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Abstract: 'H-NMR metabolomics data is increasingly used to track health and disease. Nightingale
Health, a major supplier of 'H-NMR metabolomics, has recently updated the quantification strategy to
further align with clinical standards. Such updates, however, might influence backward replicability,
particularly affecting studies with repeated measures. Using data from BBMRI-NL consortium
(~28,000 samples from 28 cohorts), we compared Nightingale data, originally released in 2014 and
2016, with a re-quantified version released in 2020, of which both versions were based on the same
NMR spectra. Apart from two discontinued and twenty-three new analytes, we generally observe
a high concordance between quantification versions with 73 out of 222 (33%) analytes showing a
mean p > 0.9 across all cohorts. Conversely, five analytes consistently showed lower Spearman’s
correlations (p < 0.7) between versions, namely acetoacetate, LDL-L, saturated fatty acids, S-HDL-C,
and sphingomyelins. Furthermore, previously trained multi-analyte scores, such as MetaboAge or
MetaboHealth, might be particularly sensitive to platform changes. Whereas MetaboHealth replicated
well, the MetaboAge score had to be retrained due to use of discontinued analytes. Notably, both
scores in the re-quantified data recapitulated mortality associations observed previously. Concluding,
we urge caution in utilizing different platform versions to avoid mixing analytes, having different
units, or simply being discontinued.

Keywords: NMR metabolomics; epidemiology; re-quantification; multivariate risk models; nightingale
health

1. Introduction

Targeted 1H-NMR Metabolomics has rapidly gained popularity as a cost-effective and
comprehensive method to perform metabolic profiling and risk prediction in large epidemi-
ological studies. Various of such metabolomics-based age predictors were constructed; for
example MetaboAge, an indicator of several future cardiovascular diseases [1] and Metabo-
Health that predicts multiple health conditions and all-cause mortality [2]. Thus far, targeted
1H-NMR Metabolomics has shown promise to predict COVID hospitalization [3], various
disease outcomes [4-6], and a plethora of conventional clinical risk variables [7].

Targeted 1H-NMR approaches focus on the analysis of a limited and pre-defined set
of analytes, whose associated peaks consistently appear at relatively fixed positions in the
overall NMR spectrum of a specific biomaterial and can therefore be robustly quantified [8].
Each of the associated peaks are quantified according to standardized rules and then
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transformed into absolute quantities with the aid of reference compounds [8]. While each
change in the assayed biomaterials or isolation protocols would necessitate a considerable
effort to re-calibrate a 'H-NMR-based quantification setup, a rigid standardization of
both the input material and the laboratory routines would allow for a cost-effective and
metabolome profiling on an epidemiological scale [9,10].

Nightingale Health Plc is a major commercial supplier of targeted 1H-NMR metabolomics
data with bench-to-data solutions for human serum, plasma, or urine, for a limited number
of metabolic markers. Large consortia like BBMRLNL [1], FINSK/THL [5], COMETS [11],
and, more recently, UK-Biobank [3] have set out to enrich their population studies with 1H-
NMR metabolomics profiling and to date have accumulated data in respectively ~35,000,
~40,000, ~46,000, and ~300,000 samples. Sample handling and processing inevitably varies
during and between such large efforts and may introduce variation in the data that could
potentially impede replication efforts. In parallel with their metabolomics profiling efforts
in UK-Biobank, Nightingale Health updated the way their analytes are quantified to
further improve the calibration of 37 of their analytes with clinically measured counterparts.
While such updates constitute a further optimization of this biomarker platform, it may
also introduce systematic changes with respect to previously assayed or longitudinal
studies [12-15].

Here, we set out to quantify to which extent the most recent updates of the quantifi-
cation procedure by Nightingale affected the reported analytes, and to what extent this
could influence replication of previous findings. To this end, we analyzed the Spearman’s
correlations (p) of ~220 metabolic analytes quantified by Nightingale Health across three
different platform versions (2014, 2016, and 2020) leveraging samples for which multiple
quantifications were performed on basis of the identical NMR spectra. We found that,
while many analytes present a high degree of Spearman’s correlation between versions,
a number of analytes present a moderate to low Spearman’s correlation. In addition, we
demonstrate that the effect on multi-analyte scores may differ, and thus ideally would
require their renewed validation for each platform update. For example, the MetaboHealth
score exhibits similar associations with time to death, whereas the metabolomics-based
age predictor (MetaboAge) could no longer be readily applied due to use of discontinued
metabolites yet could be successfully retrained on the new platform version and showed
similar associations with disease outcomes.

2. Materials and Methods
2.1. Dataset Descriptions

The Dutch Biobanking and BioMolecular resources and Research Infrastructure
(BBMRILNL) is a large consortium composed of 28 Dutch cohorts, which quantified their
samples with the Nightingale Health platform in different time points, allowing an investi-
gation on the platform differences over the years. About 25,000 samples from 26 cohorts
were quantified during the first wave in 2014. A second wave of 10,000 samples was then
obtained in 2016, including some longitudinal time-points and 2 new cohorts. Finally, after
the 2020 update of the platform, the entire BBMRI.NL (35,000 samples from 28 cohorts) was
re-quantified to have comparable measures to other Consortia.

2.1.1. BBMRI.NL

BBMRILNL (https://www.bbmrinl/, last access: 1 October 2023) is a Dutch Con-
sortium which includes a total of 35,000 samples from the following 28 Dutch biobanks:
ALPHAOMEGA [16], BIOMARCS [17], CHARM [18], CHECK [19], CODAM [20], CSF [18],
DMS [21], DZS_WF [22], ERF [23], FUNCTGENOMICS [24], GARP [25], HELIUS [26],
HOF [27], LIFELINES [28], LLS_PARTOFEFS [29], LLS_SIBS [29], MRS [18], NESDA [30],
PROSPER [31], RAAK [32,33], RS [34], STABILITEIT [35], STEMI_GIPS-III [36], TAC-
TICS [32,33], TOMAAT [32,33], UCORBIO [37], VUMC_ADC [35], VUNTR [38]. Complete
descriptions and ethics statement of each cohort is added to the Supplementary Materials.


https://www.bbmri.nl/
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Metabolomics Dataset: Nightingale Health performed the quantification of high
throughput proton Nuclear Magnetic Resonance (\H-NMR) for the EDTA plasma for
BBMRLNL in separate waves (Table 1). The first wave was performed in 2014, on a great
portion of the data (~25,000 samples). The second wave was performed in 2016 to quantify
'H-NMR metabolomics in the cohorts HOF and STABILITEIT, but also to quantify follow-
ups sampling from different cohorts. Finally, in 2021 a re-quantification was performed to
the entire dataset to update the metabolomics measurements to the latest platform version
(platform version 2020).

Table 1. Data and platform versions available in BBMRI-NL.

Waves N. Samples N. Biobanks Platform Version
First wave 24,994 26 Version 2014
Second wave 9880 10 Version 2016
Re-quantifications 34,015 28 Version 2020

N = number.

2.1.2. The Leiden Longevity Study

The Leiden Longevity Study is one of the cohort included in BBMRLNL, which
comprises a first generation subgroup of long-lived parents (LLS-SIBS, age = 89 + 103 years
old) and a second generation which includes their middle-aged offspring with the relative
partner (LLS-PAROFFS age median = 30 -+ 79 years old) [29].

Metabolomics Dataset: While only one sample collection was performed on the older
individuals of LLS-SIBS [998 individuals], there are three time-points available for LLS-
PAROFFS drawn with ~3 years gap one after the other (IOP1, IOP2 and IOP3) (Table 1).
The first-time point (IOP1, 2313 individuals) was quantified during the first wave in 2014,
while the second and third samples measurements (IOP2 and IOP3, respectively, 670 and
498 individuals) were included in the second wave, with the platform version 2016. All the
samples were then re-quantified in 2021 with the rest of BBMRLNL data (Table 2). The last
column of the Table 2 shows the number of common samples after the quality control of
the two datasets, described in the next paragraph.

Table 2. Data and platform versions available in the Leiden Longevity study.

LLS-PAROFFS [30-79 years old]

Platform version Total N. N. samples

Wave first measure Re-quantification samples after QC Drop rate (%)
I0P1 First Wave Version 2014 Version 2020 2313 1925 16.77
I0P2 Second Wave Version 2016 Version 2020 670 604 9.85
10P3 Third Wave Version 2016 Version 2020 498 400 19.68
LLS-SIBS [89-103 years old]
IOP1 First Wave Version 2014 Version 2020 998 948 5.01

N = number.

2.2. Comparison of the Metabolomic Analytes

Preprocessing: All the three versions of the metabolomics assays were run by Nightin-
gale Health on EDTA-plasma samples handled by the BBMRLNL cohorts. More than
220 analytes are included in all nightingale platform; however, we decided to mostly
focus our attention on the 63 mutually independent analytes used to build the previous
metabolomics-based models [1,2,7]. However, since 2 of these analytes were discontinued
(hdI2_c and hdl3_c), we substituted them with 4 biologically equivalent analytes, upon
Nightingale’s Health advice (x]_hdl_c, 1_hdl ¢, m_hdl_c, s_hdl_c) (lists in Supplemen-
tary Materials), which are available in all datasets. We then removed samples with more
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than 1 missing value, more than one zero and more than one outlier, defined as having a
concentration more than 5 standard deviations away from the mean of the analyte.

Analyses: We used Spearman’s correlation (p) to measure the strength and direction
of monotonic associations between the analytes in the different versions of the platform.
We also used a median absolute distance to evaluate the error of Nightingale Health’s
analytes to the clinically measured values. The median absolute distance is obtained by
using median and standard deviations of the clinical measures to scale all measures (both
clinical and Nightingale quantifications) to have comparable results.

2.3. MetaboHealth Score

Preprocessing: The MetaboHealth score was applied to both the datasets (the first wave
and the re-quantified), according to the description by Deelen et al. [2], using the R-package
MiMIR [39]. First, a logarithm transformation was applied to the analytes, while adding a
value of 1 to all analytes containing any zero. A z-scale normalization was then applied to
the log-transformed analytes in each cohort separately. Finally, the coefficients as indicated
by Deelen et al. [2] were applied to the dataset.

Analyses: Once we obtained the score, we used Spearman’s correlation to compare
the differences in MetaboHealth score before and after re-quantification. Cox proportional
hazard models are then used to test the associations between the two MetaboHealth scores
and time to death.

2.4. MetaboAge

Preprocessing: The quality control process used for the dataset in the first wave of
measures (data 2014) is discussed in details in our previous publications [1,7]. We used the
same steps also in the re-quantified dataset. From the above-mentioned list of 65 analytes,
we decided not to consider analytes with low detection rates in several cohorts (citrate and
3-hydroxybutyrate). We then excluded cohorts with several problems in the 65 selected
analytes. VUNTR ( 3559 samples) has high levels of missingness in pyruvate and glutamine,
while CODAM (145 samples) presented outliers in several metabolic features [20,38]. We
also removed samples with 1 or more missing value (65 samples), one or more zeroes
per sample (1 sample), and one or more concentration more than 5 times the standard
deviations away from the general mean of the feature (644 samples). The remaining
265 missing values (0.021% of the remaining values) were imputed using nipals (in the R
package pcaMethods). The final dataset, comprising 20,366 samples and 63 analytes, was
z-scaled to have comparable concentrations across all features.

Analyses: Due to discontinued analytes, we had to retrain the models and we decided
to train 2 different types of models: a linear regression model, to maintain the model as close
as possible to the previous version, and an ElasticNET regression, which avoids overfitting
thanks to a regularization technique. To train and evaluate both models we employed a
5-Fold Cross Validation scheme. During the training of the ElasticNET model we fixed the
mixing parameter « to 0.5 and optimized the shrinkage parameter A (like it was done in
previous papers [7,40,41]). As for the MetaboHealth, we then used Spearman’s correlations
to compare the different models and Cox proportional hazard models to investigate the
associations with time to death.

3. Results

All comparisons are conducted on data gathered within the BBMRI.NL consortium
(~35,000 samples in 28 cohorts, Methods Table 1). Samples were assayed using the Nightin-
gale Health platform in multiple waves of data generation, as indicated with their respective
years, 2014 and 2016. After the platform update by Nightingale of 2020, BBMRI.NL decided
to re-quantify their dataset completely to have metabolomics features comparable to other
consortia. It is important to stress that re-quantification consisted of a novel (computa-
tional) analyte quantification of the original assays performed in 2014 and 2016, i.e., no new
samples were assayed.
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3.1. An Overview of Changes in Measured Metabolic Features

With respect to marker availability, there are new and discontinued reported analytes.
Notably, the latest version of the platform (2020 version) includes 37 analytes, which have
been CE-approved for diagnostic purposes, i.e., ‘clinically validated’, making the Nightin-
gale platform now not only interesting for epidemiological research, but also suited for use
in the clinic [42]. In addition, 25 new analytes were added to the pool of metabolic markers
now also readily measurable in EDTA plasma (Supplementary Materials). Moreover, the
analyte pyruvate (pyr) is featured on the platform again, after being discontinued in 2016.
Conversely, analytes showing insufficient replicability were discontinued, either already in
the 2016 version (dag, dagtg, fallen, cla, cla_fa), or from 2020 onward (hdI2_c and hdl3_c), thus
posing potential backward compatibility issues.

Looking more closely at the data, we also note some more subtle changes that never-
theless are helpful to highlight. Compared to older platform versions, the proportion of
problematic values decreased in the re-quantified version of the platform, i.e., there are less
values that failed to be detected (NaNs), were reported as zero, or were considered outliers
(Figure S1). In addition, we observe that some markers were reported using different units
between, and occasionally within, platform versions. For instance, albumin (alb) changed
units from [signal area] in 2014 to [g/L] in 2020 (Figure S3). Particularly interesting are the
different ranges of creatinine in the re-quantified measurements (2020 version), which in
our case seems to depend on whether the first Nightingale metabolomics quantification
was completed either in 2014 or in 2016, with reported units in mmol/L and pmol/L,
respectively (Figure 52). These changes, if unnoticed, can impair replication of the results
and application of multi-variate models.

3.2. Correlation Analyses of Metabolomics Measurements between Platform Versions

First, we evaluated the Spearman’s correlation for each homonymous metabolic mea-
surement across the different Nightingale platform versions within the Leiden Longevity
study (LLS); a two-generation cohort containing highly aged individuals (LLS-SIBS) and
their offspring with the relative partners (LLS-PAROFFS), with repeated measures over
different time-points (IOP1, 2 and 3) (detailed description in Section 2). Considering same
samples of LLS-PAROFFS IOP1, measured the first time in 2014 and re-quantified in 2020
(Figure 1), we observed that 36 out of the 65 homonymous non-derived analytes (55%),
showed a Spearman’s correlation higher than 0.9, with one having a perfect value (glucose).
Additionally, 24 had a medium Spearman’s correlation (0.7 < p < 0.9), and only five ana-
lytes had a correlation lower than 0.7 (acace, Idl_d, sfa_fa, s_hdl_c and sm). Some analytes
showed a shift in mean, presumably as a result of a recalibration step, as reflected by a
change in levels, e.g., Id]_d: first wave [22.99 + 25.5 nm] vs. re-quantified [23.4 + 24.09 nm],
or in units, e.g., alb: first wave [0.06 < 0.14 signal area] vs. re-quantified [25.6 + 62.78 g/1].
Furthermore, also 54 out of the remaining 169 analytes, mostly containing derived measures,
showed lower Spearman’s correlations (R < 0.7) (Figure S4).

When computing the same correlation analyses comparing LLS_PAROEFFS IOP1 (2014
data) with another cohort measured in the first wave, LLS-SIBS (2014 data), or with data of
the same cohort of the second wave LLS_PAROFFS IOP2 (2016 data), we observe highly
similar trends (Figures 2a and S5A). While the majority of analytes show consistently high
Spearman’s correlations with their re-quantified counterpart across waves and cohorts, we
do observe some notable exceptions. Analytes with a low calibration Spearman’s correlation
(o <0.7) in the first data wave (either LLS_PAROFFS, or LLS-SIBS 2014 data) seem to show
improvement in the second wave data (either LLS_PAROFFS, 2016 data), except for ldl_d.
Considering that we find similar results also in LLS-PAROFFS 10P3 (Figure S5C,D), a
second round of repeated measures quantified with the Nightingale platform 2016, we
concluded that this latter platform version is more similar to the re-quantified data as
compared to 2014 version. Similar results are maintained when enforcing the same samples
sizes (Figure S6).
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Figure 1. Evaluation of the metabolic markers before and after re-quantification in LLS-PAROFFS
IOP1: Spearman’s correlations of the homonymous analytes measured in the first wave (2014) with
their re-quantified version (2020), colored based on their use in MetaboHealth and MetaboAge.
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Figure 2. Comparisons of the Spearman’s correlations of the metabolites before and after re-
quantification in different subgroups or platform versions: Each point of the scatterplots indicate
the Spearman’s correlations of each metabolic markers before and after the re-quantifications in
(a) LLS-PAROFFS IOP1 (x axis, first measured in 2014) and LLS-SIBS (y axis, first measured in
2014); and (b) LLS-PAROFFS IOP1 (x axis, quantification version 2014) with LLS-PAROFFS IOP2
(v axis, quantification version 2016). Metabolic markers were tagged if they show differences in
Spearman’s correlations.

To investigate how the correlations of metabolomic features between the different
Nightingale platform versions behave over different cohorts, we examined these on the
whole BBMRLNL dataset comprising 28 cohorts (Figure 3). Observed Spearman’s corre-
lations vary between —0.5 (generally for derived analytes, such as ratios or percentages)
and perfect positive correlation (g/ucose). The lower correlations were not due to a lower
variance in the markers (Figure S7D). Even though there are some cohorts that show gener-
ally lower Spearman’s correlations for all the analytes (e.g., BIOMARCS, or STEMI-GIPS),
the other cohorts show consistent correlations for the different analytes (Figure S7B,C).
73 analytes had a mean Spearman’s correlation above 0.9 across all BBMRI.NL biobanks
(Figures 3 and S7A, Table S5). 27 (48%) and 8 (57%) of these analytes overlap with the 57 and
14 analytes that were used to construct the MetaboAge and MetaboHealth score, respectively
(Figure S7E).
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Figure 3. Spearman’s correlations of all the metabolomic analytes with itself in a different before
(2014) and after re-quantification (2020) in all the BBMRIL.NL cohorts. Each bar represents the mean
and standard deviation of the Spearman’s correlation. The bars are colored based on their inclusion
in MetaboHealth and MetaboAge. A vertical dotted line indicates a Spearman’s correlation of 0.9.
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3.3. The Clinically Validated Biomarkers Show Similar Correlation, but Improved Calibration with
Respect to Previous Quantification

The latest Nightingale metabolomics platform contains 37 analytes approved by the
European community for diagnostics [42]. This is particularly interesting for Consortia like
BBMRINL, as it allows for an efficient quantification of various routinely assessed clinical
biomarkers in one single platform. For this purpose, we evaluated to what extent previously
measured clinical variables within BBMRI.NL align with their corresponding analytes on
the Nightingale platform. Four of the thirty-seven clinical biomarkers (HDL-cholesterol, LDL-
cholesterol, triglycerides, and total cholesterol) were available in thirteen of the twenty-eighty
cohorts (14,995 samples, Figure 4) and showed a medium to high Spearman’s correlation in
most of the cohorts, apart for BBOMARCS, PROSPER, and UCORBIO [mean p = 0.6]. While
different Nightingale versions generally showed very similar correlations with their clinical
chemistry counterparts, notable differences are observed when considering the median
absolute distance (MAD). For the 2020 version, we observe an improved concordance
between clinically measured biomarkers and their Nightingale counterpart, particularly
for LDL-cholesterol and total cholesterol. Evaluation of additional clinical variables (glucose,
creatinine, and albumin) within our in-house cohort LLS, indicated that this observation of
similar Spearman’s correlations, accompanied by an improved MAD for platform version
2020 can be extended to other analytes that have been clinically validated (Figure S9).

Correlations ofthe clinically validated m etabolites in BBMR I-n1l
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Figure 4. Comparisons of Nightingale metabolomics markers, measured in 2014 (red) and 2020

MAD

(blue), with the clinically measured values in BBMRLNL: Bar-plots of the (a) Spearman’s correlations
and (b) the median absolute distance (MAD) of the hdl cholesterol, Idl cholesterol (calculated with the
Friedewald equation), total cholesterol and triglycerides calculated with clinical chemistry, with their
corresponding values in the Nightingale assay (hdl_c, Id]_c/clinical_Id]_c, serum_c and serum_tg). The
label on the y-axis indicates the biobank, the total number of samples with available quantification
and the standard deviation of the clinically measured metabolite.

3.4. The MetaboHealth Score Shows a Comparable Association with Mortality Using Re-
Quantified Data

Next, we evaluated whether the platform changes affected the replication of the
MetaboHealth score [2]. The MetaboHealth score correlated on average p~0.83 between
the 2014 platform and the re-quantification in 2020 over all the cohorts (Figure 5a); with
a maximum of p =0.91 (in LLS-SIBS) and a minimum of p =0.72 BIOMARCS. Higher
Spearman’s correlations for LLS-SIBS [89-+-103 y.0.] and PROSPER [70--85 y.o.] might be
explained by the stronger signal caused by the fact that these cohorts generally include older
individuals, with a high frequency of mortality or cardiovascular events. Cohort-specific
differences in correlations between platform versions could be explained by inconsistent
correlations of acace, albumin, s_hdl_I, and xxI_vldl_d that have relatively high coefficients
in the MetaboHealth score (in Figure 5b). Indeed, we notice that patient cohorts such as
BIOMARCS, RAAK, and UCORBIO do have lower Spearman’s correlations.
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Figure 5. MetaboHealth score consistency over BBMRLNL: (a) Bar-plot presenting the Spearman’s
correlation of the MetaboHealth score calculated in all the BBMRI.NL biobanks with the metabolites
in the data measured in 2014 or 2020; (b) Jitter-plot of the Spearman’s correlations of the metabolic
markers used to build the MetaboHealth score calculated in data 2014 and 2020, divided per biobank.
The heatmap on top shows the coefficients of each biomarker in the MetaboHealth score.

Since the MetaboHealth score maintained similar predictions in the platform with
re-quantified metabolites, we next were interested whether the re-quantified score also
showed similar associations with mortality. To this end, we modeled time-to-death using
a Cox proportional Hazards model, while adjusting for age, sex, and family relation, in
LLS-SIBS (Niotal = 797, Nevents = 791). Both versions remained significantly associated
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(2014: HR~2.18, p =5.42 x 10728, and 2020: HR~1.98, p = 1 x 10~") albeit with a slightly
attenuated effect size for the 2020 platform version (Figure 6).

LLS_SIBS: Time to death associations (corrected age, sex and Family ID)

MetaboHealth_2020 _
N=797, N Events=791

models

MetaboHealth_2014 _
N=797, N Events=791

—— p-value =1 x 10%
models
MetaboHealth_2014
¢ MetaboHealth_2020
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Figure 6. MetaboHealth score associations with time-to-death in LLS-SIBS: Association with time-to-
death of the MetaboHealth score calculated with the metabolic markers quantified in 2014 (Metabo-
Health_2014) and the metabolic markers quantified in 2020 (MetaboHealth_2020). The two Cox regres-
sion models were performed on 797 individuals with 791 reported deaths and corrected for age, sex,
and Family relationships.

3.5. A Retrained MetaboAge on Re-Quantified Data Shows Similar Associations with Mortality
Compared to the Previous Version of MetaboAge

Since two essential variables (hld2_c and hdl3_c) were discontinued in the 2020 plat-
form, the original MetaboAge model (MetaboAge 1.0) could not be computed [1]. Therefore,
we decided to retrain the MetaboAge model using the re-quantified Nightingale 2020 mea-
surements, either using a: (1) a linear model (LM), consistent with the previous MetaboAge
model; and (2) an elastic net regression (EN), regularizing the contributions of each individ-
ual metabolite. 5-Fold Cross Validation, over the BBMRI.NL dataset (~20,366 samples, after
quality control), showed overall similar accuracies, with a slight advantage for the linear
model (MetaboAge 2.0: LM, p2 = 0.451; EN, p2 = 0.449, Figure 510). Spearman’s correlations
between the old and new versions of the models over all the BBMRI.NL biobanks showed
cohort-specific differences, with low correlations in the RAAK cohort (o = 0.5) and moder-
ately to high correlations for the ERF and FUNCTGENOMICS cohorts (o = 0.85 and 0.86,
respectively) (Figure S11). Nonetheless, we observe an overall high correlation between
the two novel versions of the MetaboAge models (p = 0.99) (Figure 7B), despite that the
informative metabolomics features are quite different across the three models (Figure 7A).
Yet, the elastic net version has a slightly higher Spearman’s correlation with the MetaboAge
1.0 (LM: R = 0.82 and EN: p = 0.83, Figure 7A). Nonetheless, the linear model assigns higher
coefficients to only few features compared to the elastic net model (Figure 7A) (MetaboAge
1.0 [range: —150,150], MetaboAge 2.0: LM [range: —40,000, 1,000,000], MetaboAge 2.0: EN
[range: —100, 50]).
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Figure 7. MetaboAge 2.0 evaluations: (a) Coefficients of MetaboAge1.0 and Metaboage2.0 ordered in

the same manner; (b) Spearman’s correlation between age, MetaboAgel.0, MetaboAge2.0 linear model
(LM) and ElasticNET (EN). *** indicate significant correlation (p value < 0.05); (c) Associations of

time-to-death with the three age predictors.

Finally, we performed a Cox-regressions analysis to predict time-to-death (corrected
for age sex and family relation) in the LLS-SIBS cohort (Ntotal = 806, Nevents = 800)
(Figure 7C). The associations with mortality are quite similar (equivalently significant and
moderate effect sizes) across all models, but slightly higher for the MetaboAge 2.0 models
(LM: HR~1.2, p = 1.69 x 1078 and EN: HR~1.2, p = 2.39 x 10~8, MetaboAge 1.0: HR~1.18,

p=289 x 107).

4. Discussion

Using the BBMRI.NL biobanking consortium, we evaluated the replicability across
Nightingale Health platform updates between 2014, 2016, and 2020 (re-quantification).
We observe improvements regarding the overall quantification quality; i.e., a decrease in
missingness; lower numbers of values that are reported as zero; and a better concordance
with clinical measurements. On the other hand, there are discontinued metabolites, and
changes in reported units between and sometimes within quantification versions that could
affect replication efforts. Some analytes displayed low calibration Spearman’s correlations
between the 2014/2016 and 2020 platform versions. Moreover, the 2016 version resulted
to be more similar to the re-quantified data as compared to the 2014 version, even when
evaluating the same sample sizes. Replication over the BBMRI-nl cohorts indicated similar
results, however, with lower concordance for some studies (e.g., BIOMARCS, or STEMI-
GIPS). Nevertheless, our analyses revealed a list of 73 analytes being highly consistent
between quantification versions of the BBMRLNL data set (mean R > 0.9). Additionally, the
re-quantification demonstrated its effectiveness in a substantial reduction of the median
absolute distance (MAD) in our comparisons with four clinically assessed lipid-related
features over thirteen cohorts. Moreover, the MetaboHealth score did generally replicate



Metabolites 2023, 13, 1181

13 of 16

well between platform version in the BBMRI-nl cohorts (mean p = 0.83, min p = 0.72,
BIOMARCS, and max p = 0.91, LLS-SIBS). Lower Spearman’s correlations were attributed
to inconsistencies in some score-related analytes (acace, albumin, s_hdl_I and xxI_vldl_d).
Importantly, the time-to-death association of the MetaboHealth score was not significantly
affected by the platform updates [2]. We retrained the MetaboAge score in BBMRI-nl due
to the absence of two analytes in the new platform version [1]. Spearman’s correlations
with the original MetaboAge model (MetaboAge 1.0) showed moderately high concordance
over all cohorts in BBMRI.NL, apart for RAAK (p~0.5), which is a relatively small cohort
focusing on patient with osteoarthritis. Notably, the retrained version of MetaboAge did
recapitulate the previously reported association with time-to-death. Between the two
versions of the MetaboAge 2.0, we believe the elastic net version to be the better model as the
regularization should warrant a higher robustness to future changes of the platform [43].

A significant constraint of the present study is that we do not have access to the
details of the changes performed to the quantification algorithms, as this is proprietary
information of the company, hence we limit ourselves to analyzing the differences in their
output and their consequences. Another major limitation, concerns the assessment of the
recent platform re-quantification of the Nightingale Health Plc, is the limited availability
of clinically measured features for comparisons. While the algorithm updates primarily
sought European approval for thirty-seven analytes [42], our evaluations were restricted to
just four lipid related metrics. Despite this limitation, in view of the platform’s strong lipid
focus, we believe that the comparisons at our disposal continue to hold substantial value.

In conclusion, replication of previous findings and analysis of repeated measures is
one of the cornerstones of epidemiological research [44,45]. Hence, we call for caution when
utilizing Nightingale data quantified at different time points. Moreover, it is important
to realize that pre-trained metabolic models cannot readily be applied across different
versions of the data. In these circumstances, we recommend a retraining of the score, or, if
this is not possible, an extensive re-evaluation of the models and their associations with
endpoints.
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