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Abstract: Hypertrophy development induced by the overexpression of SlbHLH22 (also called SlUPA-
like) was susceptible to Xanthomonas in tomatoes. Transcriptome and metabolome analyses were
performed on the hypertrophy leaves of a SlbHLH22-overexpressed line (OE) and wild type (WT)
to investigate the molecular mechanism. Metabolome analysis revealed that six key metabolites
were over-accumulated in the OE, including Acetylserine/O-Acetyl-L-serine, Glucono-1,5-lactone,
Gluconate, 2-Oxoglutarate, and Loganate, implying that the OE plants increased salt or oxidant
resistance under normal growth conditions. The RNA-seq analysis showed the changed expressions
of downstream genes involved in high-energy consumption, photosynthesis, and transcription regu-
lation in OE lines, and we hypothesized that these biological processes were related to the GTgamma
subfamily of trihelix factors. The RT-PCR results showed that the expressions of the GTgamma
genes in tomatoes, i.e., SlGT-7 and SlGT-36, were suppressed in the hypertrophy development. The
expression of the GTgamma gene was downregulated by salinity, indicating a coordinated role of
GTgamma in hypertrophy development and salt stress. Further research showed that both SlGT-7
and SlGT-36 were highly expressed in leaves and could be significantly induced by abscisic acid
(ABA). The GTgamma protein had a putative phosphorylation site at S96. These results suggested
GTgamma’s role in hypertrophy development by increasing the salt resistance.

Keywords: SlbHLH22-induced hypertrophy; metabolome; transcriptome; GTgamma gene; salt stress;
Solanum lycopersicum

1. Introduction

Xanthomonas causes a broad disease in crop cultivars, such as spot disease. To overcome
plant defense, Xanthomonas delivers transcription activator-like effectors (TALes) into
host cells to suppress immune responses [1]. AvrBs3, one of the TALe families, induces
cell enlargement in the host leaf by directly activating a master regulator of cell size,
i.e., UPA20, a bHLH family gene [2,3]. We also found that SlUPA-like (the orthology of
UPA20, also called SlbHLH22) overexpression caused severe hypertrophy and facilitated
the infection of Xanthomonas in tomato leaves. The experimental evidence proved that
the Gibberellin (GA) response was upregulated and that the jasmonic acid (JA) response
was downregulated in SlUPA-like overexpressed lines (OEs) [4]. Additionally, the mature
leaves of OEs curled upward and wilted under normal conditions, and the total chlorophyll
decreased remarkably [4]. These phenotypes implied that other factors might be involved
in the developmental malformation of OE plants.

Previous reports proved that altering plant development with trihelix factors con-
tributes to pathogen susceptibility or resistance. GhGT-3b was strongly induced by Verticil-
lium dahlia and the heterologous expression of GhGT-3b in Arabidopsis enhanced resistance
to Verticillium dahlia but inhibited the growth of rosette leaves [5]. ARABIDOPSIS SH4-
RELATED 3 (ASR3) overexpressed plants were smaller than the control but enhanced
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susceptibility to infections of Pseudomonas syringae pv tomato DC3000 and Pseudomonas
syringae pv maculicola ES4326 [6]. Meanwhile, a similar mechanism was also found in the
over-accumulation of the ASR3-interacting transcriptional factor 1 (AITF1), which nega-
tively regulated Pseudomonas syringae resistance in Arabidopsis [7]. In maize, the seedlings
of ZmGT-3b knockdown showed reduced photosynthesis activity but were resistant to the
Fusarium graminearum challenge [8]. However, few data verified the role of the trihelix gene
in hypertrophy developments.

Most studies focus on trihelix factor functions in abiotic stress. The overexpression of
ShCIGT (GT-1) improved cold and drought tolerance in tomatoes [9]. In cotton, GhGT26 (GT-
1)-overexpressed lines had higher salt tolerance than the control via the ABA independent
pathway, which was partially similar to the SIP1subfamily gene GhGT23 [10]. In rice,
the experimental data proved that OsGTgamma-1 and OsGTgamma-2 have specific roles
in promoting salt tolerance when directly regulating salinity transporter genes [11,12].
Interestingly, SlbHLH22 enhanced plant tolerance to salinity in MicroTom (one dwarf
cultivar of tomato) [13]. It was a hypothesis that perhaps SlbHLH22 regulates abiotic
stress-related genes via the trihelix family.

Aside from regulation by the transcription level, trihelix factor functions are often
affected by post-transcription modification. Calcium/calmodulin kinase II (CaMKII) can
phosphorylate GT-1 at T133 [14]. ShCIGT (SlGT-24) regulated abiotic tolerance by inter-
acting with Snf1-related kinase 1 (SnRK1) [9]. NMR titration experiments suggested the
phosphorylation site of GT-1 is located at the N-terminus of the third helix [15]. The N-
terminal of PTL, a GT-2 factor, can be phosphorylated by SnRK1α1(AKIN10), an α-subunit
of SnRK1 [16]. Meanwhile, ASR3 can be phosphorylated by MAMP-activated MPK4 [6].
Therefore, we speculated that trihelix factors might fulfill the necessary functions via
phosphorylation.

In our experiment, transcriptome and metabolome analysis was used to reveal the
molecular mechanism of a developmental malformation in OE, suggesting that the sus-
ceptibility of OE plants to Xanthomonas was related to increasing salt or oxidant tolerance.
Extensive analysis indicated that GTgamma was suppressed downstream of SlbHLH22 pro-
tein, which was similar to that inhibited expression in salt stress. Deep analysis forecasted
that the GTgamma protein might be phosphorylated at the post-transcription level. There-
fore, our research provided a good foundation for studying the pathogenic mechanism of
hypertrophy development and GTgamma’s role in biotic and abiotic stress.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

Solanum lycopersicum Mill. var. Ailsa Craig (AC++, WT) and SlbHLH22 (Solyc03g097820,
also called SlUPA-like) OE lines [3] were grown in a glasshouse under controlled condi-
tions with 16-h-light/8-h-dark cycles, 25 ◦C-day/18 ◦C-night temperatures, 80% relative
humidity, and 250 µmol m−2 s−1 luminous intensity. Flowers were tagged at the anthesis
stage, immature green fruit was defined as 20 DPA (days past anthesis), mature green fruit
as 35 DPA, and breaker fruit as 38 DPA with the color starting to generate a slight yellow
shade. Other fruits from the 4th (B+4) and 7th (B+7) days after the breaker were harvested.
Fruits at different ripening stages were collected, frozen immediately in liquid nitrogen,
and stored at −80 ◦C until use [17].

2.2. Transcriptome and Metabolome Analysis

Total RNA was extracted from OE and WT leaves by using Trizol reagent (Invitrogen,
Carlsbad, CA, USA), and the concentration and purity of RNA were measured by Nanodrop
2000 (Thermo Fisher Scientific, Waltham, MA, USA). The RNA integrity was measured by
Agient 2100, LabChip GX (Santa Clara, CA, USA). Three biological replicates were sampled
for each group (WT, OE). RNA and then transcriptomic experiments were conducted
by BMKcloud, Beijing, China (http://www.biomarker.com.cn, accessed on 19 May 2023).
Clean reads were obtained by removing adapters. Reads were then mapped to the Solanaceae
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genome (https://solgenomics.net/, accessed on 19 May 2023) using HISAT2 and gene
expression levels were quantified with HTseq (BMKcloud, Beijing, China) [18].

Samples were ground to powder using a grinder (MM 400, Retsch, Shanghai, China)
and dissolved into an extraction solution to remove by ultrasonic extraction. The ex-
tracted metabolites were analyzed by LC-MS/MS with Waters Xevo G2-XS QTOF (Milford,
CT, USA). The metabolomics experiments and conjoint analyses of transcriptome and
metabolome sequencing were conducted by BMKcloud, Beijing, China (http://www.
biomarker.com.cn/, accessed on 19 May 2023) [18].

2.3. Hormonal and Salt Treatments

A 35-day-old tomato seedling of AC++ planted in green house of Jiujiang University
(Jiujiang, China) was used for hormonal and abiotic treatments with three biological
replicates.

For hormonal treatment, all the potted tomato seedlings were sprayed with dif-
ferent hormonal (50 µM 3-Indoleacetic Acid IAA, 50 µM Gibberellin GA, 100 µM 1-
Aminocyclopropane-1-Carboxylicacid, ACC, 100 µM Abscisic Acid ABA, 50 µM Methyl
Jasmonic Acid MeJA; 50 µM Epibrassinolide EBR; 50 µM Uniconazole NA) (Coolaber,
Beijing, Chia) and distilled water (the control). Plants were enclosed in plastic immediately
and left for 0, 1, 4, 8, 12, 24 h; the leaves of the tomato seedlings were taken and stored at
−80 ◦C until use [19–21].

Salinity treatments were operated by submerging the roots of the tomato seedlings in
distilled water with 200 mM NaCl for 0, 1, 4, 8, 12, 24, 48 and 72 h; Roots and leaves from
the treated seedlings were collected and stored at −80 ◦C until use [22].

2.4. RT-PCR

The total RNA was reverse-transcribed to cDNA. RT-PCR was performed using SYBR
® Premix Ex Taq TM (TaKaRa, Dalian, China). RT-PCR primers were designed with Primer
5 (Supplementary Table S1). The tomato SlCAC and SlEF1a gene were used as an internal
control of expression patterns and treatments. All the selected genes were calculated with
three technical replicates.

2.5. Statistic Analysis

All data are means ± standard deviation of at least three independent experiments.
Significance in a difference between the two groups was assessed by a Student’s t-test
(*, p < 0.05 or **, p < 0.01). The different letters above the column in the figures indicate
that significant differences of p < 0.05 were assessed by ANOVA. These statistical programs
were performed using DPS v2.1.3 software (Ruifeng, Hangzhou, China).

2.6. Computational Modeling

The structure of the peptides was drawn using SWISS-MODEL. The peptide was sent
to the GRAMMX protein–protein docking server (Version 12.0). Conformation models were
obtained. These docking conformations were sent to the Rosetta FlexPepDock 4.0 server to
be refined from a complex between a protein receptor and an estimated conformation for a
peptide, allowing full flexibility to the peptide and sidechain of the receptor. FlexPepDock
4.0 gave an output of predicted energies for the complex. Peptides were added to the
CHARMM36 force field to correct any resulting mischarges [23].

3. Results
3.1. Metabolome Analysis of OE vs. WT

After metabolome analysis, different expressed genes (DEGs) encoding metabolic pro-
cesses in OE were primarily clustered in “alanine, aspartate and glutamate metabolism”,
“carbon metabolism”, “monoterpenoid biosynthesis”, “taurine and hypotaurine metabolism”,
“tyrosine metabolism” and “zeatin biosynthesis” compared to those in WT. The different
metabolic processes were most enriched in “ascorbate and aldarate metabolism”, “carbon
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metabolism”, “pentose and glucuronate interconversions”, and “vitamin B6 metabolism”.
They were further enriched in “arginine biosynthesis”, “unsaturated fatty acids biosyn-
thesis”, “monoterpenoid biosynthesis”, “phosphatidylinositol signaling system”, “sulfur
metabolism”, “taurine and hypotaurine metabolism”, “terpenoid backbone biosynthesis”,
and “zeatin biosynthesis” (Figure 1). The consistent results between metabolic processes
and their DEGs were “carbon metabolism”, “monoterpenoid biosynthesis”, “taurine and
hypotaurine metabolism”, and “zeatin biosynthesis”. Within these processes, six key metabo-
lites were abundant, including Acetylserine/O-Acetyl-L-serine (OAS), Glucono-1,5-lactone,
Gluconate, 2-Oxoglutarate (2-OG) and Loganate (Figure S1). Previous studies confirmed that
these metabolites were helpful to salt or oxidant resistance [24–28].
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3.2. Transcriptome Analysis of OE vs. WT

To better understand the molecular mechanism of malformation developments in OE
leaves, we performed transcriptome analysis in the mature leaves of OE vs. WT. Through
RNA-seq analysis, we obtained 6 RNA-seq libraries and 24 to 27 million clean reads. After
alignment with reference sequences, the alignment efficiency of clean reads ranged from
94.47% to 96.22% (Supplementary Table S2). Clearly, 2815 DEGs were identified, including
1299 upregulated and 1516 downregulated DEGs (Figure 2).

Gene ontology (GO) analysis clarified that upregulated DEGs remarkably converged
on “amino acid” and the “sulfate transmembrane transport process” in the biological pro-
cess (Figure 3A). In cellular component ontology, “integral component of membrane” and
“plasma membrane” were the most abundant categories (Figure 3B). Genes involved in
“amino acid transmembrane transporter activity”, “sequence-specific DNA binding”, “tran-
scription factor activity” and “secondary sulfate transmembrane transporter activity” were
enriched in the molecular function category (Figure 3C). Downregulated DEGs markedly
gathered in “photosynthesis”, “light harvesting in PSI”, “protein-chromophore linkage”,
“responses to light stimulus”, “flavonoid glucuronidation”, “flavonoid synthesis”, “DNA
replication initiation” and “cell wall biogenesis” in biological processes (Figure 3D). In
cellular component ontology, “photosystem”, “plastoglobule”, “MCM complex”, “chloro-
plast”, “cell wall”, “nucleosome”, “intracellular membrane-bounded organelle”, and ”THO
complex” were the most abundant categories (Figure 3E). Genes involved in “chlorophyll”
and “pigments binding” were enriched in the molecular function category (Figure 3F).
These data suggested that the strongly repressed photosynthesis increased the substance
transmembrane transport and transcription factor activities in OE.
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Our KEGG enrichment analysis is shown in Figure 4A. The pathway “galactose
metabolism”, “fatty acid degradation”, “amino acids (valine, leucine and isoleucine) degra-
dation”, “tyrosine metabolism” and “α-linolenic acid metabolism” were primarily clus-
tered. From a wider range of KEGG enrichment results, “protein processing in endoplasmic
reticulum”, “ubiquitin mediated proteolysis”, “plant hormone signal transduction”, and
the “phosphatidylinositol signaling process” were also enriched (Figure S2). Downregu-
lated DEGs clustered in “antenna proteins”, “DNA replication”, “ribosome”, “glutathione
metabolism”, “steroid biosynthesis” and “ribosome biogenesis” (Figure 4B). These results
point to accelerated energy consumption, decreased growth, and development processes
in OE.
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3.3. Analysis of the Transcription Factor among DEGs

GO analysis indicated that DEGs encoding transcription factors were significantly
enriched in downstream genes. Through an amino acid blast in the NCBI and SGN
databases (plantTFDB), 206 DEGs and 46 TF (transcription factors) families were obtained
in OE (Table 1). Trihelix factors always take part in plant photosynthesis, growth, and
development [29,30]. Four genes of the trihelix family in OE were clearly regulated,
including upregulated SlGT-31 (GT-2) and SlGT-32 (SIP1) and downregulated SlGT-34 (GT-
2) and SlGT-36 (GTgamma) (Figure 5). Recently, the role of the GTgamma subfamily in salt
stress has been emphasized [12], but GTgamma gene responses in hypertrophy development
have rarely been reported.
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Table 1. Statistical analysis of all differentially expressed transcription factor genes.

Serial
Number

TF
Family

DEGs
Numbers

Serial
Number

TF
Family

DEGs
Numbers

Serial
Number

TF
Family

DEGs
Numbers

1 AP2/ERF-AP2 2 17 E2F-DP 1 33 MYB-related 4
2 AP2/ERF-ERF 19 18 EIL 1 34 NAC 19
3 B3 5 19 GARP-ARR-B 1 35 NF-YA 4
4 B3-ARF 2 20 GARP-G2-like 2 36 NF-YB 1
5 BBR-BPC 1 21 GeBP 1 37 NF-YC 1
6 bHLH 15 22 GRAS 4 38 OFP 1
7 bZIP 10 23 HB-BELL 2 39 PLATZ 2
8 C2C2-CO-like 2 24 HB-HD-ZIP 15 40 RWP-RK 1
9 C2C2-Dof 5 25 HB-KNOX 2 41 SRS 1

10 C2C2-GATA 3 26 HB-other 4 42 TCP 6
11 C2C2-YABBY 2 27 HMG 2 43 Tify 2
12 C2H2 11 28 HSF 6 44 Trihelix 4
13 C3H 2 29 LOB 1 45 WRKY 8
14 CPP 1 30 MADS-MIKC 8 46 zf-HD 1
15 DBB 1 31 MADS-M-type 3
16 DBP 1 32 MYB 16
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3.4. Expression Patterns of GTgamma Genes in AC++ and Their Responses to External Stimuli

Given that GTgamma is a downstream gene of SlbHLH22 protein and has a positive
function in salt tolerance in rice [12], GTgamma responses to salt treatments and expression
patterns were investigated in tomatoes. We tested the expression profiles of 11 different
organs of the tomato cultivar AC++. Two GTgamma genes (SlGT-7 and SlGT-36) were
expressed in the leaves of AC++, especially SlGT-36. SlGT-7 displayed significantly higher
expressions in B+4 and B+7 (Figure 6A). SlGT-36 transcripts accumulated the lowest in
the B stage (Figure 6B). Thus, the expression patterns of two GTgamma genes exhibited
tissue specificity.

To examine the endogenous response of GTgamma genes to salinity, 35-day-old tomato
seedlings were watered with salinity (Figure 7). Both SlGT-7 and SlGT-36 were gradually
induced to 2~2.5 fold at 12 h and then suddenly suppressed to less than 50% at 24 h in
leaves. In the next two days, they remained at a low level (Figure 7A,B). In seedling roots,
SlGT-7 was gradually upregulated to about 4.5-fold within 48 h and then downregulated
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(Figure 7C,D). The experimental results suggested that both GTgamma genes were repressed
in leaves due to salinity stress.
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To find the putative signaling pathway, SlGT-7 and SlGT-36 were treated with seven
hormones. The expression levels of both GTgamma genes were higher in all hormonal treat-
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ments than in water spraying after 8 h (Figure 8A−D). Within 24 h, SlGT-7 and SlGT-36 were
maintaining higher levels than controls under ABA treatments (Figure 8A,C). In addition,
both GTgamma genes showed sensitivity to other hormonal stimuli (Figure 8B,D). These
results suggested that GTgamma genes might participate in the ABA signaling pathway.
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Figure 8. Expressions of two GTgamma genes, SlGT-7 (A,B) and SlGT-36 (C,D), in hormonal treatments.
IAA: 3-Indoleacetic Acid; GA: Gibberellin; ACC: 1-Aminocyclopropane-1-Carboxylicacid; ABA:
Abscisic Acid; MeJA: Methyl Jasmonic Acid; EBR: Epibrassinolide; NA: Uniconazole. The leaves
of 35-day-old AC++ seedlings were used. All data are means ± standard deviation of at least three
independent experiments. Significance in different expressions of GTgamma genes between hormonal
treatments and control were assessed by a Student’s t-test using DPS software (*, p < 0.05; **, p < 0.01).

3.5. Three-Dimensional Structures of SlGT-7 and Its Potential Phosphorylation Site

Transcription factors have a critical role in plant physiology and development, and
most of these events are commonly mediated by protein phosphorylation [15,16]. To
anticipate the posttranscriptional modification of GTgamma factors, a three-dimensional
model of SlGT-7 was built. Using SWISS-MODEL, the lowest energy structure of SlGT-7 is
shown as ribbon models in Figure 9A. In this model, two classical domains were found
including triple-helix (Helix 1, Helix 2 and Helix 3) and the fourth helix at the C-terminal.
SlGT-7 looked like an ellipse with a hole on one side (Figure 9B). ATP molecules putatively
entered into the hole and interacted with SlGT-7 at the lowest energy (−6.35 kcal/mol)
(Figure 9C–E). Further analysis showed that five amino acids (S96, Y196, Q199, N200 and
R201) inside the hole interacted with the ATP molecules via hydrogen bonds (Figure 9F).
The distance estimation of γ-phosphate to five amino acids implied that S96 in Helix 1 was
the potential phosphorylation site.
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energy and red the high energy. The dot represents amino acid; (E): The putative action site of the
SlGT-7 model and ATP molecular; (F): The binding of SlGT-7 and ATP by hydrogen bonds.

4. Discussion

Xanthomonas delivers TALes into plant cells to overcome a plant’s defense [1]. Like
a transcription factor, AvrBS3, one TALe targets UPA20 to induce hypertrophy develop-
ment in pepper leaves, which promotes the infection of Xanthomonas [2,3] and SlUPA-like
(SlbHLH22) functions in tomato leaves [2,4]. To reveal the malformation development of OE
leaves in more depth, transcriptome and metabolome analyses were carried out in WT vs.
OE. The metabolome results showed that the following metabolites were over-accumulated:
Acetylserine, O-Acetyl-L-serine (OAS), Glucono-1,5-lactone, Gluconate, 2-Oxoglutarate
(2-OG), and Loganate (Figure 1). OAS accumulations are related to resistance to salt
stress [24,25], which was analogous to the biological function of the GTgamma factor in
rice [12]. Gluconate induces increased abiotic stress resistance in plants [28]. 2-OG is
linked to the metal toxicity alleviatory of tomato and hormonal synthesis in the sulfate-
dependent or independent pathway [26,31], which was similar to our results in the GO
analysis (Figure 3). Through RNA-seq analysis, 1299 and 1516 DEGs were, respectively,
up- and downregulated (Figure 2). The transcriptome enrichment results indicated that
weak photosynthesis, high-energy consumption, increased transcription factor activity,
and sulfate transmembrane transport occurred in OE (Figures 3 and 4). Loganate has the
capability of scavenging against superoxide radicals [25]. In addition, SlbHLH22 (also called
SlUPA-like) enhances plant salinity [13,32]. Therefore, both transcriptome and metabolome
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analyses suggested that the hypertrophy phenotypes of OE lines might be connected with
promoting salt or oxidative resistance.

Further research showed that the GTgamma gene was not only suppressed in hy-
pertrophy leaves, but also inhibited by salt stress. The GO analysis showed that these
biological processes, e.g., “light harvesting”, “photosynthesis”, “responses to light stimu-
lus”, “flavonoid synthesis”, etc., were prominently restrained in OE, which always took
place in the trihelix factor [30,33]. Fortunately, four trihelix genes exhibited remarkable
regulation: increased SlGT-31(GT-2) and SlGT-32 (SIP1) and decreased SlGT-34 (GT-2) and
SlGT-36 (GTgamma) (Figure 5). Furthermore, six metabolites (Acetylserine, OAS, Glucono-
1,5-lactone, Gluconate, 2-OG and Loganate) had a possible role in promoting salt or oxidant
tolerance [24–28]. It was reported that GTgamma played the role of a positive regulator
in salt stress in rice and that SlbHLH22 boosted salt resistance in tomatoes [11–13]. These
results implied that GTgamma, as downstream genes of SlbHLH22 protein, might perform
a salt-resistant function in tomatoes. Figure 7 shows that both GTgamma genes were promi-
nently inhibited by salt stress, implying a consistent role in malformation development of
the OE line and salt stress.

Through an extensive analysis of the GTgamma genes, we found that two GTgamma
genes were expressed in AC++ leaves, especially SlGT-36, indicating the reason why only
one GTgamma gene was repressed by SlbHLH22 in hypertrophy. Tissue-specific expression
patterns were present when SlGT-7 transcripts were specifically expressed in B+4 and B+7
stages fruit and SlGT-36 in all tissues except B stage fruit (Figure 6), which was slightly
different from Yu et al. [34], indicating the following different varieties: AC++ and LA1777.
In addition, SlGT-7 was remarkably upregulated by ABA, which was very similar to
OsGTgamma-1 [11]. Both SlGT-7 and SlGT-36 responded to all selected phytohormone,
indicating their versatile role in plant growth and development (Figure 8). Moreover, we
also found that water inhibited SlGT-7 and SlGT-36 expressions by over 60% in the leaves of
AC++ seedlings (Figure 8). Whether SlGT-7 was involved in the regulation of water stress
needs more evidence.

Protein posttranslational modification is a fine-tuned mechanism in abiotic or biotic
resistance [6,9,15–17]. Therefore, we hypothesized that GTgamma performed this function
via phosphorylation but required further experimental evidence support. We constructed a
three-dimensional model of SlGT-7 as a candidate. We discovered the interactions between
ATP and SlGT-7 in a putative hole (Figure 9). We also predicted that S96 was the most likely
phosphorylation site. It was commonly believed that protein kinases transfer γ-phosphate
from ATP to Ser (S), Thr (T), or Tyr (Y) during protein modification [35]. Our model implied
that S96 got closer to the γ-phosphate of ATP than others, suggesting the phosphorylation
site of S96 (Figure 9F). In short, our present findings about the posttranslational modifi-
cation model of the GTgamma protein provide the foundation for an in-depth study of
the hypertrophy development of OE lines and the regulatory role of downstream genes
in tomatoes.

5. Conclusions

Xanthomonas injects TALes into the host cells to suppress plant immune defense.
One TALe, AvrBS3, activates the plant target gene: pepper upa20. The overexpression of
SlbHLH22 (also called SlUPA-like), i.e., the orthology of upa20, causes the hypertrophy and
susceptibility of Xanthomonas in tomatoes. The metabolome analysis showed that specific
metabolites were over-accumulated in OE with a potential role in promoting salt resistance.
The transcriptome analysis verified that OE plants suffered from high energy consumption,
weak photosynthesis, and increased transcription factors activity. GTgamma gene expression
was suppressed by SlbHLH22. Furthermore, it was simultaneously inhibited by salt stress,
indicating GTgamma’s role in the formation of hypertrophy development via the salt stress
response. Extensive analysis proved that both GTgamma genes expressed in leaves were
induced by ABA. Moreover, the GTgamma protein had a putative phosphorylation site at
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S96. Our results provide the basis for disclosing the pathogenic mechanism of hypertrophy
development medicated by the GTgamma subfamily.
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