovered in 8
out of 43 patients with the condition, but meanwhile in none of the control groups [153].
A Chinese study found that the copy number of mitochondrial DNA is associated with
the incidence of NAFLD only under the influence of 8-oxo-2′-deoxyguanosine (8-oxo-dG),
highlighting the impact of oxidative stress in the pathogenesis of NAFLD [154]. The
mitochondrial genome is transcripted in the D-loop region, which has been explored by
Hasturk et al., who identified the m.A16318C variant only in patients with NASH [155].

The most common studies imply genetic variations in the form of single nucleotide
polymorphisms (SNPs). These modifications present at birth and could be used in large
screening programs [10]. The PNPLA3 gene encodes Patatin-like phospholipase-domain-
containing protein 3 (PNPLA3), also known as adiponutrin, that may be involved in
the balance of energy usage/storage in adipocytes. Rs738409 (an I148M protein variant)
represents the isoleucine-to-methionine substitution in the PNPLA3 gene at position 148,
which induces a loss of function in the enzymatic activity and as a consequence, the
abnormal storage of triglycerides [156,157]. It is most prevalent in Hispanic populations
(49%) [158] and is associated with a systematic increase in hepatic fat content but without a
connection with lipoprotein metabolism [159]. The carriers of this variant are at high risk
of developing steatohepatitis, cirrhosis, and HCC [160,161]. A meta-analysis conducted
by Xu et al. confirms the susceptibility of PNPLA3 rs738409 polymorphism to NAFLD
and the risk of developing NASH [162], and the results are consistent with a previous
meta-analysis [163]. Nevertheless, there is a positive aspect related to the presence of
this variant: its carriers are advantaged by the fact that weight loss is more effective in
decreasing liver fat in subjects who are homozygous for the rs738409 PNPLA3 G or C
allele [164,165]. The NASH Clin Score represents a model of diagnosis that associates the
PNPLA3 G genotype with clinical features such as aspartate AST level and fasting insulin,
with promising values such as a reported AUROC for detecting NASH of 0.792 [166].

The transmembrane 6 superfamily member 2 (TM6SF2) is located on chromosome
19 (19p12); one variant of TM6SF2 (E167K, rs58542926), which is carried by about 10%
of individuals [167], has been shown by genetic studies to be associated with the hepatic
triglyceride content [168]. A point mutation in TM6SF2 (rs58542926, c.499 C > T) causes
glutamine-to-lysine substitution, which has as a translational result a misfolded protein,
leading to accelerated protein degradation [169]. Studies reveal that this variant has a
negative effect on lipids metabolism, contributing to the reduction of the secretion of very
low-density lipoproteins (VLDLs) responsible for the accumulation of triglycerides in the
liver. Therefore, it further induces the development of NAFLD and eventually NASH or
fibrosis [169–174]. However, this results in a decreased level of lipids in the circulation, and
therefore, a reduced risk of developing myocardial infarction [175].

Rs780094 A > G and rs1260326 C > T variant (P446L) occur in the glucokinase regu-
lator (GCKR) gene, which is involved in the regulation of the glucose influx to hepatocytes.
The effect of this variant consists of an inability to regulate the glucose influx into hepato-
cytes, resulting in an accelerated uptake and an increase in the production of malonyl-CoA
and de novo lipogenesis, with the consequence of promoting the development of NAFLD,
NASH, and fibrosis [144,176,177]. Stender et al. [178] suggest that the effects of all of these
three sequence variants (PNPLA3 p.I148M, TM6SF2 p.E167K, and GCKR p.P446L) are
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amplified by the presence of adiposity, which further promotes the deterioration towards
NASH and cirrhosis.

The rs641738 C > T variant of the membrane-bound O-Acyltransferase domain con-
taining 7 (MBOAT7), which is involved in phospholipid metabolism, is also associated
with an increased risk of the entire spectrum of NAFLD [179,180], including higher chances
of developing HCC in patients without advanced fibrosis [181]. Additionally, the gene en-
coding the enzyme hydroxysteroid 17β-dehydrogenase 13 (HSD17B13), which is involved
in steroid and lipid metabolism, is overexpressed in NAFLD and causes lipid accumulation
in the liver. Interestingly, it seems that a loss-of-function variant could have a protective
effect regarding the progression to steatohepatitis [2].

It is important to know and understand the role of genetic polymorphisms in NAFLD;
current relevant findings are presented in Table 2.

Table 2. Genes and their altered variants involved in NAFLD pathogenesis.

Gene Role of Encoded Protein(s) Variant Effect of Altered Gene Variant

PNPLA3 [182]

Patatin-like phospholipase-
domain-containing protein 3
(PNPLA3) = adiponutrin→
involved in TG and retinoid

metabolism

rs738409 Abnormal storage of triglycerides

Transmembrane 6
superfamily member 2 (TM6SF2)

[182]

TM6SF2 protein→ involved in
secretion of apolipoprotein B

rs58542926 C > T→ a
loss-of-function mutation

Higher liver TG content and
lower circulating lipoproteins

Glucokinase regulator (GCKR)
gene [182]

Glucokinase regulatory protein
(GKRP)→

involved in the regulation of
glucose influx to hepatocytes (2)

rs780094 A > G and rs1260326 C >
T variant (P446L)

Increased hepatic glucose uptake
and increased de novo lipogenesis

Membrane-bound
O-Acyltransferase domain

containing 7 (MBOAT7) [182]

Lysophosphatidylinositol (LPI)
acyltransferase 1→ involved in

the regulation of free arachidonic
acid

rs641738 C > T→ a
loss-of-function mutation

Increased free polyunsaturated
fatty acids and proinflammatory

eicosanoid lipids

HSD17B13 [182] A lipid droplet enzyme retinol
dehydrogenase rs72613567:TA

Decreased inflammation,
Ballooning, and fibrosis→

a protective variant

Apolipoprotein B (APOB) [144]
ApoB protein→ involved in the

formation and secretion of hepatic
VLDL and chylomicrons

Loss-of-function
mutations

Decreased serum cholesterol and
increased intrahepatic

triglycerides
Proprotein convertase

subtilisin kexin 9 (PCSK9) [144]
Serine protease→ promotes the

degradation of LDL receptors
Loss-of-function

mutations Decreased serum cholesterol

Microsomal triglyceride-transfer
protein (MTTP) [144]

A lipid transfer protein→
involved in VLDL
particle formation;
chaperone for apoB

Different mutations
Abetalipoproteinemia and

accumulation of hepatic
triglycerides

APOC3 [144]
Apolipoprotein C3 (apoC3)→

involved VLDL particles
formation

Different mutations Hypertriglyceridemia

LIPA [144]
Lysosomal acid lipase (LIPA)→

hydrolysis cholesteryl esters,
triglycerides, and LDL particles

Loss-of-function
mutations

Hypercholesterolemia,
cardiovascular disease, hepatic

steatosis, and cirrhosis

FATP5 [144]
Fatty acid transport protein
→ increases hepatic fatty acid

uptake
rs56225452 Promotes hepatic steatosis and

determines insulin resistance

LPIN1 [144]
A phosphatidate phosphatase

transcriptional coactivator, which
controls fatty acid metabolism

rs12412852 Reduced lipolysis

These findings can be integrated into algorithms for the diagnosis of the NAFLD
spectrum. One example is FibroGENE, which is a gene-based model capable of staging
liver fibrosis and which obtained satisfactory AUROCs compared with APRI or FIB-4 [183].
The risk of developing a hepatocellular carcinoma from NAFLD can be assessed using the
Polygenic Risk Score-5, which combines PNPLA3, TM6SF2, GCKR, and MBOAT7 [184].
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3.7. Role of Epigenetics

Besides genomics, it has been shown that epigenetics plays a meaningful role in NAFLD
pathophysiology. Epigenetics refers to the diversity of gene expression not related to the DNA
sequence itself and includes DNA methylation differences, which could be the reason for
overexpression or underexpression of genes [185], histone modifications, and noncoding
RNAs [17,186]. For NAFLD, several studies have evaluated whether the differential DNA
methylation at the peroxisome proliferator-activated receptor Gamma (PPARγ) promoter
can be detected within the pool of cell-free DNA of human plasma to avoid taking a biopsy.
Hardy et al. [187] answered positively to that question and brought to light the possibility of
DNA methylation of PPARγ to noninvasively stratify liver fibrosis. The inclusion of the DNA
methylation to contribute to staging fibrosis was also confirmed by Johnson et al. [188] in a
study that showed a sensitivity of 0.93 for predicting fibrosis. The nuclear genome does not
represent the only source for DNA methylation, since the methylation process can also affect
the mitochondrial DNA. Mitochondrial dysfunction seems to be involved in the progression
of NAFLD, and according to Pirola et al. [189], NADH dehydrogenase 6 (MT-ND6) encoded
in mitochondria is more methylated in the liver of NASH patients compared with those
with simple steatosis. This impacts the transcriptional regulation of mitochondrially encoded
NADH dehydrogenase 6 (MT-ND6), and therefore, it has been shown to be correlated with
the NAFLD activity score [189]. Ahrens et al. [190] observed differences in the methylation of
pyruvate carboxylase, ATP Citrate Lyase (ACLY), and phospholipase C Gamma 1 (PLCG1)
genes and also noticed the impact of bariatric surgery on inducing changes in their methylation
status. The peroxisome proliferator-activated receptor C coactivator 1a (PPARGC1A) and the
mitochondrial transcription factor A (TFAM) promoters were the subjects of investigation
for Sookoian et al. [191]. They showed that the hepatic methylation of these two genes
is associated with insulin resistance, which is a well-known player in the development of
NAFLD. The steatosis degree of the liver can also be assessed via epigenetic changes; Ma
et al. [192] showed a correlation between hepatic fat and the methylation status of 22 CpG.
Furthermore, the hypomethylation at Acyl-CoA synthetase long-chain family member 4
ACSL4 (cg15536552) is suggested to be a potential biomarker for NAFLD progression [193].
Hyun et al. reviewed the gene methylation signatures in NAFLD, underlining their potential
as therapeutic targets as well as biomarkers useful in staging NAFLD, while needing a better
understanding of their place in NAFLD pathogenesis [194].

Another promising biomarker is circulating cell-free DNA, which proved useful in as-
sessing the disease severity in a study including patients with NAFLD diagnosed with stan-
dard noninvasive methods [195]. Acetylation, modulated by histone acetyltransferases
(HATs), represents the main reaction suffered by histones whose result promotes transcrip-
tion. In conditions of hyperglycemia, the transcriptional coactivator p300 acetylates the
carbohydrate-responsive element-binding protein (ChREBP) and implicitly increases li-
pogenic activity, which eventually leads to NAFLD installation [17,196]. On the other hand,
histone deacetylases (HDACs) include sirtuins, which protect against NAFLD. Neverthe-
less, a deficiency of SIRT3, which is a type of sirtuin, has been shown to lead to insulin
resistance and steatohepatitis, and SIRT3 polymorphisms seemed to lead to NAFLD [196].

Noncoding RNAs include microRNAs (miRNAs) and long noncoding RNAs (lncR-
NAs) and interfere with transcriptional activity [196]. Apparently, the severity of NAFLD is,
among other factors, a consequence of the disturbances in microRNA expression [197–199].
Transcriptomics is relevant for noninvasively diagnosing NAFLD, mainly through miR-
NAs, as it can be reflected in the peripheral blood [196], since it is very stable and, in
addition, their measurement is performed through a very sensitive method [200]. Some
studies illustrated the correlation between serum miR-122, -192, and -34a and steatosis or in-
flammatory activity [201,202]. The latter obtained an AUROC of 0.811 [202] for diagnosing
NASH, a superior value compared with that of CK-18 and also a 7.2-fold change in NASH
vs. controls [203], suggesting its promising potential as a noninvasive biomarker [204].
These results consolidated the final conclusion of Yamada et al., who identified that miR-122
has a good capacity for staging liver steatosis [205].
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Elevated levels of mi-RNA-122 and mi-RNA-34a were obtained among NAFLD patients,
along with satisfactory results for the sensitivity and specificity (92% and 85%, respectively)
of mi-RNA-122, as opposed to mi-RNA-99a levels, which were found to be decreased and
could be used as a tool to discriminate simple steatosis from steatohepatitis [206]. Further-
more, miRNAs have been included in a score (NIS4TM) that covers parameters involved in
different processes included in the pathogenesis of NAFLD, such as inflammation, hepatocyte
ballooning, or tissue remodeling. This score includes the evaluation of miR-34a, together with
alpha-2 macroglobulin, YKL40, and HbA1C [207]. Serum miRNA-122 level has been proven
to be correlated with the histopathologic features of NAFLD; an improvement in the liver
biopsy aspect seemed to be associated with lower values of the circulating miRNA-122 [208].
A meta-analysis conducted by Liu et al. [209] revealed consistency in results for miRNA-122
and miRNA-192 in discriminating NAFLD from NASH. Additionally, miRNA-122 can be
contained in extracellular vesicles, which makes it an even more reliable biomarker [210].
miRNA-21 interferes with lipids metabolism through the inhibition of a key enzyme in
the cholesterol synthesis process, namely, the expression of 3-hydroxy-3-methylglutaryl-co-
enzyme A reductase [211]. A study performed in the Chinese population highlighted a
correlation between the serum level of miRNA-29b and the liver fat content [212]. miRNA-132
represents another evaluated type of mRNA, which has shown the same potential in the
screening and diagnosis of NAFLD [213]. A selection of relevant miRNAs useful in the
diagnosis of NAFLD can be found in Table 3.

Table 3. miRNAs with diagnostic value for NAFLD.

miRNA Expression Role Predictive Value

miR-122 [214] Up-regulated

Regulates several genes involved in the
lipid metabolism such as fatty acid

synthetase, acetyl-coenzyme-A
carboxylase-2, or HMG CoA reductase

Indicator for
steatosis and fibrosis stage

miR-34a
[214,215] Up-regulated

Down-regulates the PPARα signaling
pathway and induces lipid

accumulation in hepatocytes

Indicator for fibrosis,
steatosis, and
inflammation

miR-16 [216]

Up-regulated
in NASH but

down-regulated
in fibrosis

Inhibits the expression of several
anti-apoptotic genes

Correlated with liver
inflammation and useful for

predicting NAFLD-HCC
progression

miR-21 [217] Up-regulated Regulates hepatic fat accumulation
targeting HMGCR, FABP7 [218]

Indicator for fibrosis
and

inflammation

miR-10b [219] Up-regulated
Regulates the nuclear receptor called

peroxisome proliferator-activated
receptor-α (PPAR-α)

Indicator for
steatosis

miR-192 [209] Up-regulated A target of TGFβ1 [216] Discriminator between NAFLD
and NASH

miR-29b [212] Up-regulated Regulates lipid metabolism Indicator for
steatosis

miR-132 [213] Up-regulated A target of Sirt1 Indicator for
steatosis

miR-199a [219]

Up-regulated
in NASH and fibrosis but

down-regulated
in steatosis

A target of NCOR1 [218] Positively correlated with fibrosis

FABP7—fatty acid-binding protein 7, HCC—hepatocellular carcinoma, HMGCR—3-hydroxy-3-methyl-glutaryl-
coenzyme A reductase, PPARα—peroxisome proliferator-activated receptors, NCOR1—nuclear receptor corepres-
sor 1, Sirt1—sirtuin-1, TGFβ1—transforming growth factor-beta.

In order to acquire a more precise ability to predict and discriminate NASH, miRNA
expression profiles were combined, with a concomitant evaluation of various types of
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miRNA, with the resulting panel obtaining an AUC of 0.856 [197], or with other standard
markers such as CK18 obtaining a positive outcome in this regard [220].

As far as lncRNA is concerned, Sun et al. conducted a clinical study using microar-
ray expression profiling to evaluate lncRNA, highlighting different expression profiles
in patients with NAFLD compared with patients without this condition [221]. They also
validated a few of these differentially expressed lncRNAs via qRTPCR, and the results were
consistent. lnc18q22.2 appears to be a liver-specific lncRNA with an increased expression in
the hepatocytes of NASH patients, correlating with the NASH grade and lobular inflamma-
tion and providing new insights into the regulation of hepatocyte viability in NASH [222].
Considering all this evidence, circRNAs (circular RNAs) represent a new field of research
in the matter of noninvasive biomarkers for NAFLD and NASH, but further studies are
needed [223].

3.8. Omics in NAFLD
3.8.1. Proteomics

Since the gene expression does not entirely reflect the totality of the proteins in the cell,
the newly developed proteomic technologies are more representative of the phenotype [196].
There are promising data about proteomics which make this field valuable for discovering
new biomarkers for NAFLD [224]. A study including obese patients revealed three protein
peaks (CM10-7558.4, CM10-7924.2, and Q10-7926.9) with elevations proportional to the
progression of liver disease. A normalization of the values of these protein profiles was
also identified after bariatric surgery. These peaks have been proven to be characterized as
double-charged ions of a- and b-hemoglobin subunits [225]. Bell et al. used an ion-intensity-
based, label-free quantitative proteomics approach (LFQP) to analyze 605 proteins, which
were expressed differently between any two groups involved, emphasizing 15 proteins
that discriminate between patients with NASH and NASH with advanced fibrosis [226].
The functions of these proteins consolidate our knowledge about the various and complex
pathways of NAFLD’s pathogenesis, and so do the diverse proteins identified in the
plasma proteome profiling conducted but Niu et al. [227]. A study including the analysis
of the hepatic expression of significant proteins revealed that lumican, a keratin sulfate
proteoglycan, is progressively overexpressed among NAFLD stages. In order to assess
the liver specificity of lumican, IHC staining was used in this study [228]. Wood et al.
combined genomic, phenomic, and proteomic data and demonstrated that a multi-approach
diagnostic has a better predictive ability [229]. With the help of the SOMAscan proteomics
platform, 1305 proteins with different expressions have been discovered and have been
further used to classify fibrosis stages [230].

3.8.2. Glycomics

The proteins suffer post-translational changes, and glycosylation represents an im-
portant reaction that instates the variability of structures and functions. Since many gly-
coproteins are formed in the liver, the alterations of glycosylation might indicate liver
dysfunction [231]. The serum N-glycan profile is a valuable tool for identifying NASH,
since there are data regarding different concentrations of some glycans among patients
with SS vs. NASH. Based on glycomics, a fibrosis score called GlycoNashTest has been
developed [232].

3.8.3. Lipidomics

Due to the fact that the pathogenesis of NAFLD implies the accumulation of triglyc-
erides, lipidomics represents an important field of metabolomics used for searching for new
noninvasive methods of diagnosis [17], especially as NAFLD seems to have a characteristic
lipidomic profile. It has been shown that the enzyme desaturase FADS1 exhibits decreased
activity, which is responsible for the accumulation of fatty acids in the liver and for the
disturbances in phospholipid synthesis [233]. With the intention of evaluating the plasma
lipidome of NAFLD, Puri et al. identified an elevated level of total plasma monounsat-
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urated fatty acids [234]. Mayo et al. developed a lipidomic test, consisting of 28 TGs,
which showed an AUROC of 0.95 for discriminating between NAFLD and NASH [235].
A previous large study suggested that saturated TG (16:0/18:0/18:1) would be the best
predictor among the TGs. Its combination with phosphatidylcholine [PC] [18:1/22:6] and
PC [O-24:1/20:4] constitutes a lipid triplet model with a satisfactory predictive value [236].
Plasma eicosanoids also seem to be useful for assessing liver fibrosis [237]. Since hepatocel-
lular ballooning represents such an important histological process, NAFLD patients can be
classified by the presence or absence of this finding, as this aspect is relevant for the disease
progression, prognosis, and treatment. Ogawa et al. assessed the hepatocellular ballooning
using the increased plasma level of phosphatidylcholine (PC) (aa-44:8) found in NAFLD
and the lower plasma level of lysophosphatidylethanolamine (LPE) (e-18:2) [238]. Yamada
et al. [239] discovered that the serum C16:1n7/C16:0 ratio in NASH patients is statistically
correlated with liver histology and has an AUROC for predicting NASH among NAFLD
patients of 0.709.

It is a well-known fact that obesity has been linked with NAFLD prevalence and
severity [240], with one study highlighting that isolated saturated sphingomyelin (SM)
species are biomarkers for predicting NASH in the nonobese patient group, showing the
specificity of lipidomic profiles according to obesity status [241].

Promising results were obtained for pyroglutamate in a study in which 55 other
metabolites were discovered to have the ability to discriminate between NASH and simple
steatosis. The capacity of pyroglutamate for predicting NASH seemed to compete with
that of several other markers, such as TNF-α, adiponectin, and IL-8. The obtained accuracy
was 82%, with sensitivity and specificity of 72% and 85%, respectively [58].

3.8.4. Metabolomics

The association of NAFLD with metabolic syndrome has been extensively studied,
and allegedly, NAFLD might be the liver expression of metabolic disturbances [242]. This
fact represents an important diagnostic aspect. Through a metabolomic analysis, an ele-
vated plasma level for glycocholate, taurocholate, and glycochenodeoxycholate as well
as a lower value for glutathione were identified in NASH patients [243]. Competing with
the FIB-4-index and NFS, a 10-metabolite panel consisting of 8 lipids (5alpha-androstan-
3beta monosulfate, pregnanediol3-glucuronide, androsterone sulfate, epiandrosterone
sulfate, palmitoleate, dehydroisoandrosterone sulfate, 5alpha-androstan-3beta disulfate,
glycocholate), 1 amino acid (taurine), and 1 carbohydrate (fucose) showed a great poten-
tial in noninvasively assessing advanced fibrosis, which consolidates the importance of
metabolomics in the future identification of NAFLD’s serum biomarkers [244]. Associating
the evaluation of glutamate, isoleucine, glycine, 20 lysophosphatidylcholine 16:0, and
phosphoethanolamine 40:6 with the already discussed NASH Clin Score, a more accurate
predictive model called NASH ClinLipMet is obtained. This complex evaluation evaluates
the NASH patients more accurately, due to the balanced combination of clinical, genetic,
and metabolic features [166].

4. Conclusions

There are a plethora of biomarkers with evidence indicating a potential to contribute
to evaluating disease severity in NAFLD. Many of these biomarkers are of use in other
pathological entities as well, since common pathophysiological mechanisms are involved.
Therefore, the mentioned biomarkers have little discriminatory power when used indi-
vidually. Therefore, a combination of biomarkers reflecting several mechanisms involved
is required. This combined approach, with the inclusion of several biomarkers in scores,
contributes to increasing diagnostic accuracy.

The early identification of steatohepatitis and fibrosis is a key step in the management
of NAFLD in order to prevent disease progression. From this point of view, considering
the prognostic significance of steatohepatitis and fibrosis, it is mandatory to identify the
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optimum combination of biomarkers that can suggest the presence of steatohepatitis and
quantify the fibrosis in the least invasive manner.

Subsequent work should identify algorithms to integrate several biomarkers involved
in various branches of the complex pathophysiology of NAFLD and NASH in order
to comprehensively evaluate the disease severity in a noninvasive manner and offer a
predictive value for disease evolution.
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46. Koruk, M.; Tayşi, S.; Savaş, M.C.; Yilmaz, O.; Akçay, F.; Karakök, M. Serum Levels of Acute Phase Proteins in Patients with
Nonalcoholic Steatohepatitis. Turk. J. Gastroenterol. 2003, 14, 12–17. [PubMed]

47. Yoneda, M.; Mawatari, H.; Fujita, K.; Iida, H.; Yonemitsu, K.; Kato, S.; Takahashi, H.; Kirikoshi, H.; Inamori, M.; Nozaki, Y.; et al.
High-Sensitivity C-Reactive Protein Is an Independent Clinical Feature of Nonalcoholic Steatohepatitis (NASH) and Also of the
Severity of Fibrosis in NASH. J. Gastroenterol. 2007, 42, 573–582. [CrossRef] [PubMed]

48. Targher, G. Relationship between High-Sensitivity C-Reactive Protein Levels and Liver Histology in Subjects with Non-Alcoholic
Fatty Liver Disease. J. Hepatol. 2006, 45, 879–881. [CrossRef]

49. Hui, J.M.; Farrell, G.C.; Kench, J.G.; George, J. High Sensitivity C-reactive Protein Values Do Not Reliably Predict the Severity of
Histological Changes in NAFLD. Hepatology 2004, 39, 1458–1459. [CrossRef]

50. Oruc, N.; Ozutemiz, O.; Yuce, G.; Akarca, U.S.; Ersoz, G.; Gunsar, F.; Batur, Y. Serum Procalcitonin and CRP Levels in Non-
Alcoholic Fatty Liver Disease: A Case Control Study. BMC Gastroenterol. 2009, 9, 16. [CrossRef]

51. Zimmermann, E.; Anty, R.; Anty, R.; Tordjman, J.; Verrijken, A.; Gual, P.; Tran, A.; Iannelli, A.; Gugenheim, J.; Bedossa, P.; et al.
C-Reactive Protein Levels in Relation to Various Features of Non-Alcoholic Fatty Liver Disease among Obese Patients. J. Hepatol.
2011, 55, 660–665. [CrossRef]

52. Kowdley, K.V.; Belt, P.; Wilson, L.A.; Yeh, M.M.; Neuschwander-Tetri, B.A.; Chalasani, N.; Sanyal, A.J.; Nelson, J.E. NASH Clinical
Research Network Serum Ferritin Is an Independent Predictor of Histologic Severity and Advanced Fibrosis in Patients with
Nonalcoholic Fatty Liver Disease. Hepatology 2012, 55, 77–85. [CrossRef] [PubMed]

53. Hotamisligil, G.S.; Shargill, N.S.; Spiegelman, B.M. Adipose Expression of Tumor Necrosis Factor-Alpha: Direct Role in Obesity-
Linked Insulin Resistance. Science 1993, 259, 87–91. [CrossRef] [PubMed]

54. Wong, V.W.-S.; Hui, A.Y.; Tsang, S.W.-C.; Chan, J.L.-Y.; Tse, A.M.-L.; Chan, K.-F.; So, W.-Y.; Cheng, A.Y.-S.; Ng, W.-F.; Wong,
G.L.-H.; et al. Metabolic and Adipokine Profile of Chinese Patients with Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol.
Hepatol. 2006, 4, 1154–1161. [CrossRef] [PubMed]

55. Ajmal, M.R.; Yaccha, M.; Malik, M.A.; Rabbani, M.U.; Ahmad, I.; Isalm, N.; Abdali, N. Prevalence of Nonalcoholic Fatty Liver
Disease (NAFLD) in Patients of Cardiovascular Diseases and Its Association with Hs-CRP and TNF-α. Indian Heart J. 2014, 66,
574–579. [CrossRef] [PubMed]

56. Park, J.-W.; Jeong, G.; Kim, S.J.; Kim, M.K.; Park, S.M. Predictors Reflecting the Pathological Severity of Non-Alcoholic Fatty
Liver Disease: Comprehensive Study of Clinical and Immunohistochemical Findings in Younger Asian Patients. J. Gastroenterol.
Hepatol. 2007, 22, 491–497. [CrossRef] [PubMed]

57. Abiru, S.; Migita, K.; Maeda, Y.; Daikoku, M.; Ito, M.; Ohata, K.; Nagaoka, S.; Matsumoto, T.; Takii, Y.; Kusumoto, K.; et al.
Serum Cytokine and Soluble Cytokine Receptor Levels in Patients with Non-Alcoholic Steatohepatitis. Liver Int. 2006, 26, 39–45.
[CrossRef] [PubMed]

58. Qi, S.; Xu, D.; Li, Q.; Xie, N.; Xia, J.; Huo, Q.; Li, P.; Chen, Q.; Huang, S. Metabonomics Screening of Serum Identifies Pyroglutamate
as a Diagnostic Biomarker for Nonalcoholic Steatohepatitis. Clin. Chim. Acta Int. J. Clin. Chem. 2017, 473, 89–95. [CrossRef]
[PubMed]

59. Zhou, J.-H.; Cai, J.-J.; She, Z.-G.; Li, H.-L. Noninvasive Evaluation of Nonalcoholic Fatty Liver Disease: Current Evidence and
Practice. World J. Gastroenterol. 2019, 25, 1307–1326. [CrossRef]

60. Zhu, M.; Wang, Q.; Zhou, W.; Liu, T.; Yang, L.; Zheng, P.; Zhang, L.; Ji, G. Integrated Analysis of Hepatic mRNA and miRNA
Profiles Identified Molecular Networks and Potential Biomarkers of NAFLD. Sci. Rep. 2018, 8, 7628. [CrossRef]

61. Wieckowska, A.; Papouchado, B.G.; Li, Z.; Lopez, R.; Zein, N.N.; Feldstein, A.E. Increased Hepatic and Circulating Interleukin-6
Levels in Human Nonalcoholic Steatohepatitis. Am. J. Gastroenterol. 2008, 103, 1372–1379. [CrossRef]

62. Kar, S.; Paglialunga, S.; Jaycox, S.H.; Islam, R.; Paredes, A.H. Assay Validation and Clinical Performance of Chronic Inflammatory
and Chemokine Biomarkers of NASH Fibrosis. PLoS ONE 2019, 14, e0217263. [CrossRef] [PubMed]

63. Haukeland, J.W.; Damås, J.K.; Konopski, Z.; Løberg, E.M.; Haaland, T.; Goverud, I.; Torjesen, P.A.; Birkeland, K.; Bjøro, K.;
Aukrust, P. Systemic Inflammation in Nonalcoholic Fatty Liver Disease Is Characterized by Elevated Levels of CCL2. J. Hepatol.
2006, 44, 1167–1174. [CrossRef] [PubMed]

64. Coulon, S.; Francque, S.; Colle, I.; Verrijken, A.; Blomme, B.; Heindryckx, F.; De Munter, S.; Prawitt, J.; Caron, S.; Staels, B.;
et al. Evaluation of Inflammatory and Angiogenic Factors in Patients with Non-Alcoholic Fatty Liver Disease. Cytokine 2012, 59,
442–449. [CrossRef] [PubMed]

https://doi.org/10.1515/cclm-2018-0357
https://doi.org/10.1515/cclm.1994.32.1.5
https://www.ncbi.nlm.nih.gov/pubmed/8167196
https://doi.org/10.1007/s10620-006-9147-8
https://www.ncbi.nlm.nih.gov/pubmed/17429733
https://doi.org/10.1016/j.ebiom.2019.04.036
https://www.ncbi.nlm.nih.gov/pubmed/31036530
https://doi.org/10.3389/fimmu.2020.634409
https://www.ncbi.nlm.nih.gov/pubmed/33633748
https://www.ncbi.nlm.nih.gov/pubmed/14593532
https://doi.org/10.1007/s00535-007-2060-x
https://www.ncbi.nlm.nih.gov/pubmed/17653654
https://doi.org/10.1016/j.jhep.2006.09.005
https://doi.org/10.1002/hep.20223
https://doi.org/10.1186/1471-230X-9-16
https://doi.org/10.1016/j.jhep.2010.12.017
https://doi.org/10.1002/hep.24706
https://www.ncbi.nlm.nih.gov/pubmed/21953442
https://doi.org/10.1126/science.7678183
https://www.ncbi.nlm.nih.gov/pubmed/7678183
https://doi.org/10.1016/j.cgh.2006.06.011
https://www.ncbi.nlm.nih.gov/pubmed/16904946
https://doi.org/10.1016/j.ihj.2014.08.006
https://www.ncbi.nlm.nih.gov/pubmed/25634387
https://doi.org/10.1111/j.1440-1746.2006.04758.x
https://www.ncbi.nlm.nih.gov/pubmed/17376039
https://doi.org/10.1111/j.1478-3231.2005.01191.x
https://www.ncbi.nlm.nih.gov/pubmed/16420507
https://doi.org/10.1016/j.cca.2017.08.022
https://www.ncbi.nlm.nih.gov/pubmed/28842175
https://doi.org/10.3748/wjg.v25.i11.1307
https://doi.org/10.1038/s41598-018-25743-8
https://doi.org/10.1111/j.1572-0241.2007.01774.x
https://doi.org/10.1371/journal.pone.0217263
https://www.ncbi.nlm.nih.gov/pubmed/31291245
https://doi.org/10.1016/j.jhep.2006.02.011
https://www.ncbi.nlm.nih.gov/pubmed/16618517
https://doi.org/10.1016/j.cyto.2012.05.001
https://www.ncbi.nlm.nih.gov/pubmed/22658783


Metabolites 2023, 13, 1115 19 of 26

65. Das, S.K.; Balakrishnan, V. Role of Cytokines in the Pathogenesis of Non-Alcoholic Fatty Liver Disease. Indian J. Clin. Biochem.
2011, 26, 202–209. [CrossRef]

66. Ajmera, V.; Perito, E.R.; Bass, N.M.; Terrault, N.A.; Yates, K.P.; Gill, R.; Loomba, R.; Diehl, A.M.; Aouizerat, B.E. NASH Clinical
Research Network Novel Plasma Biomarkers Associated with Liver Disease Severity in Adults with Nonalcoholic Fatty Liver
Disease. Hepatology 2017, 65, 65–77. [CrossRef]

67. Jamali, R.; Arj, A.; Razavizade, M.; AArabi, M.H. Prediction of Nonalcoholic Fatty Liver Disease Via a Novel Panel of Serum
Adipokines. Medicine 2016, 95, e2630. [CrossRef] [PubMed]

68. Darmadi, D.; Ruslie, R.H. Association between Serum Interleukin (IL)-12 Level and Severity of Non-Alcoholic Fatty Liver Disease
(NAFLD). Rom. J. Intern. Med. 2021, 59, 66–72. [CrossRef]

69. Janczyk, W.; Michalkiewicz, J.; Gackowska, L.; Kubiszewska, I.; Wierzbicka, A.; Litwin, M. Assessment of CC Chemokines, IL-6,
TNF-α and Angiogenin Profiles in Children with Non-Alcoholic Fatty Liver Disease. Exp. Clin. Hepatol. 2009, 5, 20–21.

70. Roh, Y.-S.; Seki, E. Chemokines and Chemokine Receptors in the Development of NAFLD. Adv. Exp. Med. Biol. 2018, 1061, 45–53.
[CrossRef]

71. Pan, X.; Chiwanda Kaminga, A.; Liu, A.; Wen, S.W.; Chen, J.; Luo, J. Chemokines in Non-Alcoholic Fatty Liver Disease: A
Systematic Review and Network Meta-Analysis. Front. Immunol. 2020, 11, 1802. [CrossRef]

72. Gurel, H.; Genc, H.; Celebi, G.; Sertoglu, E.; Cicek, A.F.; Kayadibi, H.; Ercin, C.N.; Dogru, T. Plasma Pentraxin-3 Is Associated
with Endothelial Dysfunction in Non-Alcoholic Fatty Liver Disease. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 4305–4312. [PubMed]

73. Ristagno, G.; Fumagalli, F.; Bottazzi, B.; Mantovani, A.; Olivari, D.; Novelli, D.; Latini, R. Pentraxin 3 in Cardiovascular Disease.
Front. Immunol. 2019, 10, 823. [CrossRef] [PubMed]

74. Yoneda, M.; Uchiyama, T.; Kato, S.; Endo, H.; Fujita, K.; Yoneda, K.; Mawatari, H.; Iida, H.; Takahashi, H.; Kirikoshi, H.; et al.
Plasma Pentraxin3 Is a Novel Marker for Nonalcoholic Steatohepatitis (NASH). BMC Gastroenterol. 2008, 8, 53. [CrossRef]
[PubMed]

75. Ozturk, K.; Kurt, O.; Dogan, T.; Ozen, A.; Demirci, H.; Yesildal, F.; Kantarcioglu, M.; Turker, T.; Guler, A.K.; Karslioglu, Y.; et al.
Pentraxin 3 Is a Predictor for Fibrosis and Arterial Stiffness in Patients with Nonalcoholic Fatty Liver Disease. Gastroenterol. Res.
Pract. 2016, 2016, 1417962. [CrossRef] [PubMed]

76. Boga, S.; Koksal, A.R.; Alkim, H.; Yilmaz Ozguven, M.B.; Bayram, M.; Ergun, M.; Sisman, G.; Tekin Neijmann, S.; Alkim, C.
Plasma Pentraxin 3 Differentiates Nonalcoholic Steatohepatitis (NASH) from Non-NASH. Metab. Syndr. Relat. Disord. 2015, 13,
393–399. [CrossRef] [PubMed]

77. Maleki, I.; Rastgar, A.; Hosseini, V.; Taghvaei, T.; Rafiei, A.; Barzin, M.; Torabizadeh, Z.; Naghshvar, F.; Khalilian, A. High Sensitive
CRP and Pentraxine 3 as Noninvasive Biomarkers of Nonalcoholic Fatty Liver Disease. Eur. Rev. Med. Pharmacol. Sci. 2014, 18,
1583–1590. [PubMed]

78. Ye, X.; Li, J.; Wang, H.; Wu, J. Pentraxin 3 and the TyG Index as Two Novel Markers to Diagnose NAFLD in Children. Dis. Markers
2021, 2021, 8833287. [CrossRef] [PubMed]

79. Carr, R.M. VCAM-1: Closing the Gap between Lipotoxicity and Endothelial Dysfunction in Nonalcoholic Steatohepatitis. J. Clin.
Investig. 2021, 131, e147556. [CrossRef] [PubMed]

80. Pasarin, M.; Mura, V.; Gracia-Sancho, J.; García-Calderó, H.; Rodriguez, A.; García-Pagán, J.; Bosch, J.; Abraldes, J. Sinusoidal
Endothelial Dysfunction Precedes Inflammation and Fibrosis in a Model of NAFLD. PLoS ONE 2012, 7, e32785. [CrossRef]

81. Van Oosten, M.; van de Bilt, E.; de Vries, H.E.; van Berkel, T.J.C.; Kuiper, J. Vascular Adhesion Molecule-1 and Intercellular
Adhesion Molecule-1 Expression on Rat Liver Cells after Lipopolysaccharide Administration in Vivo. Hepatology 1995, 22,
1538–1546. [CrossRef]

82. Furuta, K.; Guo, Q.; Pavelko, K.D.; Lee, J.-H.; Robertson, K.D.; Nakao, Y.; Melek, J.; Shah, V.H.; Hirsova, P.; Ibrahim, S.H.
Lipid-Induced Endothelial Vascular Cell Adhesion Molecule 1 Promotes Nonalcoholic Steatohepatitis Pathogenesis. J. Clin.
Investig. 2021, 131, e143690. [CrossRef] [PubMed]

83. Sillen, M.; Declerck, P.J. A Narrative Review on Plasminogen Activator Inhibitor-1 and Its (Patho)Physiological Role: To Target or
Not to Target? Int. J. Mol. Sci. 2021, 22, 2721. [CrossRef] [PubMed]

84. Ribeiro, P.S.; Cortez-Pinto, H.; Solá, S.; Castro, R.E.; Ramalho, R.M.; Baptista, A.; Moura, M.C.; Camilo, M.E.; Rodrigues, C.M.P.
Hepatocyte Apoptosis, Expression of Death Receptors, and Activation of NF-kappaB in the Liver of Nonalcoholic and Alcoholic
Steatohepatitis Patients. Am. J. Gastroenterol. 2004, 99, 1708–1717. [CrossRef] [PubMed]

85. Eguchi, A.; Wree, A.; Feldstein, A.E. Biomarkers of Liver Cell Death. J. Hepatol. 2014, 60, 1063–1074. [CrossRef] [PubMed]
86. Church, R.J.; Watkins, P.B. The Transformation in Biomarker Detection and Management of Drug-Induced Liver Injury. Liver Int.

2017, 37, 1582–1590. [CrossRef] [PubMed]
87. Grandison, G.A.; Angulo, P. Can NASH Be Diagnosed, Graded, and Staged Noninvasively? Clin. Liver Dis. 2012, 16, 567–585.

[CrossRef] [PubMed]
88. Younossi, Z.M.; Jarrar, M.; Nugent, C.; Randhawa, M.; Afendy, M.; Stepanova, M.; Rafiq, N.; Goodman, Z.; Chandhoke, V.;

Baranova, A. A Novel Diagnostic Biomarker Panel for Obesity-Related Nonalcoholic Steatohepatitis (NASH). Obes. Surg. 2008,
18, 1430–1437. [CrossRef] [PubMed]

89. Wieckowska, A.; Zein, N.N.; Yerian, L.M.; Lopez, A.R.; McCullough, A.J.; Feldstein, A.E. In Vivo Assessment of Liver Cell
Apoptosis as a Novel Biomarker of Disease Severity in Nonalcoholic Fatty Liver Disease. Hepatology 2006, 44, 27–33. [CrossRef]

https://doi.org/10.1007/s12291-011-0121-7
https://doi.org/10.1002/hep.28776
https://doi.org/10.1097/MD.0000000000002630
https://www.ncbi.nlm.nih.gov/pubmed/26844476
https://doi.org/10.2478/rjim-2020-0029
https://doi.org/10.1007/978-981-10-8684-7_4
https://doi.org/10.3389/fimmu.2020.01802
https://www.ncbi.nlm.nih.gov/pubmed/27831642
https://doi.org/10.3389/fimmu.2019.00823
https://www.ncbi.nlm.nih.gov/pubmed/31057548
https://doi.org/10.1186/1471-230X-8-53
https://www.ncbi.nlm.nih.gov/pubmed/19014569
https://doi.org/10.1155/2016/1417962
https://www.ncbi.nlm.nih.gov/pubmed/26997950
https://doi.org/10.1089/met.2015.0046
https://www.ncbi.nlm.nih.gov/pubmed/26367098
https://www.ncbi.nlm.nih.gov/pubmed/24943967
https://doi.org/10.1155/2021/8833287
https://www.ncbi.nlm.nih.gov/pubmed/35059041
https://doi.org/10.1172/JCI147556
https://www.ncbi.nlm.nih.gov/pubmed/33720049
https://doi.org/10.1371/journal.pone.0032785
https://doi.org/10.1002/hep.1840220529
https://doi.org/10.1172/JCI143690
https://www.ncbi.nlm.nih.gov/pubmed/33476308
https://doi.org/10.3390/ijms22052721
https://www.ncbi.nlm.nih.gov/pubmed/33800359
https://doi.org/10.1111/j.1572-0241.2004.40009.x
https://www.ncbi.nlm.nih.gov/pubmed/15330907
https://doi.org/10.1016/j.jhep.2013.12.026
https://www.ncbi.nlm.nih.gov/pubmed/24412608
https://doi.org/10.1111/liv.13441
https://www.ncbi.nlm.nih.gov/pubmed/28386997
https://doi.org/10.1016/j.cld.2012.05.001
https://www.ncbi.nlm.nih.gov/pubmed/22824481
https://doi.org/10.1007/s11695-008-9506-y
https://www.ncbi.nlm.nih.gov/pubmed/18500507
https://doi.org/10.1002/hep.21223


Metabolites 2023, 13, 1115 20 of 26

90. Miller, M.H.; Ferguson, M.A.J.; Dillon, J.F. Systematic Review of Performance of Non-Invasive Biomarkers in the Evaluation of
Non-Alcoholic Fatty Liver Disease. Liver Int. 2011, 31, 461–473. [CrossRef]

91. Feldstein, A.E.; Wieckowska, A.; Lopez, A.R.; Liu, Y.-C.; Zein, N.N.; McCullough, A.J. Cytokeratin-18 Fragment Levels as
Noninvasive Biomarkers for Nonalcoholic Steatohepatitis: A Multicenter Validation Study. Hepatology 2009, 50, 1072–1078.
[CrossRef]

92. Younossi, Z.M.; Page, S.; Rafiq, N.; Birerdinc, A.; Stepanova, M.; Hossain, N.; Afendy, A.; Younoszai, Z.; Goodman, Z.; Baranova,
A. A Biomarker Panel for Non-Alcoholic Steatohepatitis (NASH) and NASH-Related Fibrosis. Obes. Surg. 2011, 21, 431–439.
[CrossRef] [PubMed]

93. Diab, D.L.; Yerian, L.; Schauer, P.; Kashyap, S.R.; Lopez, R.; Hazen, S.L.; Feldstein, A.E. Cytokeratin 18 Fragment Levels as
a Noninvasive Biomarker for Nonalcoholic Steatohepatitis in Bariatric Surgery Patients. Clin. Gastroenterol. Hepatol. 2008, 6,
1249–1254. [CrossRef] [PubMed]

94. Kwok, R.; Tse, Y.-K.; Wong, G.L.-H.; Ha, Y.; Lee, A.U.; Ngu, M.C.; Chan, H.L.-Y.; Wong, V.W.-S. Systematic Review with
Meta-Analysis: Non-Invasive Assessment of Non-Alcoholic Fatty Liver Disease—The Role of Transient Elastography and Plasma
Cytokeratin-18 Fragments. Aliment. Pharmacol. Ther. 2014, 39, 254–269. [CrossRef] [PubMed]

95. Vuppalanchi, R.; Jain, A.K.; Deppe, R.; Yates, K.; Comerford, M.; Masuoka, H.C.; Neuschwander-Tetri, B.A.; Loomba, R.; Brunt,
E.M.; Kleiner, D.E.; et al. Relationship between Changes in Serum Levels of Keratin 18 and Changes in Liver Histology in Children
and Adults with Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2014, 12, 2121–2130.e1-2. [CrossRef] [PubMed]

96. Cusi, K.; Chang, Z.; Harrison, S.; Lomonaco, R.; Bril, F.; Orsak, B.; Ortiz-Lopez, C.; Hecht, J.; Feldstein, A.E.; Webb, A.; et al.
Limited Value of Plasma Cytokeratin-18 as a Biomarker for NASH and Fibrosis in Patients with Non-Alcoholic Fatty Liver
Disease. J. Hepatol. 2014, 60, 167–174. [CrossRef]

97. Festi, D.; Schiumerini, R.; Marasco, G.; Scaioli, E.; Pasqui, F.; Colecchia, A. Non-Invasive Diagnostic Approach to Non-Alcoholic
Fatty Liver Disease: Current Evidence and Future Perspectives. Expert. Rev. Gastroenterol. Hepatol. 2015, 9, 1039–1053. [CrossRef]
[PubMed]

98. Chan, W.-K.; Sthaneshwar, P.; Nik Mustapha, N.R.; Mahadeva, S. Limited Utility of Plasma M30 in Discriminating Non-Alcoholic
Steatohepatitis from Steatosis--a Comparison with Routine Biochemical Markers. PLoS ONE 2014, 9, e105903. [CrossRef]
[PubMed]

99. Chuah, K.; Wan Yusoff, W.N.I.; Sthaneshwar, P.; Nik Mustapha, N.R.; Mahadeva, S.; Chan, W. MACK-3 (Combination of hoMa,
Ast and CK18): A Promising Novel Biomarker for Fibrotic Non-alcoholic Steatohepatitis. Liver Int. 2019, 39, 1315–1324. [CrossRef]

100. Anty, R.; Iannelli, A.; Patouraux, S.; Bonnafous, S.; Lavallard, V.J.; Senni-Buratti, M.; Ben Amor, I.; Staccini-Myx, A.; Saint-Paul,
M.-C.; Berthier, F.; et al. A New Composite Model Including Metabolic Syndrome, Alanine Aminotransferase and Cytokeratin-18
for the Diagnosis of Non-Alcoholic Steatohepatitis in Morbidly Obese Patients. Aliment. Pharmacol. Ther. 2010, 32, 1315–1322.
[CrossRef]

101. Grigorescu, M.; Crisan, D.; Radu, C.; Grigorescu, M.D.; Sparchez, Z.; Serban, A. A Novel Pathophysiological-Based Panel of
Biomarkers for the Diagnosis of Nonalcoholic Steatohepatitis. J. Physiol. Pharmacol. 2012, 63, 347–353.

102. Fukumoto, S. Actions and Mode of Actions of FGF19 Subfamily Members. Endocr. J. 2008, 55, 23–31. [CrossRef] [PubMed]
103. Shen, J.; Chan, H.L.-Y.; Wong, G.L.-H.; Choi, P.C.-L.; Chan, A.W.-H.; Chan, H.-Y.; Chim, A.M.-L.; Yeung, D.K.-W.; Chan, F.K.-L.;

Woo, J.; et al. Non-Invasive Diagnosis of Non-Alcoholic Steatohepatitis by Combined Serum Biomarkers. J. Hepatol. 2012, 56,
1363–1370. [CrossRef] [PubMed]

104. Alkhouri, N.; Alisi, A.; Okwu, V.; Matloob, A.; Ferrari, F.; Crudele, A.; De Vito, R.; Lopez, R.; Feldstein, A.E.; Nobili, V. Circulating
Soluble Fas and Fas Ligand Levels Are Elevated in Children with Nonalcoholic Steatohepatitis. Dig. Dis. Sci. 2015, 60, 2353–2359.
[CrossRef] [PubMed]

105. Tamimi, T.I.A.-R.; Elgouhari, H.M.; Alkhouri, N.; Yerian, L.M.; Berk, M.P.; Lopez, R.; Schauer, P.R.; Zein, N.N.; Feldstein, A.E. An
Apoptosis Panel for Nonalcoholic Steatohepatitis Diagnosis. J. Hepatol. 2011, 54, 1224–1229. [CrossRef] [PubMed]

106. Pimentel, C.F.M.G.; Jiang, Z.G.; Otsubo, T.; Feldbrügge, L.; Challies, T.L.; Nasser, I.; Robson, S.; Afdhal, N.; Lai, M. Poor Inter-Test
Reliability Between CK18 Kits as a Biomarker of NASH. Dig. Dis. Sci. 2016, 61, 905–912. [CrossRef] [PubMed]

107. Chitturi, S.; Abeygunasekera, S.; Farrell, G.C.; Holmes-Walker, J.; Hui, J.M.; Fung, C.; Karim, R.; Lin, R.; Samarasinghe, D.; Liddle,
C.; et al. NASH and Insulin Resistance: Insulin Hypersecretion and Specific Association with the Insulin Resistance Syndrome.
Hepatology 2002, 35, 373–379. [CrossRef]

108. Polyzos, S.A.; Toulis, K.A.; Goulis, D.G.; Zavos, C.; Kountouras, J. Serum Total Adiponectin in Nonalcoholic Fatty Liver Disease:
A Systematic Review and Meta-Analysis. Metabolism 2011, 60, 313–326. [CrossRef] [PubMed]

109. Gastaldelli, A.; Kozakova, M.; Højlund, K.; Flyvbjerg, A.; Favuzzi, A.; Mitrakou, A.; Balkau, B. RISC Investigators Fatty Liver Is
Associated with Insulin Resistance, Risk of Coronary Heart Disease, and Early Atherosclerosis in a Large European Population.
Hepatology 2009, 49, 1537–1544. [CrossRef]

110. Hui, J.M.; Hodge, A.; Farrell, G.C.; Kench, J.G.; Kriketos, A.; George, J. Beyond Insulin Resistance in NASH: TNF-Alpha or
Adiponectin? Hepatology 2004, 40, 46–54. [CrossRef]

111. Jarrar, M.H.; Baranova, A.; Collantes, R.; Ranard, B.; Stepanova, M.; Bennett, C.; Fang, Y.; Elariny, H.; Goodman, Z.; Chandhoke,
V.; et al. Adipokines and Cytokines in Non-Alcoholic Fatty Liver Disease. Aliment. Pharmacol. Ther. 2008, 27, 412–421. [CrossRef]

https://doi.org/10.1111/j.1478-3231.2011.02451.x
https://doi.org/10.1002/hep.23050
https://doi.org/10.1007/s11695-010-0204-1
https://www.ncbi.nlm.nih.gov/pubmed/20532833
https://doi.org/10.1016/j.cgh.2008.07.016
https://www.ncbi.nlm.nih.gov/pubmed/18995215
https://doi.org/10.1111/apt.12569
https://www.ncbi.nlm.nih.gov/pubmed/24308774
https://doi.org/10.1016/j.cgh.2014.05.010
https://www.ncbi.nlm.nih.gov/pubmed/24846279
https://doi.org/10.1016/j.jhep.2013.07.042
https://doi.org/10.1586/17474124.2015.1049155
https://www.ncbi.nlm.nih.gov/pubmed/25993881
https://doi.org/10.1371/journal.pone.0105903
https://www.ncbi.nlm.nih.gov/pubmed/25184298
https://doi.org/10.1111/liv.14084
https://doi.org/10.1111/j.1365-2036.2010.04480.x
https://doi.org/10.1507/endocrj.KR07E-002
https://www.ncbi.nlm.nih.gov/pubmed/17878606
https://doi.org/10.1016/j.jhep.2011.12.025
https://www.ncbi.nlm.nih.gov/pubmed/22314419
https://doi.org/10.1007/s10620-015-3614-z
https://www.ncbi.nlm.nih.gov/pubmed/25764498
https://doi.org/10.1016/j.jhep.2010.08.023
https://www.ncbi.nlm.nih.gov/pubmed/21145805
https://doi.org/10.1007/s10620-015-3916-1
https://www.ncbi.nlm.nih.gov/pubmed/26462489
https://doi.org/10.1053/jhep.2002.30692
https://doi.org/10.1016/j.metabol.2010.09.003
https://www.ncbi.nlm.nih.gov/pubmed/21040935
https://doi.org/10.1002/hep.22845
https://doi.org/10.1002/hep.20280
https://doi.org/10.1111/j.1365-2036.2007.03586.x


Metabolites 2023, 13, 1115 21 of 26

112. Targher, G.; Bertolini, L.; Rodella, S.; Zoppini, G.; Scala, L.; Zenari, L.; Falezza, G. Associations between Plasma Adiponectin
Concentrations and Liver Histology in Patients with Nonalcoholic Fatty Liver Disease. Clin. Endocrinol. 2006, 64, 679–683.
[CrossRef] [PubMed]

113. Argentou, M.; Tiniakos, D.G.; Karanikolas, M.; Melachrinou, M.; Makri, M.G.; Kittas, C.; Kalfarentzos, F. Adipokine Serum
Levels Are Related to Liver Histology in Severely Obese Patients Undergoing Bariatric Surgery. Obes. Surg. 2009, 19, 1313–1323.
[CrossRef] [PubMed]

114. Tietge, U.J.F.; Schmidt, H.H.-J.; Schütz, T.; Dippe, P.; Lochs, H.; Pirlich, M. Reduced Plasma Adiponectin in NASH: Central Obesity
as an Underestimated Causative Risk Factor. Hepatology 2005, 41, 401. [CrossRef] [PubMed]

115. Bugianesi, E.; Pagotto, U.; Manini, R.; Vanni, E.; Gastaldelli, A.; de Iasio, R.; Gentilcore, E.; Natale, S.; Cassader, M.; Rizzetto, M.;
et al. Plasma Adiponectin in Nonalcoholic Fatty Liver Is Related to Hepatic Insulin Resistance and Hepatic Fat Content, Not to
Liver Disease Severity. J. Clin. Endocrinol. Metab. 2005, 90, 3498–3504. [CrossRef] [PubMed]

116. Shimada, M.; Kawahara, H.; Ozaki, K.; Fukura, M.; Yano, H.; Tsuchishima, M.; Tsutsumi, M.; Takase, S. Usefulness of a Combined
Evaluation of the Serum Adiponectin Level, HOMA-IR, and Serum Type IV Collagen 7S Level to Predict the Early Stage of
Nonalcoholic Steatohepatitis. Am. J. Gastroenterol. 2007, 102, 1931–1938. [CrossRef] [PubMed]

117. Milner, K.-L.; van der Poorten, D.; Xu, A.; Bugianesi, E.; Kench, J.G.; Lam, K.S.L.; Chisholm, D.J.; George, J. Adipocyte Fatty Acid
Binding Protein Levels Relate to Inflammation and Fibrosis in Nonalcoholic Fatty Liver Disease. Hepatology 2009, 49, 1926–1934.
[CrossRef] [PubMed]

118. Ye, Z.; Wang, S.; Yang, Z.; He, M.; Zhang, S.; Zhang, W.; Wen, J.; Li, Q.; Huang, Y.; Wang, X.; et al. Serum Lipocalin-2, Cathepsin S
and Chemerin Levels and Nonalcoholic Fatty Liver Disease. Mol. Biol. Rep. 2014, 41, 1317–1323. [CrossRef] [PubMed]

119. Esteghamati, A.; Morteza, A.; Zandieh, A.; Jafari, S.; Rezaee, M.; Nakhjavani, M.; Jamali, A.; Esteghamati, A.-R.; Khalilzadeh,
O. The Value of Visfatin in the Prediction of Metabolic Syndrome: A Multi-Factorial Analysis. J. Cardiovasc. Transl. Res. 2012, 5,
541–546. [CrossRef]

120. Aller, R.; de Luis, D.A.; Izaola, O.; Sagrado, M.G.; Conde, R.; Velasco, M.C.; Alvarez, T.; Pacheco, D.; González, J.M. Influence of
Visfatin on Histopathological Changes of Non-Alcoholic Fatty Liver Disease. Dig. Dis. Sci. 2009, 54, 1772–1777. [CrossRef]

121. Giannini, C.; Feldstein, A.E.; Santoro, N.; Kim, G.; Kursawe, R.; Pierpont, B.; Caprio, S. Circulating Levels of FGF-21 in Obese
Youth: Associations With Liver Fat Content and Markers of Liver Damage. J. Clin. Endocrinol. Metab. 2013, 98, 2993–3000.
[CrossRef]

122. He, L.; Deng, L.; Zhang, Q.; Guo, J.; Zhou, J.; Song, W.; Yuan, F. Diagnostic Value of CK-18, FGF-21, and Related Biomarker Panel
in Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Biomed. Res. Int. 2017, 2017, 9729107. [CrossRef]
[PubMed]

123. Chitturi, S.; Farrell, G.; Frost, L.; Kriketos, A.; Lin, R.; Fung, C.; Liddle, C.; Samarasinghe, D.; George, J. Serum Leptin in NASH
Correlates with Hepatic Steatosis but Not Fibrosis: A Manifestation of Lipotoxicity? Hepatology 2002, 36, 403–409. [CrossRef]
[PubMed]

124. Canbakan, B.; Tahan, V.; Balci, H.; Hatemi, I.; Erer, B.; Ozbay, G.; Sut, N.; Hacibekiroglu, M.; Imeryuz, N.; Senturk, H. Leptin in
Nonalcoholic Fatty Liver Disease. Ann. Hepatol. 2008, 7, 249–254. [CrossRef] [PubMed]

125. Aller, R.; de Luis, D.A.; Fernandez, L.; Calle, F.; Velayos, B.; Olcoz, J.L.; Izaola, O.; Sagrado, M.G.; Conde, R.; Gonzalez, J.M.
Influence of Insulin Resistance and Adipokines in the Grade of Steatosis of Nonalcoholic Fatty Liver Disease. Dig. Dis. Sci. 2008,
53, 1088–1092. [CrossRef] [PubMed]

126. Pagano, C.; Soardo, G.; Pilon, C.; Milocco, C.; Basan, L.; Milan, G.; Donnini, D.; Faggian, D.; Mussap, M.; Plebani, M.; et al.
Increased Serum Resistin in Nonalcoholic Fatty Liver Disease Is Related to Liver Disease Severity and Not to Insulin Resistance. J.
Clin. Endocrinol. Metab. 2006, 91, 1081–1086. [CrossRef] [PubMed]

127. Charlton, M.; Angulo, P.; Chalasani, N.; Merriman, R.; Viker, K.; Charatcharoenwitthaya, P.; Sanderson, S.; Gawrieh, S.; Krishnan,
A.; Lindor, K. Low Circulating Levels of Dehydroepiandrosterone in Histologically Advanced Nonalcoholic Fatty Liver Disease.
Hepatology 2008, 47, 484–492. [CrossRef] [PubMed]

128. Hagström, H.; Stål, P.; Hultcrantz, R.; Brismar, K.; Ansurudeen, I. IGFBP-1 and IGF-I as Markers for Advanced Fibrosis in
NAFLD—A Pilot Study. Scand. J. Gastroenterol. 2017, 52, 1427–1434. [CrossRef]

129. Dabravolski, S.A.; Bezsonov, E.E.; Baig, M.S.; Popkova, T.V.; Nedosugova, L.V.; Starodubova, A.V.; Orekhov, A.N. Mitochondrial
Mutations and Genetic Factors Determining NAFLD Risk. Int. J. Mol. Sci. 2021, 22, 4459. [CrossRef]

130. Horoz, M.; Bolukbas, C.; Bolukbas, F.F.; Sabuncu, T.; Aslan, M.; Sarifakiogullari, S.; Gunaydin, N.; Erel, O. Measurement of the
Total Antioxidant Response Using a Novel Automated Method in Subjects with Nonalcoholic Steatohepatitis. BMC Gastroenterol.
2005, 5, 35. [CrossRef]

131. Feldstein, A.E.; Lopez, R.; Tamimi, T.A.-R.; Yerian, L.; Chung, Y.-M.; Berk, M.; Zhang, R.; McIntyre, T.M.; Hazen, S.L. Mass
Spectrometric Profiling of Oxidized Lipid Products in Human Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis.
J. Lipid Res. 2010, 51, 3046–3054. [CrossRef]
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135. Fierbinţeanu-Braticevici, C.; Bengus, A.; Neamţu, M.; Usvat, R. The Risk Factors of Fibrosis in Nonalcoholic Steatohepatitis. Rom.
J. Intern. Med. 2002, 40, 81–88. [PubMed]

136. Koruk, M.; Taysi, S.; Savas, M.C.; Yilmaz, O.; Akcay, F.; Karakok, M. Oxidative Stress and Enzymatic Antioxidant Status in
Patients with Nonalcoholic Steatohepatitis. Ann. Clin. Lab. Sci. 2004, 34, 57–62. [PubMed]

137. Chalasani, N.; Deeg, M.A.; Crabb, D.W. Systemic Levels of Lipid Peroxidation and Its Metabolic and Dietary Correlates in Patients
with Nonalcoholic Steatohepatitis. Am. J. Gastroenterol. 2004, 99, 1497–1502. [CrossRef]

138. Alkhouri, N.; Berk, M.; Yerian, L.; Lopez, R.; Chung, Y.-M.; Zhang, R.; McIntyre, T.M.; Feldstein, A.E.; Hazen, S.L. OxNASH
Score Correlates with Histologic Features and Severity of Nonalcoholic Fatty Liver Disease. Dig. Dis. Sci. 2014, 59, 1617–1624.
[CrossRef] [PubMed]

139. Videla, L.A.; Rodrigo, R.; Orellana, M.; Fernandez, V.; Tapia, G.; Quiñones, L.; Varela, N.; Contreras, J.; Lazarte, R.; Csendes, A.;
et al. Oxidative Stress-Related Parameters in the Liver of Non-Alcoholic Fatty Liver Disease Patients. Clin. Sci. Lond. Engl. 2004,
106, 261–268. [CrossRef]

140. Chtioui, H.; Semela, D.; Ledermann, M.; Zimmermann, A.; Dufour, J.-F. Expression and Activity of the Cytochrome P450 2E1 in
Patients with Nonalcoholic Steatosis and Steatohepatitis. Liver Int. 2007, 27, 764–771. [CrossRef]

141. Orellana, M.; Rodrigo, R.; Varela, N.; Araya, J.; Poniachik, J.; Csendes, A.; Smok, G.; Videla, L.A. Relationship between in Vivo
Chlorzoxazone Hydroxylation, Hepatic Cytochrome P450 2E1 Content and Liver Injury in Obese Non-Alcoholic Fatty Liver
Disease Patients. Hepatol. Res. 2006, 34, 57–63. [CrossRef]

142. Albano, E.; Mottaran, E.; Vidali, M.; Reale, E.; Saksena, S.; Occhino, G.; Burt, A.D.; Day, C.P. Immune Response towards Lipid
Peroxidation Products as a Predictor of Progression of Non-Alcoholic Fatty Liver Disease to Advanced Fibrosis. Gut 2005, 54,
987–993. [CrossRef] [PubMed]

143. Verdam, F.J.; Dallinga, J.W.; Driessen, A.; de Jonge, C.; Moonen, E.J.C.; van Berkel, J.B.N.; Luijk, J.; Bouvy, N.D.; Buurman, W.A.;
Rensen, S.S.; et al. Non-Alcoholic Steatohepatitis: A Non-Invasive Diagnosis by Analysis of Exhaled Breath. J. Hepatol. 2013, 58,
543–548. [CrossRef] [PubMed]

144. Danford, C.J.; Yao, Z.; Jiang, Z.G. Non-Alcoholic Fatty Liver Disease: A Narrative Review of Genetics. J. Biomed. Res. 2018, 32,
389–400. [CrossRef] [PubMed]

145. Loomba, R.; Schork, N.; Chen, C.-H.; Bettencourt, R.; Bhatt, A.; Ang, B.; Nguyen, P.; Hernandez, C.; Richards, L.; Salotti, J.; et al.
Heritability of Hepatic Fibrosis and Steatosis Based on a Prospective Twin Study. Gastroenterology 2015, 149, 1784–1793. [CrossRef]

146. Sreekumar, R.; Rosado, B.; Rasmussen, D.; Charlton, M. Hepatic Gene Expression in Histologically Progressive Nonalcoholic
Steatohepatitis. Hepatology 2003, 38, 244–251. [CrossRef] [PubMed]

147. Younossi, Z.M.; Gorreta, F.; Ong, J.P.; Schlauch, K.; Del Giacco, L.; Elariny, H.; Van Meter, A.; Younoszai, A.; Goodman, Z.;
Baranova, A.; et al. Hepatic Gene Expression in Patients with Obesity-Related Non-Alcoholic Steatohepatitis. Liver Int. 2005, 25,
760–771. [CrossRef] [PubMed]

148. Bragoszewski, P.; Habior, A.; Walewska-Zielecka, B.; Ostrowski, J. Expression of Genes Encoding Mitochondrial Proteins Can
Distinguish Nonalcoholic Steatosis from Steatohepatitis. Acta Biochim. Pol. 2007, 54, 341–348. [CrossRef]

149. Greco, D.; Kotronen, A.; Westerbacka, J.; Puig, O.; Arkkila, P.; Kiviluoto, T.; Laitinen, S.; Kolak, M.; Fisher, R.M.; Hamsten, A.; et al.
Gene Expression in Human NAFLD. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 294, G1281–G1287. [CrossRef]

150. Chiappini, F.; Barrier, A.; Saffroy, R.; Domart, M.-C.; Dagues, N.; Azoulay, D.; Sebagh, M.; Franc, B.; Chevalier, S.; Debuire, B.;
et al. Exploration of Global Gene Expression in Human Liver Steatosis by High-Density Oligonucleotide Microarray. Lab. Investig.
J. Tech. Methods Pathol. 2006, 86, 154–165. [CrossRef]

151. Yoneda, M.; Endo, H.; Mawatari, H.; Nozaki, Y.; Fujita, K.; Akiyama, T.; Higurashi, T.; Uchiyama, T.; Yoneda, K.; Takahashi, H.;
et al. Gene Expression Profiling of Non-Alcoholic Steatohepatitis Using Gene Set Enrichment Analysis. Hepatol. Res. 2008, 38,
1204–1212. [CrossRef]

152. Westerbacka, J.; Kolak, M.; Kiviluoto, T.; Arkkila, P.; Sirén, J.; Hamsten, A.; Fisher, R.M.; Yki-Järvinen, H. Genes Involved in Fatty
Acid Partitioning and Binding, Lipolysis, Monocyte/Macrophage Recruitment, and Inflammation Are Overexpressed in the
Human Fatty Liver of Insulin-Resistant Subjects. Diabetes 2007, 56, 2759–2765. [CrossRef] [PubMed]

153. Kamfar, S.; Alavian, S.M.; Houshmand, M.; Yadegarazari, R.; Seifi Zarei, B.; Khalaj, A.; Shabab, N.; Saidijam, M. Liver Mitochon-
drial DNA Copy Number and Deletion Levels May Contribute to Nonalcoholic Fatty Liver Disease Susceptibility. Hepat. Mon.
2016, 16. [CrossRef]

154. Ma, C.; Liu, Y.; He, S.; Zeng, J.; Li, P.; Ma, C.; Ping, F.; Zhang, H.; Xu, L.; Li, W.; et al. Association Between Leukocyte Mitochondrial
DNA Copy Number and Non-Alcoholic Fatty Liver Disease in a Chinese Population Is Mediated by 8-Oxo-2’-Deoxyguanosine.
Front. Med. 2020, 7, 536. [CrossRef] [PubMed]

155. Hasturk, B.; Yilmaz, Y.; Eren, F. Potential Clinical Variants Detected in Mitochondrial DNA D-Loop Hypervariable Region I of
Patients with Non-Alcoholic Steatohepatitis. Horm. Athens Greece 2019, 18, 463–475. [CrossRef] [PubMed]

156. Pingitore, P.; Pirazzi, C.; Mancina, R.M.; Motta, B.M.; Indiveri, C.; Pujia, A.; Montalcini, T.; Hedfalk, K.; Romeo, S. Recombinant
PNPLA3 Protein Shows Triglyceride Hydrolase Activity and Its I148M Mutation Results in Loss of Function. Biochim. Biophys.
Acta 2014, 1841, 574–580. [CrossRef]

https://www.ncbi.nlm.nih.gov/pubmed/16252194
https://www.ncbi.nlm.nih.gov/pubmed/15526543
https://www.ncbi.nlm.nih.gov/pubmed/15038668
https://doi.org/10.1111/j.1572-0241.2004.30159.x
https://doi.org/10.1007/s10620-014-3031-8
https://www.ncbi.nlm.nih.gov/pubmed/24464211
https://doi.org/10.1042/CS20030285
https://doi.org/10.1111/j.1478-3231.2007.01524.x
https://doi.org/10.1016/j.hepres.2005.10.001
https://doi.org/10.1136/gut.2004.057968
https://www.ncbi.nlm.nih.gov/pubmed/15951547
https://doi.org/10.1016/j.jhep.2012.10.030
https://www.ncbi.nlm.nih.gov/pubmed/23142062
https://doi.org/10.7555/JBR.32.20180045
https://www.ncbi.nlm.nih.gov/pubmed/30355853
https://doi.org/10.1053/j.gastro.2015.08.011
https://doi.org/10.1053/jhep.2003.50290
https://www.ncbi.nlm.nih.gov/pubmed/12830008
https://doi.org/10.1111/j.1478-3231.2005.01117.x
https://www.ncbi.nlm.nih.gov/pubmed/15998427
https://doi.org/10.18388/abp.2007_3255
https://doi.org/10.1152/ajpgi.00074.2008
https://doi.org/10.1038/labinvest.3700374
https://doi.org/10.1111/j.1872-034X.2008.00399.x
https://doi.org/10.2337/db07-0156
https://www.ncbi.nlm.nih.gov/pubmed/17704301
https://doi.org/10.5812/hepatmon.40774
https://doi.org/10.3389/fmed.2020.00536
https://www.ncbi.nlm.nih.gov/pubmed/33015093
https://doi.org/10.1007/s42000-019-00137-1
https://www.ncbi.nlm.nih.gov/pubmed/31656024
https://doi.org/10.1016/j.bbalip.2013.12.006


Metabolites 2023, 13, 1115 23 of 26

157. Eslam, M.; Valenti, L.; Romeo, S. Genetics and Epigenetics of NAFLD and NASH: Clinical Impact. J. Hepatol. 2018, 68, 268–279.
[CrossRef]

158. Krawczyk, M.; Liebe, R.; Lammert, F. Toward Genetic Prediction of Nonalcoholic Fatty Liver Disease Trajectories: PNPLA3 and
Beyond. Gastroenterology 2020, 158, 1865–1880. [CrossRef] [PubMed]

159. Romeo, S.; Kozlitina, J.; Xing, C.; Pertsemlidis, A.; Cox, D.; Pennacchio, L.A.; Boerwinkle, E.; Cohen, J.C.; Hobbs, H.H. Genetic
Variation in PNPLA3 Confers Susceptibility to Nonalcoholic Fatty Liver Disease. Nat. Genet. 2008, 40, 1461–1465. [CrossRef]

160. Dongiovanni, P.; Donati, B.; Fares, R.; Lombardi, R.; Mancina, R.M.; Romeo, S.; Valenti, L. PNPLA3 I148M Polymorphism and
Progressive Liver Disease. World J. Gastroenterol. 2013, 19, 6969–6978. [CrossRef]

161. Diehl, A.M.; Day, C. Cause, Pathogenesis, and Treatment of Nonalcoholic Steatohepatitis. N. Engl. J. Med. 2017, 377, 2063–2072.
[CrossRef]

162. Xu, R.; Tao, A.; Zhang, S.; Deng, Y.; Chen, G. Association between Patatin-like Phospholipase Domain Containing 3 Gene
(PNPLA3) Polymorphisms and Nonalcoholic Fatty Liver Disease: A HuGE Review and Meta-Analysis. Sci. Rep. 2015, 5, 9284.
[CrossRef]

163. Sookoian, S.; Pirola, C.J. Meta-Analysis of the Influence of I148M Variant of Patatin-like Phospholipase Domain Containing 3 Gene
(PNPLA3) on the Susceptibility and Histological Severity of Nonalcoholic Fatty Liver Disease. Hepatology 2011, 53, 1883–1894.
[CrossRef] [PubMed]

164. Krawczyk, M.; Jiménez-Agüero, R.; Alustiza, J.M.; Emparanza, J.I.; Perugorria, M.J.; Bujanda, L.; Lammert, F.; Banales, J.M.
PNPLA3 p.I148M Variant Is Associated with Greater Reduction of Liver Fat Content after Bariatric Surgery. Surg. Obes. Relat. Dis.
2016, 12, 1838–1846. [CrossRef] [PubMed]

165. Sevastianova, K.; Kotronen, A.; Gastaldelli, A.; Perttilä, J.; Hakkarainen, A.; Lundbom, J.; Suojanen, L.; Orho-Melander, M.;
Lundbom, N.; Ferrannini, E.; et al. Genetic Variation in PNPLA3 (Adiponutrin) Confers Sensitivity to Weight Loss–Induced
Decrease in Liver Fat in Humans123. Am. J. Clin. Nutr. 2011, 94, 104–111. [CrossRef] [PubMed]
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