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Abstract: This clinical study presents a comprehensive investigation into the utility of breath analysis
as a non-invasive method for the early detection of lung cancer. The study enrolled 14 lung cancer
patients, 14 non-lung cancer controls with diverse medical conditions, and 3 tuberculosis (TB) patients
for biomarker discovery. Matching criteria including age, gender, smoking history, and comorbidities
were strictly followed to ensure reliable comparisons. A systematic breath sampling protocol utilizing
a BIO-VOC sampler was employed, followed by VOC analysis using Thermal Desorption–Gas
Chromatography–Mass Spectrometry (TD-GC/MS). The resulting VOC profiles were subjected to
stringent statistical analysis, including Orthogonal Projections to Latent Structures—Discriminant
Analysis (OPLS-DA), Kruskal–Wallis test, and Receiver Operating Characteristic (ROC) analysis.
Notably, 13 VOCs exhibited statistically significant differences between lung cancer patients and
controls. The combination of eight VOCs (hexanal, heptanal, octanal, benzaldehyde, undecane,
phenylacetaldehyde, decanal, and benzoic acid) demonstrated substantial discriminatory power
with an area under the curve (AUC) of 0.85, a sensitivity of 82%, and a specificity of 76% in the
discovery set. Validation in an independent cohort yielded an AUC of 0.78, a sensitivity of 78%, and
a specificity of 64%. Further analysis revealed that elevated aldehyde levels in lung cancer patients’
breath could be attributed to overactivated Alcohol Dehydrogenase (ADH) pathways in cancerous
tissues. Addressing methodological challenges, this study employed a matching of physiological
and pathological confounders, controlled room air samples, and standardized breath sampling
techniques. Despite the limitations, this study’s findings emphasize the potential of breath analysis
as a diagnostic tool for lung cancer and suggest its utility in differentiating tuberculosis from lung
cancer. However, further research and validation are warranted for the translation of these findings
into clinical practice.

Keywords: breath test; volatile organic compound; point-of-care test; early diagnosis; cancer screening

1. Introduction

Lung cancer stands as one of the most widespread and deadliest types of cancer
globally, accounting for a substantial portion of cancer-related fatalities. It results from
the uncontrolled proliferation of abnormal cells in the lung tissues, primarily triggered by
exposure to carcinogens like tobacco smoke, air pollutants, and genetic predispositions.
The early detection of lung cancer is paramount for effective treatment and enhanced
patient prognosis. Conventional diagnostic techniques such as imaging methods and tissue
biopsies have drawbacks in terms of invasiveness, expense, and accessibility. Consequently,
there exists a critical need for non-invasive and precise diagnostic tools to identify lung
cancer in its earliest stages [1].

Recent strides in medical research have led to the emergence of innovative diagnostic
approaches, including breath tests, for the early detection of lung cancer. These tests
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scrutinize the volatile organic compounds (VOCs) found in exhaled breath, which can
potentially serve as biomarkers indicative of the disease [2,3]. The breath test technique
presents several advantages, including non-invasiveness, simplicity, and the capability to
deliver real-time results. By pinpointing the specific patterns of VOCs associated with lung
cancer, this novel breath test holds potential as a trustworthy and cost-effective screening
tool that could significantly enhance early detection rates.

A range of existing methods has been employed in the quest for early lung cancer
detection. Gas Chromatography–Mass Spectrometry (GC-MS) is a widely utilized technique
known for its excellent sensitivity and specificity in identifying VOCs linked to lung
cancer [4]. Nevertheless, GC-MS is time consuming and necessitates extensive sample
preparation. Additionally, the sample container can introduce unpredictable effects on
VOC concentration. The electric nose, or electronic nose, offers an alternative approach by
utilizing sensor arrays to discern VOC patterns in exhaled breath [3]. While electric nose
devices are relatively straightforward to use and provide real-time results, they may not
possess the same level of precision and sensitivity as GC-MS. Liquid Chromatography–Mass
Spectrometry (LC-MS) represents another valuable tool for identifying and quantifying
VOCs. While LC-MS boasts exceptional resolution and sensitivity, its application in breath
analysis is challenging due to the low levels of VOCs in breath samples. Furthermore, the
HPPI-MS, an enhanced form of Single-Photon Ionization–Mass Spectrometry (SPI-MS),
while showing promise in classifying healthy participants and cancer patients, is limited to
detecting m/z and cannot identify specific VOCs [5]. Thus, despite their advantages, these
existing methods may have limitations regarding sensitivity, specificity, and practicality for
breath-based lung cancer detection.

In this study, we introduce a breath test that employs Thermal Desorption–Gas
Chromatography–Mass Spectrometry (TD-GC/MS) and machine learning to detect cancer,
particularly lung cancer. The paper outlines the design, methodology, sensitivity, accuracy,
and potential clinical applications of the breath test system. Initial results demonstrate the
feasibility and effectiveness of our breath test in identifying cancer patients, specifically
those with lung cancer. This approach holds the potential to enhance lung cancer screening
and contribute to improved patient outcomes through early detection and intervention.

2. Study Design

The study received ethical approval (DSRB Study Reference No: 2011/00380) from
the Institutional Review Boards of the National University of Singapore, and all participants
provided informed consent through signed documents. For the biomarker discovery phase (as
detailed in Table 1), the research enlisted 14 individuals diagnosed with lung cancer, 14 non-
lung cancer controls (comprising patients with conditions such as COPD, asthma, diabetes,
and hypertension), and 3 patients with tuberculosis. It is worth noting that there were no
statistically significant differences in terms of gender, age, and smoking history (p > 0.05)
observed between the lung cancer group and the non-lung cancer controls. Furthermore,
these two groups were closely matched in terms of comorbidities. In the subsequent validation
set (as outlined in Table 2), the study included 18 participants diagnosed with lung cancer
and 16 non-lung cancer controls. Importantly, this selection maintained a rigorous matching
of gender, age, smoking history, and comorbidities between the two groups.

2.1. Breath Sampling Protocol

The breath samples were collected utilizing the BIO-VOC sampler, a procurement
from Markes International United Kingdom, which is designed for this purpose. To ensure
the utmost accuracy, the subject was instructed to exhale through a disposable mouthpiece
until reaching the mid-tidal breath phase, displacing any residual environmental air within
the sampling tube. This sampling tube is engineered to retain a fixed volume of breath and
incorporates a one-way filter mechanism, preventing potential pathogenic contamination
from the ambient air. The integrity of the sample was preserved by sealing the sampling
tube with a PTFE plug. Following this initial collection, the sample was then transferred to
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a Tenax tube, sourced from SKC, United Kingdom, utilizing a precision plunger mechanism.
This particular tube is airtight and houses specialized sorbent materials that are adept at
trapping volatile organic compounds (VOCs) of interest. Subsequently, these collected
Tenax tubes were safely stored at a controlled temperature of 4 ◦C until the analysis
phase. Each Tenax tube was individually barcoded and assigned a unique identification for
accurate subject delineation. For the lung cancer subjects, a total of three tubes of breath
samples were collected per individual, ensuring a robust dataset for analysis. Conversely,
control subjects provided two tubes of breath samples. Additionally, to account for any
potential environmental contaminants, a sample of ambient air was also collected in parallel.
This approach ensures that the subsequent analysis is not confounded by any extraneous
factors, upholding the integrity and accuracy of the study’s findings.

Table 1. Clinical characteristics of the discovery set.

Lung Cancer Controls TB

Total Number 14 14 3

Sex (M/F) 10/4 10/4 2/1

Mean Age ± SD 67 ± 10 67 ± 7 51 ± 20

Smoking History
Current smokers 4 4 2
Ex-smokers 8 8 0
Pack-years of smoking 38.7 38.6 40
Non-smokers 2 2 1

Histology
Adenocarcinoma 9
Squamous cell carcinoma 3
Unknown 2

Stage
1 and 2 3
3 and 4 10
Unknown 1

Table 2. Clinical characteristics of the validation set.

Lung Cancer Controls

Total Number 18 16

Sex (M/F) 14/4 13/3

Mean Age ± SD 66 ± 9 64 ± 12

Smoking History
Current smokers 3 3
Ex-smokers 10 9
Pack-years of smoking 37.5 30
Non-smokers 5 4

Histology
Adenocarcinoma 16
Squamous cell carcinoma 1
Unknown 1

Stage
1 and 2 2
3 and 4 15
Unknown 1

2.2. GC/MS Details

Thermal Desorption–Gas Chromatography–Mass Spectrometry (TD-GC-MS) is a
highly sensitive analytical technique used for the detection and identification of volatile and
semi-volatile compounds in a wide range of samples. This method integrates three essential
processes: Thermal Desorption, Gas Chromatography (GC), and Mass Spectrometry (MS).
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First, thermal desorption involves heating the sample to release the volatile com-
pounds from a solid or liquid matrix. This step allows for the efficient extraction of
compounds that may be difficult to isolate through conventional extraction methods. The
liberated compounds are then carried into the GC column by a flow of inert gas. In the
GC phase, the individual components are separated based on their chemical properties,
such as boiling point and polarity, as they interact with the stationary phase within the
column. This separation process ensures that each compound is analyzed individually,
reducing interference and enabling accurate identification. In the final step, the separated
compounds are subjected to mass spectrometry, where they are ionized, fragmented, and
then detected based on their mass-to-charge ratios. By comparing the obtained mass spectra
with a database of known compounds, TD-GC-MS allows for the precise identification and
quantification of the substances present in the sample. This technique finds widespread ap-
plication in environmental analysis, food safety, forensics, and various other fields requiring
sensitive and selective compound identification.

The analysis of volatile organic compounds (VOCs) was conducted through the utiliza-
tion of Thermal Desorption–Gas Chromatography–Mass Spectrometry (TD-GC/MS). This
sophisticated analytical technique employed state-of-the-art equipment, including a Unity
Series 2 Thermal Desorber procured from Markes International Limited, in conjunction
with a 6890 GC system from Agilent Technologies, interfaced with a 5973 MSD, also from
Agilent Technologies. To initiate the process, the sampling tube underwent a pre-purge
phase lasting 1 min, preparing it for optimal analysis. Subsequently, the collected breath
gases underwent primary desorption at a temperature of 270 ◦C for a duration of 10 min,
facilitated by a flow of helium gas. The total flow rate was set at 60 mL/min. The cold
trap, a crucial component in the process, was maintained at a temperature of −10 ◦C.
Following the primary desorption phase, the cold trap underwent a rapid heating process,
ascending from −10 ◦C to 280 ◦C, and was maintained at this temperature for 5 min. The
desorbed analytes were then introduced into an HP-5MS capillary column, measuring 60 m
in length, 250 µm in diameter, and featuring a nominal thickness of 0.25 µm, all sourced
from Agilent. This was facilitated through a transfer line, maintained at a temperature of
120 ◦C. The initial temperature of the GC oven was set at 40 ◦C. Upon sample injection,
the oven temperature was progressively elevated, first to 140 ◦C at a rate of 5 ◦C/min,
and then to 190 ◦C at an accelerated rate of 20 ◦C/min. It was further increased to 230 ◦C
at a rate of 5 ◦C/min and held steady for a duration of 1 min. Finally, the temperature
was raised to 300 ◦C at an expedited rate of 30 ◦C/min and maintained at this level for
5 min. The helium carrier gas flowed at a rate of 2 mL/min to facilitate the process. The
detection of the analytes was achieved utilizing Mass Spectrometry in an electron impact
mode, employing full scan monitoring across the range of 33–550 amu. The ion source
temperature was set at 230 ◦C, while the quadrupole was maintained at a temperature
of 150 ◦C. The transfer line temperature was calibrated to 280 ◦C, optimizing the entire
process. The gain factor was consistently set at 1.58, ensuring precise and reliable detection
throughout the analysis.

2.3. Statistical Analysis

Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) is a statistical
technique used in multivariate data analysis, particularly in the field of chemometrics and
metabolomics. It is an extension of Partial Least Squares Discriminant Analysis (PLS-DA)
that aims to improve the interpretability of the results. OPLS-DA is specifically designed
to find the variation in the data that is correlated with the class labels (e.g., different
groups or categories) while also separating unrelated variation, which is referred to as
orthogonal variation. This makes it particularly useful in situations where there is complex,
correlated, and noisy data, such as in biological studies where there might be many variables
measured simultaneously.

The key principle of OPLS-DA lies in the separation of systematic variation into two
components: one that is correlated with the class labels (predictive component) and the
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other that is orthogonal to the class labels (orthogonal component). This separation allows
for a clearer interpretation of the variation in the data. The predictive component identifies
the directions in the data space that are most relevant for discriminating between differ-
ent classes, making it easier to understand which variables are driving the classification.
Meanwhile, the orthogonal component captures variation that is unrelated to the class
labels, effectively removing noise and confounding factors. This orthogonalization process
enhances the interpretability of the model.

OPLS-DA is particularly valuable in cases where the number of variables (features)
is much larger than the number of samples, a situation commonly encountered in high-
dimensional datasets. By extracting the predictive and orthogonal components, OPLS-DA
helps in identifying the important variables for the classification and understanding of the
underlying structure in the data. This makes it a powerful tool for tasks like biomarker
discovery, quality control, and other applications where distinguishing between different
groups is crucial. However, it is important to note that, like any statistical technique,
the results of OPLS-DA should be interpreted with care, taking into consideration the
assumptions and potential limitations of the method.

The handling of data files followed a systematic process. Initially, all data files were
migrated into Masshunter data using the GC MSD Translator software provided by Agilent
Technologies. Subsequently, they were exported into mzdata files, a format compatible
with MZmine 2.11, enabling seamless peak alignment and normalization. For the iden-
tification of volatile organic compounds (VOCs), the NIST library was consulted, with
only compounds exhibiting a match and reverse match score exceeding 700 being reported.
Furthermore, to ensure robust analysis, the concentrations of VOCs in the samples were
compared with those in the environmental samples. Compounds with concentrations
lower than the environmental background were omitted from consideration. The next
phase involved employing OPLS-DA, executed using SIMCA-P 13.0 by Umetrics. Addi-
tionally, Kruskal–Wallis tests and receiver operating characteristic (ROC) analyses were
conducted using SPSS software (2016, Version 24.0) by IBM. The comprehensive workflow
for biomarker screening is visually depicted in Figure 1.
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Throughout the data acquisition process, three breath samples were collected from
each case, whereas two samples were obtained from each control subject. During the
subsequent data analysis, it was noted that the variance in samples from a single subject
displayed variability among individuals. Detailed discussions regarding potential reasons
for this phenomenon can be found in the dedicated discussion section. In the OPLS-DA
analysis, rather than averaging multiple samples from one subject, each individual breath
sample was treated as a distinct data point.

3. Results and Discussion

Figure 2 shows the Total Ion Chromatograms (TIC) of a representative sample from
each group, each peak is labeled with the compound name. Using the Kruskal–Wallis test
and VIP calculation in the OPLS-DA model, a total of 13 compounds were found to be
statistically different. Figure 3a is the OPLS-DA score plot of the VOCs from the discovery
set. In this plot, each breath sample is represented by one dot. It shows a clear separation
between lung cancer and control subjects, as well as between lung cancer and TB patients.
The relative concentration of each VOC was linearly normalized into a range of −1 to 1
and plotted in a color-coded map shown in Figure 3b. A receiver operating characteristics
(ROC) analysis was performed using the 13 compounds in the discovery set samples. Eight
compounds with an AUC value above 0.75 (hexanal, heptanal, octanal, benzaldehyde,
undecane, phenylacetaldehyde, decanal, and benzoic acid) were selected as a combined
biomarker, and an ROC curve was plotted using them, shown in Figure 4a. The combined
eight biomarkers achieved an AUC value of 0.85, a sensitivity of 82%, and a specificity of
76%. The validation set data were analyzed in the same way. Table 3 lists the fold change
(lung cancer/control) and p value of the eight VOCs in both the discovery and validation
sets. In the validation set, the combined eight biomarkers achieved an AUC of 0.78, a
sensitivity of 78%, and a specificity of 64% (Figure 4b).
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Seven aldehydes (including hexanal, heptanal, octanal, decanal, dodecanal, benzalde-
hyde, and phenylacetaldehyde) were found in elevated levels in lung cancer patients’
breath compared to those in non-lung cancer controls. This is possibly due to the increased
levels of Alcohol Dehydrogenase (ADH) in cancer tissues. It is known that ADH is overacti-
vated in cancer cells [6,7], which means a cancer cell has a greater ability to oxidize alcohol
into aldehydes. Alcohols are products of alkanes by cytochrome p450; alkanes in turn are
products of lipid peroxidation, a process which is also upregulated in cancer cells [8,9]. Sim-
ilar to our results, hexanal heptanal and octanal were previously reported to be higher in
lung cancer patients’ blood and breath samples [10–12]. Other aldehydes such as propanal,
butanal, and nonanal were also found to be higher in lung cancer patients’ breath [13–15].
It is highly likely that these aldehydes are products of cancerous pathological processes.
Benzealdehyde was found to be increased in lung cancer cell cultures [16,17]. An elevated
level of one alkane, undecane in this study, is also in agreement with the literature [18–21].
Undecane is a by-product of lipid peroxidation by reactive oxygen species in cancer tissues.
Breath acetic acid vapor was used as a biomarker for gastro-esophageal reflux disease [22]
and cystic fibrosis [23]; it has not been reported to be associated with lung cancer before.
Benzoic acid was found to be higher in both lung cancer patients’ breath and TB patients’
breath; the origin of benzoic acid is unknown. An increased level of benzoic acid, but not
other VOCs, could be used to differentiate TB and lung cancer; however, this conclusion is
limited by the small TB sample size in this study and needs further validation.

Despite the fact that many studies have produced lists of volatile biomarkers for lung
cancer, none of these has been translated into clinics so far. The reason is the inconsistencies
in the sampling method and study design [24]. Bikov et al. summarized the established
methodological issues in breath research [25], and the European Respiratory Society has
published a technical standard on breath sampling recently [26].

In the current study, we controlled several physiological and pathological confounders
including age, gender, smoking history, and comorbidities. Isoprene, alkanes, and methy-
lated alkanes were found to be related to age [16–18]. In many earlier studies, disease
groups are significantly older than the control group [13,27–30]; this might have biased the
results. Gender also has an effect on the breath VOC profile [31,32]. Smoking-related VOCs
such as acetonitrile and benzene will also affect the results [32]. As one of the biggest risk
factors for lung cancer, smoking history between case and control group should be closely
matched to avoid any bias. Diseases other than the targeted one will also change the breath
VOC profile; therefore, it is critical that control and case have matched comorbidities in
order to find the VOCs specifically associated with the targeted disease.

During breath sampling, we collected the alveolar phase by using a BIO-VOC sampler.
For diagnostic purposes, end-tidal breath is desired because it is more representative of the
endogenous metabolism compared to airway dead space air, which is often affected by diet
and bacteria. Some VOCs (such as carbonic acid, dimethyl ester, and methyl formate) were
found to be significantly higher in end-tidal breath while methylene chloride and pentane,
3-ethy were lower in end-tidal breath compared to whole breath [33]. The use of sorbent
traps minimizes sample loss and contamination during transportation and storage. Another
important confounding factor is the environmental background. Room air—especially in
clinics—may contain high levels of VOCs, and they vary from day to day. The degree of
influence depends on the type of VOC, time, concentration of exposure, etc. Many studies
have adopted inspiratory filters to reduce the effect of background VOCs [19,30,34,35].
However, it is not known yet how long it takes for the human body to equilibrate with
filtered clean air. In the current study, we did not use an inspiratory filter due to limited
resources. Instead, we controlled this confounder by taking a room air sample for each
subject at the same time and location. VOCs with lower concentration in the breath than in
the room air were excluded from further analysis.

The current study, while providing valuable insights, is not without its limitations,
which should be taken into consideration. Firstly, we were unable to regulate the diet and
exercise routines of the participants. These factors have the potential to influence the results,
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and their uncontrolled variability could introduce some degree of uncertainty. Secondly, we
opted to gather three breath samples from each patient and two from each control subject.
It is important to acknowledge that the reproducibility of breath samples can vary among
individuals. This analysis showed that the analytical methods employed are consistent and
reliable, showing no significant technical or systemic variations. However, it is worth noting
that for certain other subjects, the reproducibility among different breath samples was less
satisfactory. This discrepancy may be attributed to inconsistent breathing maneuvers among
participants. This variability in breath sample reproducibility highlights the importance of
considering individualized factors that may impact the reliability of breath-based analyses
in clinical settings. Thirdly, some patients were undergoing treatment, which introduced
further confounding effects.

4. Conclusions

In conclusion, this clinical investigation underscores the potential of breath analysis as
a non-invasive method for the early detection of lung cancer. The study meticulously en-
rolled a diverse cohort comprising 14 lung cancer patients, 14 non-lung cancer controls with
various medical conditions, and 3 tuberculosis patients, adhering to matching criteria in-
cluding age, gender, smoking history, and comorbidities. The study employed a systematic
breath sampling protocol with a BIO-VOC sampler, coupled with advanced VOC analysis
using Thermal Desorption–Gas Chromatography–Mass Spectrometry (TD-GC/MS). The
study’s findings indicate that a composite biomarker composed of eight specific volatile
organic compounds (VOCs)—hexanal, heptanal, octanal, benzaldehyde, undecane, pheny-
lacetaldehyde, decanal, and benzoic acid—demonstrated reliable detection of lung cancer
in both the initial discovery set and subsequent validation set. Additionally, the results sug-
gest that analyzing breath VOCs may assist in distinguishing between cases of tuberculosis
and lung cancer, presenting a potential clinical benefit. In the discovery set, these eight
VOC biomarkers achieved an AUC of 0.85, with sensitivity and specificity values of 82%
and 76% respectively, underlining its potential as a diagnostic tool. These findings were
further validated in an independent cohort, where the biomarker demonstrated an AUC
of 0.78, with sensitivity and specificity values of 78% and 64% respectively. Moreover, the
study delves into the underlying biochemical pathways contributing to elevated aldehyde
levels in the breath of lung cancer patients, attributing this phenomenon to overactivated
Alcohol Dehydrogenase (ADH) pathways in cancerous tissues. While acknowledging
certain limitations, including factors such as sample size, population demographics, and
potential confounding variables, the study’s outcomes strongly advocate for the potential
of breath analysis in lung cancer diagnosis. Additionally, the study suggests its utility in
differentiating tuberculosis from lung cancer.

These findings hold promise for advancing the development of non-invasive diag-
nostic tools for both lung cancer and tuberculosis [36]. Further research endeavors and
rigorous validation are warranted to fully realize the clinical potential of breath analysis in
the realm of lung cancer diagnosis.
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