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Abstract: Preterm delivery (PTD) is a notable pregnancy complication, affecting one out of every ten
births. This study set out to investigate whether analyzing the metabolic composition of amniotic fluid
(AF) collected from pregnant women during the second trimester of pregnancy could offer valuable
insights into prematurity. The research employed 1H–NMR metabolomics to examine AF samples
obtained from 17 women who gave birth prematurely (between 29+0 and 36+5 weeks of gestation) and
43 women who delivered at full term. The application of multivariate analysis revealed metabolites
(dimethylglycine, glucose, myo-inositol, and succinate) that can serve as possible biomarkers for
the prognosis and early diagnosis of preterm delivery. Additionally, pathway analysis unveiled the
most critical metabolic pathways relevant to our research hypothesis. In summary, these findings
suggest that the metabolic composition of AF in the second trimester can be a potential indicator for
identifying biomarkers associated with the risk of PTD.

Keywords: amniotic fluid; preterm delivery; NMR metabolomics; multivariate analysis

1. Introduction

Spontaneous preterm delivery (PTD), affecting one out of every ten births, is recog-
nized as a syndrome influenced by multiple contributing factors [1]. Among the spectrum
of suspected causes of PTD, infection and/or inflammation characterized as the body’s
response to signals of microbial or non-microbial danger stand out as the only pathological
processes for which a confirmed causal connection with PTD has been established, along
with a clearly defined molecular pathophysiology [2].

Infants born prematurely, particularly those born before 34 weeks of gestation, have
an elevated risk of mortality and health problems. Furthermore, infants born during the
late preterm period, i.e., 34–37 weeks of gestation, face increased health complications
and a higher probability of developing health conditions like obesity, metabolic syndrome,
hypertension, and type 2 diabetes later in life [3].

Prediction and early diagnosis of PTD are often challenging because of their complex-
ity [4]. Hence, it is not surprising that metabolomics, utilizing advanced techniques such
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as Nuclear Magnetic Resonance Spectroscopy (NMR), Gas Chromatography–Mass Spec-
trometry (GC-MS), and Liquid Chromatography–Mass Spectrometry (LC-MS/MS), have
gained prominence in identifying biomarkers and pathways crucial to the development
and progression of this syndrome [4–10].

Among the various options, amniotic fluid (AF) emerges as a particularly promising
biofluid; it serves as a dynamic repository, reflecting the metabolic profile of the developing
fetus. Research studies [11–15] suggest that conducting a metabolomic analysis on AF
obtained during the prenatal period holds the potential to identify metabolic deviations be-
fore PTD occurs. However, a recent study using untargeted LC-MS mid-trimester amniotic
fluid metabolic profiling on two groups of 37 pregnant women (full term/preterm) that un-
derwent amniocentesis showed no evidence of metabolite differentiation for spontaneous
PTD [16].

Studies in this area have employed diverse metabolomics techniques, and the con-
sensus on critical metabolites serving as biomarkers remains elusive [10]. The apparent
inconsistency highlights the intricate nature of the PTD syndrome and implies the presence
of unexplored aspects. Within this context, our study aims to bridge this gap by identifying
potential predictive biomarkers for spontaneous PTD within second-trimester AF using
NMR analysis.

2. Materials and Methods
2.1. Study Design and Population

This prospective cohort study investigated AF samples between 2013 and 2014 at the
Third Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health
Sciences, Aristotle University of Thessaloniki, Greece. The study was approved by the Aris-
totle University of Thessaloniki Research Ethics Committee (Prot. No. 1.662/21 November
2018) and conducted in compliance with the declaration of Helsinki. No incentives were
provided, and all the participants signed a relevant informed written consent.

Data Collection and Eligibility Criteria

All the pregnant women in singleton pregnancies who underwent amniocentesis
(between 16 and 22 weeks of gestation) for prenatal screening were eligible to participate in
the study; a small amount of AF was donated and kept at −80 ◦C. Detailed obstetric and
medical histories were recorded for each woman in the study.

Exclusion criteria were (1) multiple pregnancies, (2) short cervical length at second-
trimester ultrasound (<25 mm), and (3) preterm prelabor rupture of membranes, placental
ischemic disease, and iatrogenic PTD. In addition, pregnant women who had a miscarriage
before 24 weeks or PTD within the first 3 weeks of amniocentesis were excluded from
the analysis.

With regards to the indications of amniocentesis, increased risk of fetal genetic ab-
normality after combined first-trimester ultrasound and biochemical screening, detection
of ultrasound markers at first- and second-trimester screenings associated with an in-
creased likelihood of chromosomal abnormalities (e.g., nasal bone hypoplasia, short femur,
and hyperechoic bowel), maternal desire, and high risk of vertical transmission of con-
genital infection were the most common ones, as recommended by the majority of the
guidelines [17].

Pregnancy outcomes were collected to determine the gestational age at delivery
(preterm <37 weeks or term >37 weeks), mode of delivery (vaginal/cesarean), birthweight,
and possible complications during pregnancy. The metabolomic profile of the AF was
checked and compared according to the week of delivery and birthweight.

2.2. NMR Metabolomics Analysis
2.2.1. Sample Preparation

Amniotic fluid samples were thawed at room temperature (25 ◦C) and extracted
according to a common method established in the literature [13]. Specifically, 10 mL of AF
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was centrifuged (14,000 rpm, 4 ◦C, 10 min), and 1 mL of the supernatants was lyophilized
overnight until dry. The dry residues were then reconstituted into 540 µL of phosphate
buffer (0.2 M, Na2HPO4 2H2O, and NaH2PO4, pH = 7.0) in D2O and 60 µL (5 mM) of
d6- trimethylsilyl propionic acid sodium salt (TSP) as the internal standard.

2.2.2. 1H–NMR Analysis

For 1H–NMR measurement, 600 µL of the final samples was transferred to 5 mm NMR
tubes (LabScape, Bruker, Germany). The NMR spectra were acquired at 300 K, after a 5 min
resting period for temperature stabilization, on a Bruker Ascend 500 MHz NMR spectrom-
eter equipped with a 5 mm double resonance broadband inverse (BBI) detection probe.
Experiments were performed in automation mode, using a SampleCase-24 sample changer
operated by IconNMR. Data acquisition and processing were performed with TopSpin
4.1.4 (Bruker Italia Slr, Milan, Italy). Metabolic profiling 1D NMR spectra were acquired
using water suppression. T2-edited Carr-Purcell-Meiboom-Gill (CPMG) experiments were
acquired with d1 = 6 s; AQ = 4.92 s; FID data points = 96 k; SW = 20 ppm; ns = 32. The
transmitter offset was set manually to achieve optimal suppression of the residual water
signal for both experiments. FIDs were zero-filled and multiplied by an exponential weight-
ing function corresponding to a line broadening of 0.3 Hz before Fourier transformation.
Chemical shift values were referenced to the residual TSP signal (0.00 ppm).

2.2.3. Data Processing

All 1H–NMR spectra were phase-corrected using TopSpin 4.1.4 software. Then, the
.zip file of all files was uploaded to the NMRProcFlow open-access web tool [18] to proceed
with chemical shift calibration, baseline correction, and S/N ratio identification as well
as alignment normalization and bucketing. For alignment, an interactive philosophy was
performed, meaning that each interval had been chosen separately performing CluPA, as
well as the least squares method [2]. All spectra were normalized using the Probabilistic
Quotient Normalization (PQN) method [3], and an intelligent bucketing module was
performed within the 0.8–8.5 spectra region.

2.2.4. Metabolites Screening

A series of 2D TOCSY and HSQC experiments were acquired for metabolite identi-
fication. More specifically, the above validation NMR experiments were acquired using
a phase-sensitive MLEV sequence with d1 = 4 s; FID data points = 2 k (F2) and 256 (F1);
SW = 20 ppm; ns = 32; and mixing time (d9) = 0.08 sec with suppression of the residual
water signal. Furthermore, phase-sensitive HSQC-DEPT experiments were acquired using
Echo/Antiecho-TPPI gradient selection with decoupling during acquisition (hsqcedetg-
psisp2.3) with FID data points = 4 k (F2) and 288 (F1); SW = 12 ppm (F2) and 180 (F1);
and ns = 160 in non-uniform sampling (NUS) acquisition mode with a NUS level of 50%..
To aid in rapid and efficient metabolite identification, Metabominer [19], an easy-to-use
software tool, along with 2D TOCSY and HSQC experiments and data from the literature
were used. Briefly, an automated pick-picking list from each spectrum (TOCSY and HSQC)
was generated from MestreNOVA software and loaded in the Metabominer tool to (a)
screen metabolites from Metabominers’ biofluids database and (b) refine the identified
compounds by superimposing the spectral images to the Metabominers’ generated spectra.

2.3. Statistical Analysis
2.3.1. Demographics

As all demographic parameters did not follow the normal distribution, the Mann–
Whitney U test was used for group comparisons. The statistical significance level was set
at 5%. The demographics were statistically analyzed with SPSS (Statistical Package for the
Social Sciences) v.26 (SPSS, Inc., Chicago, IL, USA).
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2.3.2. Metabolomics

The MetaboAnalyst 5.0 was facilitated for both univariate/multivariate analyses and
pathway analysis [5]. For multivariate analysis, -Pareto scaling was used, and unsuper-
vised/supervised models (PCA/PLS-DA) were extracted at a confidence level of 95%.
Feature selection of the PLS-DA model was based on variable importance projection (VIP)
scores > 1.0 to reveal the variable that mostly contributes to the discrimination of the
studied groups. The validation of the models was evaluated in terms of accuracy (>90.0 %),
the goodness-of-fit R2 (0 ≤ R2 ≤ 1), and the predictive ability Q2 (0 ≤ Q2 ≤ 1) values.
The PLS-DA results were further cross-validated by carrying out permutation tests with
1000 random permutations.

In terms of univariate analysis, non-parametric Wilcoxon t-tests were performed
(p < 0.05). For the elucidation of metabolites as possible biomarkers, Receiver Operating
Characteristic (ROC) curves were acquired. Finally, pathway analysis was performed by
Metaboanalyst 5.0 platform.

3. Results

In total, 60 AF samples were used in the analyses; 43 were term and 17 were preterm.
The mean duration of gestation was 38.5 (±0.9) weeks for the term group and 35.3 (±2.8)
weeks for the preterm group (p < 0.001). Similarly, the mean birthweight was statisti-
cally different with term neonates having a mean birthweight of 3340 g (±380.77), while
the preterm ones weighed 2695 g (±553.85) (p < 0.001). All parameters investigated are
presented in Table 1.

Table 1. Sample demographics and pregnancy outcome data by group (n = 60).

Preterm
(n = 17)

Full Term
(n = 43)

Mann–Whitney
U Test

% (n) % (n) p Value

Sex
Boy 58.8% (10) 51.2% (22)

0.595Girl 41.2% (7) 48.8% (21)
Delivery

Cesarean section 17.6% (3) 7% (3)
0.218Normal delivery 82.4% (14) 93% (40)

Mean (SD) Mean (SD)
Gestational age (weeks) 35.3 (2.8) 38.5 (0.9) <0.001
Amniocentesis (week) 20.31 (2.46) 19.68 (1.82) 0.479

Age (years) 36.54 (2.70) 37.29 (3.63) 0.548
Weight (Kg) 71.82 (10.54) 73.16 (9.11) 0.755

Weight gain (Kg) 12.9 (6.4) 12.9 (5.9) 0.786
Neonatal weight (g) 2695.29 (553.85) 3340.23 (380.77) <0.001

Neonatal weight
(z-scores) −0.886 (1.06) 0.350 (0.730) <0.001

Neonatal length (cm) 51.2 (2.2) 51.2 (1.6) 0.744
SD = standard deviation.

3.1. NMR Analysis

A total of 27 metabolites including aliphatic and aromatic amino acids, sugars, and
organic acids were assigned by the combination of 2D NMR spectroscopy (2D-HSQC, 2D
TOCSY) and available online tools such as Metabominer and the literature data, as described
in Section 2.2.4. The identified metabolites of the acquired AF samples are displayed in
Figure 1, while the characteristic chemical shifts are represented in Supplementary Table S1.
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The spectra matrix underwent intelligent bucketing to reduce the spectra data and
facilitate subsequent statistical analysis. A total of 170 buckets were annotated according
to the assignment procedure (Supplementary Table S2). The new matrix was subjected to
both multivariate and univariate analysis.

3.2. Statistics
3.2.1. Overview of the Studied Samples

Principal Component Analysis (PCA) was conducted on the annotated NMR profile
(170 annotated intelligent buckets, Supplementary Table S2) to gain an overview of the
sample space. The resulting scores plot (Figure 2) revealed a pattern between the two
studied groups along the first principal component, accounting for 34.3% of the metabolic
variance in the studied AF samples.

3.2.2. Data Reduction Method for Unique Potential Biomarker Discovery

Digging deeper into the annotated metabolites (Supplementary Table S2), it is observed
that a significant number of buckets correspond to more than one metabolite. Considering
that the purpose of this study is the development of reliable potential prognostic markers for
PTD, we applied a robust statistical methodology based on the annotated spectra buckets.
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level = 95%; red dots correspond to full-term samples, while green dots correspond to preterm samples.

In detail, a gradual bucketing reduction method was implemented by including buck-
ets that characterize unique metabolites to avoid the metabolites’ overlapping phenomenon.
This procedure led to the reduction of the feature space to 94 out of 170 annotated intel-
ligent buckets. Notably, the 94 buckets corresponded to the initial number of assigned
metabolites (n = 27).

Moreover, the reduced feature space (n = 94) was subjected to biomarker analysis
considering the area under the ROC curve (AUROC) and the p values promoting potential
biomarkers with a good predictive ability and strong statistical significance (AUROC > 0.75
and p < 0.05). These values are in accordance with the literature [10,20].

Applying the above criteria, the process concluded with 25 intelligent buckets corre-
sponding to 12 unique metabolites (Supplementary Table S3). Finally, to exclude multiple
buckets corresponding to the same metabolite, buckets that demonstrated the higher AU-
ROC (n = 12) were kept for further statistical analyses (Supplementary Table S4). The whole
procedure is shown in Figure 3.

3.2.3. Discriminant and Pathway Analysis

Discriminant analysis was applied to define the metabolites that confirm the discrimi-
nation of the two sample categories (full term/preterm). Supervised partial least-squares
discriminant analysis (PLS-DA) was employed, using the full-term/preterm classification
as the response variable and the 12 potential biomarkers as the independent variables. The
extracted 3D score plot manifested the separation of the studied groups across the first
component (Figure 4A). The variable importance projection (VIP) plot was then retrieved
to identify the variables with the greater discriminative ability (VIP > 1) among the two
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studied groups. Indicatively, PTB is associated with a lower abundance of dimethylglycine,
glucose, and myo-inositol; while in the full-term birth, the production of succinate is fos-
tered (Figure 4B). The model was validated by permutation test statistics (Figure 4C). The
box plots of the four promoted metabolites are shown in Figure 5.
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Figure 4. PLS-DA analysis for the AF samples of 60 volunteers. (A) Score plot of PLS-DA analysis
(R2X(cum) = 0.75, Q2(cum) = 0.61, accuracy = 0.93, comp No. = 3). The green and red dots correspond
to preterm and term classification, respectively; (B) VIP plot of the studied metabolites. (C) Vali-
dation of the PLS-DA analysis, by permutation test statistics, indicates that the extracted model is
significantly different from a model built on random data. The permutation tests were carried out
with 1000 random permutations, thus providing significance of the model at the 0.001 level.
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Finally, metabolites exhibiting AUROC > 0.75 (Supplementary Table S4) in AF samples
were subjected to pathway analysis to relate the promoted metabolic patterns to specific
pathways. The results (Supplementary Figure S1) depicted that seven metabolic pathways
were significantly enriched (p < 0.05) containing at least two compounds, while two of
them (alanine, aspartate, and glutamate metabolism and the citrate cycle) had the largest
impact (>0.1) (Table 2).

Table 2. Results of the pathway analysis of the AF samples (in bold, the pathways of importance
are depicted).

No. Pathway Total Expected Hits Raw p log (p) Holm
Adjust FDR Impact

1 Aminoacyl-tRNA biosynthesis 48 0.34 4 0.0002 3.6417 0.0192 0.02 0.00

2
Alanine, aspartate, and

glutamate
metabolism

28 0.20 3 0.0008 3.1015 0.0657 0.03 0.20

3 Glyoxylate and dicarboxylate
metabolism 32 0.23 3 0.0012 2.9282 0.0968 0.03 0.03

4 Butanoate
metabolism 15 0.11 2 0.0046 2.3397 0.3705 0.10 0.00

5 Citrate cycle (TCA cycle) 20 0.14 2 0.0081 2.0906 0.6494 0.14 0.12

6 Glycolysis/
Gluconeogenesis 26 0.18 2 0.0136 1.8676 1.0000 0.19 0.03
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Table 2. Cont.

No. Pathway Total Expected Hits Raw p log (p) Holm
Adjust FDR Impact

7 Glycine, serine, and threonine
metabolism 33 0.23 2 0.0214 1.6686 1.0000 0.26 0.07

8

Phenylalanine,
tyrosine, and
tryptophan
biosynthesis

4 0.03 1 0.0281 1.5511 1.0000 0.30 0.50

9 Nitrogen
metabolism 6 0.04 1 0.0419 1.3778 1.0000 0.35 0.00

10
D-Glutamine and

D-glutamate
metabolism

6 0.04 1 0.0419 1.3778 1.0000 0.35 0.50

4. Discussion

The present study explores the possibility of identifying potential concentration pat-
terns of markers that characterize PTD. Among these 60 asymptomatic women, 43 delivered
at term, while 17 delivered prematurely.

Our study supports the hypothesis that PTD is characterized by several changes
in the metabolic profile of the fetus as reflected in second-trimester amniotic fluid [10].
The multivariate analysis highlighted that dimethylglycine, glucose, myo-inositol and
succinate possessed the highest discriminative ability between the two studied groups.
Moreover, pathway analysis revealed the most important metabolic pathways involved in
our research hypothesis.

In accordance with prior research results [13], we have observed decreased glucose
levels in second-trimester amniotic fluid samples obtained from women that delivered
preterm. The decrease in glucose levels may be linked to increased glycolysis, potentially
occurring under stressful conditions and reduced utilization of the respiratory chain path-
way (as indicated by the rise in succinate levels) partly due to disrupted transplacental
flow [15]. Furthermore, a meta-analysis conducted by Liu et al. (2017) supported our obser-
vations, indicating that lower glucose levels in early- or mid-trimester AF are associated
with PTD [21]. Previous studies have convincingly demonstrated that decreased levels of
glucose in AF are linked to the presence of microorganisms in the amniotic cavity and/or
an inflammatory response [21–24]. These findings align with the notion that intraamniotic
infection or inflammation (subclinical) plays a causative role in PTD [21].

Our analysis revealed that during the second trimester, women who later experienced
PTD exhibited higher levels of succinate in their AF compared to women who carried their
pregnancies to term. This discovery aligns with a recent study conducted by Virgiliou et al.
in 2017 [14], which observed elevated fumarate levels in mid-trimester AF derived from
women who delivered prematurely. Ansari et al. [22] and others [25–27] have proposed
that succinate and fumarate, vital metabolites in both host and microbial processes, act as
potent allosteric inhibitors of 2OG-dependent dioxygenases. Notably, this group of enzymes
includes members of the histone demethylase family. Emerging evidence highlights a strong
correlation between epigenetic events, particularly histone methylation, T-cell activation,
differentiation, and commitment [22,25,26]. Hence, it is plausible that the generation,
utilization, and translocation of these metabolites from the mitochondria to the cytosol,
facilitating dynamic histone methylation within the nucleus, could potentially contribute to
the occurrence of PTD. Given the immunomodulatory effects of succinate, as demonstrated
by Al-Mushrif et al. in 2000 albeit in a slightly different setting [23], this finding needs
further investigation.
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Another noteworthy discovery that aligns with the existing literature [14] pertains
to the reduced levels of myo-inositol found in the AF of PTD cases. Myo-inositol is a
vital nutrient essential for the growth and viability of human cells. It is worth mentioning
that myo-inositol has previously been identified as a significant marker in AF for women
experiencing preterm labor without intraamniotic infection or inflammation [14,28,29].
Numerous assumptions may document myo-inositol’s potential role in fetal development
and metabolic maturity. Myo-inositol acts as a structural basis for several secondary mes-
sengers found in eukaryotic cells, including inositol phosphates, phosphatidylinositol, and
phosphatidylinositol phosphate lipids. These secondary messengers are pivotal in various
cellular processes, including the regulation of intracellular calcium, gene expression, and
lipid metabolism [30]. Current data suggest that a higher content of placental myo-inositol
might postpone the initiation of labor by suppressing the synthesis and production of
placental eicosanoids. This suppression could result from either a decrease in the availabil-
ity of arachidonic acid for eicosanoid synthesis or a reduction in the activity of enzymes
responsible for eicosanoid production. Moreover, myo-inositol could potentially redirect
arachidonic acid metabolism towards generating anti-inflammatory eicosanoids rather than
pro-inflammatory ones, thereby regulating the overall equilibrium of pro-inflammatory
and anti-inflammatory factors to inhibit the onset of preterm labor. Furthermore, the
administration of myo-inositol for the prevention of prematurity has been a subject of
study [26].

Dimethylglycine is a derivative of the amino acid glycine. It is important to note
that glycine, choline, betaine, and dimethylglycine are interconnected compounds with
related metabolic pathways. While a previous metabolomic analysis of healthy pregnant
individuals’ AF indicated increased levels of both choline and N-dimethylglycine during
the transition from the second to the third trimester [31], there is limited information
available regarding dimethylglycine levels in AF among cases of PTD. In the context of
our study, dimethylglycine was found to be decreased in AF samples from women who
delivered prematurely. Deciphering the role of dimethylglycine in relation to PTD is
interesting since current data suggest that dimethylglycine may be engaging in different
pathways that influence the regulation of the labor process itself. These effects might be
related, at least in part, to its function in bolstering cellular antioxidant activity. It is well-
documented that spontaneous PTD is associated with oxidative stress and disturbances in
the body’s redox system, often linked with inflammation [14]. Dimethylglycine is involved
in multiple metabolic pathways and can facilitate the recycling of other antioxidants, such as
glutathione, which is a vital cellular antioxidant [32]. By aiding in the regeneration of other
antioxidants, dimethylglycine could indirectly contribute to mitigating oxidative stress and
safeguarding cells from damage caused by reactive oxygen species (ROS). Another viable
scenario involves its role as a methyl donor. The transfer of a methyl group from betaine to
homocysteine, catalyzed by the enzyme betaine-homocysteine methyltransferase, results in
the production of methionine and dimethylglycine. Consequently, a deficiency in methyl
donors may result in disturbances in metabolism and function [24].

Interestingly, as previously discussed, a recent study [16] found no significant dif-
ferences in metabolite profiles associated with spontaneous PTD. This outcome may be
attributed to variations in stratification and research protocols.

The strengths of this study are evident in its approach to data collection and the
rigorous statistical methods applied. The collection of samples during the pre-clinical phase,
when women show no symptoms, has the potential to identify individuals at high risk early
on. This approach aligns with the findings of Souza et al. in 2019 [4], suggesting that it can
help uncover the triggers of preterm labor. Furthermore, a meticulously statistical approach
was adopted to thoroughly assess the candidate biomarkers’ diagnostic and prognostic
potential. This method yielded a concise set of features that represented the most reliable
and noteworthy markers, characterized by AUROC values exceeding 0.75. Regarding
limitations, the study’s sample size may pose constraints on the broader applicability of its
findings. Additionally, for future investigations, the integration of metabolomic techniques
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with advanced molecular microbiological methods could offer a deeper exploration of the
intricate connections between microbiota and metabolites.

5. Conclusions

To conclude, NMR metabolomics’ analysis led to the identification of glucose, succi-
nate, myo-inositol, and dimethylglycine as potential biomarkers of PTD. The results overall
support previous data, while they underscore the dynamic nature of AF composition, re-
flecting the physiological changes occurring throughout pregnancy. The identified specific
metabolites and their fluctuations have the potential to serve as biomarkers for monitoring
pregnancy progression and identifying aberrations that may require medical attention.
Furthermore, our study has highlighted the intricate interplay between maternal and fetal
metabolisms within the AF environment. This intergenerational metabolic dialogue can
inform our understanding of fetal development and its susceptibility to external factors.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo13111147/s1, Table S1. Table representing the characteristic
chemical shifts of the identified metabolites, Table S2. Table representing the annotated buckets based
on the identification procedure. The term “BX_XXXX” corresponds to ppm. Table S3. Illustration
of Biomarker Analysis. In total 50 annotated buckets corresponding to unique metabolites, passed
the statistical significance analysis (p < 0.05). In bold are presented the 25 annotated buckets with
AUROC > 0.75 and p value < 0.05. Table S4. Buckets corresponding to the higher AUROCs and
12 unique metabolites. Figure S1: Graphical illustration of Pathway Analysis.
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