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Abstract: (1) Smoking is the most significant preventable health hazard in the modern world. It
increases the risk of vascular problems, which are also risk factors for dementia. In addition, tox-
ins in cigarettes increase oxidative stress and inflammation, which have both been linked to the
development of Alzheimer’s disease and related dementias (ADRD). This study identified poten-
tial mechanisms of the smoking–cognitive function relationship using metabolomics data from the
longitudinal Wisconsin Registry for Alzheimer’s Prevention (WRAP). (2) 1266 WRAP participants
were included to assess the association between smoking status and four cognitive composite scores.
Next, untargeted metabolomic data were used to assess the relationships between smoking and
metabolites. Metabolites significantly associated with smoking were then tested for association
with cognitive composite scores. Total effect models and mediation models were used to explore
the role of metabolites in smoking-cognitive function pathways. (3) Plasma N-acetylneuraminate
was associated with smoking status Preclinical Alzheimer Cognitive Composite 3 (PACC3) and
Immediate Learning (IMM). N-acetylneuraminate mediated 12% of the smoking-PACC3 relation-
ship and 13% of the smoking-IMM relationship. (4) These findings provide links between previous
studies that can enhance our understanding of potential biological pathways between smoking and
cognitive function.

Keywords: smoking; Alzheimer’s disease; mediation analysis; metabolomics; cognitive function

1. Introduction

Smoking is the most significant preventable health hazard in the modern world [1],
and it is associated with many risk factors known to impact health, with numerous clinical
endpoints [2]. There is strong evidence that smoking can increase the risk of developing
dementia, a general term for a loss of cognitive function that is severe enough to interfere
with daily living. Smoking increases the risk of vascular problems via strokes or minor
bleeds in the brain, which are also risk factors for dementia [3]. In addition, toxins in
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cigarette smoke increase oxidative stress and inflammation, which have been linked to the
development of a type of dementia, Alzheimer’s disease (AD) [3].

Recently, studies have investigated the role of metabolites, small molecule substrates,
intermediates, and products of cell metabolism in cognitive function [4,5]. Untargeted
metabolomics [6] can be used to measure a wide range of metabolites in fluid or tissue
and can be influenced by genetics, environmental factors, aging, and disease [7]. Because
they are the end product of upstream cellular processes, metabolites provide a downstream
functional signature of the small molecule changes associated with a phenotype, which
makes them especially useful for identifying therapeutic interventions [8]. Studies have
examined associations between metabolites and cognitive function in late midlife [9–14], as
well as associations between metabolites and behavioral risk factors, including smoking [15].
However, the mediating role that metabolites may play in the association between smoking
and cognitive function has not been investigated. We sought to address this gap using
mediation analysis to identify whether metabolites profiled from untargeted metabolomics
in plasma and cerebrospinal fluid (CSF) are in the biological pathway between smoking
and cognitive function. Identifying such metabolites may provide a better understanding
of the mechanism linking smoking to cognitive decline.

2. Materials and Methods
2.1. Data and Study Population

The Wisconsin Registry for Alzheimer’s Prevention (WRAP) was established in
2001 [16] and is a longitudinal observational cohort study of over 1500 individuals predom-
inantly aged 40–65 at baseline; the sample is enriched for a parental history of probable
AD, but enrolled participants have no prior diagnosis of dementia or evidence of dementia
based on cognitive testing at baseline [17]. Up to two decades of serial cognitive data
have been collected alongside genetic data, plasma, and, in a subset of participants, CSF.
We used the May 2020 release of the WRAP data, which contained up to seven visits for
1561 participants. Since key variables such as smoking status and cognitive composite
scores were available starting at the second visit and only a few participants had completed
the visit seven follow-up assessment to date, we treated the second visit as baseline and
excluded the seventh visit. There were 4680 observations for 1266 individuals with com-
plete smoking, covariate, and cognitive composite score data and who remained free of
dementia at visit 2.

2.2. Smoking Status

We derived a categorical variable for smoking status for never, former, and cur-
rent smokers. The never smoker category was defined as participants who had never
smoked. The former smoker category included participants who had reported ever smok-
ing cigarettes but who had not smoked cigarettes in the past month. The current smoker
category included participants who reported being ever smokers who also smoked in the
past month. For the analyses, we coded smoking status as a numerical variable.

2.3. Cognitive Function

Cognitive function was evaluated with a global cognitive composite score, the 3-test
Preclinical Alzheimer Cognitive Composite (PACC3) [18], and three domain-specific com-
posite scores: Immediate Learning (IMM), Delayed Recall (DEL), and Executive Function
(EXE) [19], as these measures have been found to outperform empirically derived com-
posites or raw scores from single tests [20]. PACC3 consists of the Rey Auditory Verbal
Learning Test (RAVLT) total trials 1–5, the Logical Memory subtest of the Wechsler Memory
Scale-Revised (WMS-R LM) delayed recall, and the Digit Symbol Coding subtest of the
Wechsler Abbreviated Intelligence Scale-Revised (WAIS-R). IMM consists of the RAVLT
total trials 1–5, Wechsler Memory Scale–Revised Logical Memory subtest (WMS-R LM)
immediate recall, and Brief Visuospatial Memory Test (BVMT-R) immediate recall. DEL
consists of RAVLT long-delay free recall, WMS-R LM delayed recall, and BVMT-R delayed
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recall, and WMS-R LM delayed recall. EXE consists of Trail Making Test Part B total time
to completion, Stroop Neuropsychological Screening Test color-word interference, and
WAIS-R Digit Symbol Coding. As described previously [20], the composite scores were
computed by first standardizing all contributing raw scores to a mean of 0 and a standard
deviation (SD) of 1. If lower scores indicated better performance, the scores were multiplied
by −1.

2.4. Covariates

Demographic characteristics including age, sex, race, and education were collected
at baseline and included in both full and reduced models. Depressive symptoms, weekly
alcohol consumption, and body mass index (BMI) were measured at each visit and con-
trolled for in the full models because they are potential confounders that are associated with
smoking behavior and cognitive outcomes [21–23]. Education was a dichotomous variable
set equal to 1 if individuals earned at least a college degree and 0 otherwise. Depressive
symptoms were measured using the Center for Epidemiologic Studies Depression Scale
(CES-D) test scores. BMI was categorized into underweight, normal weight, overweight,
and obese according to definitions from the Centers for Disease Control and Prevention.

2.5. Metabolomic Data Collection

The CSF and plasma collection and metabolomics analysis have been described in
detail previously [24]. Briefly, CSF was collected via lumbar puncture (LP) in the morning
after a 12-h fast. Blood for plasma samples was collected into ethylenediaminetetraacetic
acid (EDTA) tubes. All samples were processed and stored at −80 ◦C until overnight ship-
ment to Metabolon, Inc (Metabolon), Morrisville, NC 27560, where they remained frozen at
−80 ◦C until analysis. Metabolon used Ultrahigh Performance Liquid Chromatography-
Tandem Mass Spectrometry [25,26] to conduct an untargeted metabolomics analysis of the
CSF and plasma samples.

2.6. Metabolomic Data Quality Control

Quality control was performed on the 412 CSF metabolites for 372 samples, including
assessment of missingness, variation, and transformation. Thirteen metabolites were re-
moved because of missingness >50%, one sample that had missingness >40% was removed,
and nine low variance metabolites that did not satisfy the distribution of an interquartile
range (IQR) >0 were removed. A log10 transformation was applied to each metabolite so
they were more normally distributed. There were 390 CSF metabolites for 371 samples
(169 individuals) after metabolite quality control.

Using the same quality control procedures for the 1275 plasma metabolites in 2500 sam-
ples, 112 metabolites were removed because of missingness >50%, none of the samples had
missingness >40%, and 25 low variance metabolites that did not satisfy the distribution of
an IQR >0 were removed. Similarly, log10 transformation was applied to each metabolite.
There were 1138 plasma metabolites for 2500 samples (1236 individuals) after metabolite
quality control.

After combining the smoking, covariate, cognitive composite score, and metabolomic
data, there were 283 CSF samples for 166 individuals and 1871 plasma samples for 1188 in-
dividuals in three waves (visits 2, 3, and 4). The CSF samples were not always collected on
the same day as the main visit (where cognitive testing, smoking assessment, covariates,
and blood draw were obtained). In these cases, the CSF metabolite data were matched to
the closest main WRAP visit by calculated age (derived by the WRAP data team from visit
dates due to protected health information policies).

2.7. Statistical Mediation Analyses

To assess whether the smoking–cognitive function relationship is mediated by CSF
or plasma metabolites, we broke down our analyses into four steps based on the product
method (Figure 1) [27–29]. First, we tested whether smoking (exposure of interest) was
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associated with cognitive function (outcome). Second, we tested whether smoking was
associated with each metabolite (mediator). Third, we tested whether each metabolite
(mediator) associated with smoking was associated with the cognitive outcomes after
adjusting for smoking. If a significant association between a metabolite and cognitive
function remained after adjusting for smoking status in Step 3, we assessed whether the
metabolite was completely or partially mediating the exposure–outcome relationship (Step 4).
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Figure 1. Mediation analysis flowchart. In Step 1, Y is a cognitive composite score, B0 is the intercept,
B1 is the coefficient of smoking status, and X is smoking status. In Step 2, M is the level of a metabolite,
B0 is the intercept, B1 is the coefficient of smoking status, and X is smoking status. In Step 3, Y is
a cognitive composite score, B0 is the intercept, B1 is the coefficient of smoking status, B2 is the
coefficient of a metabolite, X is smoking status, and M is the level of a metabolite.

Due to the longitudinal, multilevel structure of WRAP (i.e., individuals are nested
within sibships across multiple visits), we used linear mixed models (LMM) implemented
in R 3.6.1. to assess Steps 1–4 above for all four cognitive outcomes (PACC3, IMM, DEL, and
EXE). Our reduced model included smoking status (reference category = never smoker),
sex, race, education level, visit number minus two (practice effect; baseline was visit
two), and linear and quadratic terms for age (centered to the mean). Random intercepts
for family (except for models including CSF metabolites, which had very few related
individuals) and individual and a random slope for age were included in the models
to account for correlation between siblings and in repeated measures across individuals’
visits. Full models adjusted for additional confounders (CES-D, BMI, and weekly alcohol
consumption) [30–35]. For each cognitive outcome, the model (reduced or full) with the
best fit in Step 1 was used for subsequent steps.

In Step 2, adjustment for multiple hypothesis testing for models with each CSF and
plasma metabolite were conducted using the false discovery rate (FDR) threshold of p < 0.05.
The metabolites, as the outcomes, that were significantly associated with smoking status in
Step 2 were used as predictors in the models in Step 3 and, among them, the metabolites
that were also significantly associated with a cognitive outcome were retained for that
outcome. Finally, in Step 4, mediation analyses were conducted to determine the mediation
effects and direct effects in the pathway from smoking status to cognitive function. 95%
confidence intervals (CIs) were generated using the distribution of product method and
Monte Carlo method [36] using the R package RMediation.
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3. Results
3.1. Sample Characteristics

The study sample consisted of 1266 participants with an average of 3.7 visits (median
4.0). Sample characteristics are shown in Table 1. The mean age at baseline was 58.5 years
and the proportion of females (70.4%) was larger than males (29.6%). The majority of
participants were white (94.8%), and 61.4% had college or graduate-level degrees. There
were 86 (6.8%) current smokers, 469 (37.0%) former smokers, and 711 (56.2%) never smokers.
The correlation between the four cognitive composite scores is shown in Supplementary
Figure S1.

Table 1. Baseline characteristics of participants from the WRAP sample (n = 1266).

Variable Value

Age (years)
Mean (SD) 58.5 (6.47)
Median (Min, Max) 59.0 (40.7, 75.0)

Female sex 891 (70.4%)
White race 1200 (94.8%)
College or graduate degree 777 (61.4%)
Smoking status

Never smoker 711 (56.2%)
Former smoker 469 (37.0%)
Current smoker 86 (6.8%)

CES-D score (60 points)
Mean (SD) 7.13 (7.16)
Median (Min, Max) 5.00 (0, 44.0)

Body Mass Index
Underweight 8 (0.6%)
Normal 352 (27.8%)
Overweight 449 (35.5%)
Obese 457 (36.1%)

Weekly alcohol consumption
Mean (SD) 4.25 (6.74)
Median (Min, Max) 2.00 (0, 52.5)

PACC3
Mean (SD) 0.0160 (0.760)
Median (Min, Max) 0.0717 (−3.17, 2.55)

Immediately Learning (IMM)
Mean (SD) 0.0145 (0.783)
Median (Min, Max) 0.0365 (−3.41, 2.36)

Delayed Recall (DEL)
Mean (SD) 0.0155 (0.780)
Median (Min, Max) 0.109 (−3.94, 1.96)

Executive Function (EXE)
Mean (SD) 0.00546 (0.822)
Median (Min, Max) 0.0970 (−6.42, 2.43)

Values for sex, race, education level, smoking status, and body mass index are frequencies (%). Smoking
status: never smoker, former smoker and current smoker are defined as participants who have never smoked
cigarettes, have smoked cigarettes but not in the past month, and have smoked cigarettes in the past month,
respectively. CES-D score is the sum of 15 categories, each with a scale of 0–4. Body mass index (BMI): underweight:
BMI < 18.5 kg/m2, normal: 18.5 kg/m2 <= BMI < 25.0 kg/m2, overweight: 25.0 kg/m2 <= BMI < 30.0 kg/m2 and
obese: BMI >= 30.0 kg/m2. Weekly alcohol consumption: one drink being defined as a 12 oz. beer, a 4 oz. glass of
wine, or one shot (1.25 oz.) of liquor.
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3.2. Mediation Analysis
3.2.1. Step 1: Associations between Smoking Status and Cognitive Function

Results from the LMM analyses using full models, which adjusted for potential con-
founders, showed that being a current smoker was significantly associated with the four
cognitive composite scores compared to nonsmokers (p ≤ 0.001; Table 2). Female sex,
white race, a college or graduate degree, CES-D, weekly alcohol consumption and practice
effects were significantly associated with higher cognitive function for all four composite
scores (PACC3, IMM, DEL, and EXE). Having an underweight BMI was significantly asso-
ciated with lower PACC3. Given the significant effects of the potential confounders, we
used the full model in subsequent steps. Results from the reduced models are shown in
Supplementary Material Table S1.

3.2.2. Step 2: Associations between Smoking Status and Metabolomics

We used LMMs to test the association between smoking status and each metabolite.
Among 390 CSF metabolites and 1138 plasma metabolites, 49 (12.6%) CSF metabolites
and 630 (55.4%) plasma metabolites were significantly associated with smoking status
(FDR < 0.05; Supplementary Table S2, Supplementary Figures S2 and S3).

3.2.3. Step 3: Associations between Metabolites and Cognitive Function

After identifying 49 CSF metabolites and 630 plasma metabolites that were signifi-
cantly associated with smoking status in Step 2, we used LMM to assess whether these
metabolites were correlated with cognitive outcomes. We identified four plasma metabo-
lites significantly associated with PACC3, IMM, and EXE (FDR < 0.05), including N-
acetylneuraminate (NeuAc), androstenediol (3alpha, 17alpha) monosulfate (2), glycosyl-N
palmitoyl-sphingosine (d18:1/16:0) (GlcCer), and metabolomic lactone sulfate (Table 3; full
set of results are in Supplementary Table S3). None of the 49 CSF metabolites were signifi-
cantly associated with cognitive function (FDR < 0.05). Step 4: Assessment of complete or
partial mediation of the smoking status–cognitive function relationship.

Among those four plasma metabolites identified in Step 3, NeuAc and GlcCer were
statistically significant mediators of the smoking–cognitive function relationship. For
these two metabolites, total effect models were constructed to assess the effect of smoking
status on cognitive outcomes. The effect of smoking status on cognitive function was then
decomposed into the indirect effect (IE; the mediation effect) and the direct effect (DE) in
the mediation models.

The effect of smoking status on PACC3 in the total effect model was −0.080 (95% CI:
−0.14–−0.02); 14.1% of the total effect was mediated by NeuAc in the mediation model
(95% CI: −0.021–−0.005; Figure 2A). The effect of smoking status on IMM in the total
effect model was −0.093 (95% CI: −0.16–−0.03; Figure 2B). NeuAc also mediated 14.3%
of the total effect between smoking status and IMM in the mediation model (95% CI:
−0.024–−0.005).

GlcCer mediated the relationship between smoking status and PACC3 in the mediation
model (95% CI: 0.001–0.017; Figure 2C). However, the proportion of the total effect mediated
by GlcCer could not be calculated because the IE and DE of GlcCer have different signs,
resulting in an inconsistent mediation effect, meaning this metabolite most likely acts as a
suppressor variable that indicates the presence of the mediator increases the magnitude of
the DE [37].
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Table 2. Linear mixed model analysis of the association between smoking status and cognitive function in the WRAP sample (n = 1266).

Predictors
PACC3 Immediate Learning Delayed Recall Executive Function

Beta SE 95% CI p Beta SE 95% CI p Beta SE 95% CI p Beta SE 95% CI p

Intercept −1.098 0.095 −1.285–−0.910 <0.001 −0.955 0.101 −1.154–−0.756 <0.001 −0.881 0.102 −1.082–−0.681 <0.001 −1.059 0.104 −1.262–−0.855 <0.001

Female 0.529 0.039 0.452–0.605 <0.001 0.443 0.041 0.362–0.523 <0.001 0.388 0.041 0.307–0.469 <0.001 0.354 0.042 0.271–0.437 <0.001

White race 0.400 0.083 0.236–0.563 <0.001 0.353 0.088 0.181–0.525 <0.001 0.327 0.089 0.153–0.501 <0.001 0.552 0.092 0.372–0.732 <0.001

College or graduate degree 0.375 0.037 0.302–0.448 <0.001 0.358 0.039 0.281–0.434 <0.001 0.358 0.040 0.280–0.435 <0.001 0.266 0.041 0.186–0.346 <0.001

CES-D −0.005 0.001 −0.007–−0.002 <0.001 −0.005 0.001 −0.008–−0.002 0.001 −0.004 0.001 −0.007–−0.001 0.005 −0.007 0.001 −0.010–−0.005 <0.001

BMI (underweight) −0.238 0.093 −0.421–−0.055 0.011 −0.157 0.109 −0.372–0.057 0.151 −0.090 0.109 −0.303–0.124 0.41 −0.170 0.090 −0.346–0.007 0.06

BMI (overweight) 0.004 0.024 −0.042–0.051 0.855 0.011 0.028 −0.043–0.065 0.691 −0.001 0.027 −0.054–0.053 0.984 0.004 0.023 −0.041–0.050 0.858

BMI (obese) 0.032 0.029 −0.025–0.089 0.27 0.039 0.033 −0.026–0.104 0.244 0.026 0.033 −0.039–0.090 0.441 −0.027 0.029 −0.083–0.030 0.358

Alcohol Weekly Consumption 0.005 0.002 0.002–0.008 0.002 0.005 0.002 0.002–0.009 0.004 0.004 0.002 0.000–0.007 0.034 0.006 0.001 0.003–0.009 <0.001

Former smoker 0.053 0.038 −0.021–0.127 0.159 0.025 0.039 −0.052–0.102 0.524 0.057 0.040 −0.021–0.135 0.151 0.024 0.041 −0.056–0.105 0.557

Current smoker −0.383 0.073 −0.526–−0.240 <0.001 −0.360 0.077 −0.510–−0.210 <0.001 −0.360 0.077 −0.512–−0.209 <0.001 −0.270 0.078 −0.424–−0.117 0.001

Age −0.047 0.003 −0.052–−0.041 <0.001 −0.039 0.003 −0.045–−0.033 <0.001 −0.035 0.003 −0.041–−0.029 <0.001 −0.060 0.003 −0.066–−0.054 <0.001

Age2 −0.001 0.000 −0.001–−0.001 <0.001 −0.001 0.000 −0.001–−0.000 <0.001 −0.001 0.000 −0.001–−0.000 <0.001 −0.001 0.000 −0.001–−0.001 <0.001

Practice Effect 0.082 0.008 0.067–0.098 <0.001 0.124 0.009 0.107–0.141 <0.001 0.117 0.009 0.100–0.134 <0.001 0.074 0.008 0.058–0.091 <0.001

Random Effects

ICC 0.78 0.71 0.73 0.83

N (family) 1007 1007 1007 1007

N (Individual) 1266 1266 1266 1266

Observations 4680 4680 4680 4680

Marginal R2/Conditional R2 0.298/0.844 0.216/0.773 0.194/0.779 0.283/0.881

Abbreviations: SE, standard error, ICC, intraclass correlation coefficient, correlation among observations within the sibling group and repeated measures within an individual; DBID,
WRAP coded database ID number. Marginal R2 indicates the variance explained only by fixed effects and conditional R2 indicates the variance explained by both fixed and random
effects.
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Figure 2. Total effect and mediation models for associations between smoking status and cognitive
function mediated by metabolites (n = 1188). FDR-corrected p-values were used and are displayed
for the smoking-metabolite and metabolite-cognition associations. Path c in the total-effect models
represents the coefficient for the association between smoking status and PACC/Immediate Learning.
Path a in the mediation models represents the coefficient for the association between smoking status
and metabolites (N-acetylneuraminate (NeuAc) and glycosyl-N palmitoyl-sphingosine (d18:1/16:0)
(GlcCer)) and path b in the mediation models represents the coefficient for the association between
metabolites (NeuAc and GlcCer) and PACC/Immediate Learning. Using the product method, the
indirect effect of metabolites (NeuAc and GlcCer) in the pathways of smoking-cognitive functions
was computed (shown below the metabolite box) and path c’ in the mediation models represents the
direct effect of smoking status on PACC/Immediate Learning. The proportions of the indirect effect
and direct effect out of the total effect are shown in bold but could not be calculated for panel B due
to the different signs between the indirect effect and the total effect.
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Table 3. Association test for smoking-associated metabolites and cognitive function (n = 1188).

Cognitive
Function Plasma Metabolite Estimates 95% CI p FDR

PACC3
glycosyl-N palmitoyl-sphingosine (d18:1/16:0) 0.456 0.680–0.233 <0.001 0.021

N-acetylneuraminate −0.427 −0.636–−0.219 <0.001 0.021

IMM N-acetylneuraminate −0.429 −0.733–−0.251 <0.001 0.040

EXE
metabolonic lactone sulfate 0.177 0.091–0.263 <0.001 0.035

androstenediol (3alpha, 17alpha) monosulfate (2) 0.135 0.066–0.204 <0.001 0.037

Each model was adjusted for sex, race, education level, visit number (practice effect), linear and quadratic terms
for age, CES-D, BMI, and weekly alcohol consumption. Random intercepts for family and individual and a
random slope for age were included in the models to account for correlation between siblings and in repeated
measures within an individual.

4. Discussion

To the best of our knowledge, this study is the first to identify potential metabolic
pathways between smoking and cognitive function. We assessed the role of CSF and plasma
metabolites as mediators in this relationship in WRAP, a longitudinal observational cohort
study. We showed that plasma metabolites, including NeuAc, androstenediol (3alpha, 17al-
pha) monosulfate (2), GlcCer, and metabolonic lactone sulfate were significantly associated
with both smoking status and cognitive outcomes. Among these four plasma metabolites,
NeuAc and GlcCer partially mediated the relationship between smoking status and one or
more cognitive composite scores.

NeuAc is a member of the sialic acid family. Given their location and ubiquitous
distribution, sialic acids can mediate or modulate a wide variety of physiological and
pathological processes [38]. Our results showed that NeuAc mediated the relationships
between smoking status and both PACC3 and IMM, where smoking was correlated with
higher levels of NeuAc, which in turn was correlated with lower scores on both the
PACC3 and IMM cognitive composites. NeuAc is the most well-known sialic acid and
smoking has been shown to increase sialic acid levels. Studies have demonstrated various
roles of sialic acids in the development of AD pathology [39]. For example, sialic acid–
CD33 interaction can efficiently regulate microglial–resident immune cell recognition and
lead to beta amyloid accumulation in the brain. CD33, one of the top-ranked AD risk
genes, is highly expressed in microglia and has elevated expression in AD brains [40,41].
Elevation of sialic acid levels in the circulation has been observed in not only AD, but also
in aging [42] and a wide range of AD comorbidities, such as obesity [43], diabetes [44], and
cardiovascular disease [45]. One study suggested that the effects of N-acetylneuraminic
acid, the predominant sialic acid, on the immune cells in the periphery were the driving
force of the accelerated disease manifestations in CD4+ T cells of mice an humans [46].
Therefore, NeuAc may provide mechanistic insight into the deleterious effect of smoking
on cognitive function and ADRD risk.

GlcCer is a complex sphingolipid that contains one or more sialic acids [47]. This
molecule plays a role as a mediator in the relationship between smoking status and PACC3.
Smoking was correlated with higher levels of GlcCer, which in turn was correlated with
higher performance on the PACC3. Although counterintuitive, these results are consis-
tent with findings that the concentrations of sphingolipid metabolites in plasma were
significantly increased in smokers [48] and decreased in AD patients [49]. This implies
that GlcCer could be a suppressor and mediates the relationship between smoking and
cognitive function, thus exploring it further will be important in future studies.

This study was the first to explore the role of plasma and CSF metabolites as mediators
in the smoking-cognitive function relationship. The results point to the role that sialic acids
may play in this relationship. The limitations of this study should be considered. First,
the small sample size for CSF metabolites (166 individuals) had less power to detect CSF
metabolites that were associated with smoking status and that mediate the relationship
between smoking and cognitive function. This should be examined in a future study with
a larger sample size. Second, we did not have detailed smoking history data to allow us
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to more carefully examine the dose–response relationship between smoking, cognitive
function, and metabolites. Third, while we adjusted for many potential confounding
factors, there may be additional unobserved confounders. However, the results were similar
between the reduced and fully-adjusted models, giving us confidence in the robustness
of our findings. Future studies in larger, more diverse samples with longitudinal data are
necessary to confirm our results and discover additional plasma and CSF metabolites that
mediate the relationship between smoking and both cognitive function and ADRD.

In conclusion, our findings provide new links between previous studies that can en-
hance our understanding of potential biological pathways between smoking and cognitive
function. Of the two significant mediators between smoking and cognitive function in our
study, one, NeuAc, is a sialic acid and the other, GlcCer, contains sialic acids, providing
evidence for the sialic acid associated pathway in the established smoking-cognitive func-
tion relationship. A better understanding of the biological mechanisms between smoking
and cognitive function could inform future intervention studies and potentially reduce the
burden of ADRD.
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between smoking status and metabolomics; Table S3: Associations between metabolites and cognitive
function.
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