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Abstract: We here characterize changes in metabolite patterns in glioblastoma patients undergoing
surgery and concurrent chemoradiation using machine learning (ML) algorithms to characterize
metabolic changes during different stages of the treatment protocol. We examined 105 plasma speci-
mens (before surgery, 2 days after surgical resection, before starting concurrent chemoradiation, and
immediately after chemoradiation) from 36 patients with isocitrate dehydrogenase (IDH) wildtype
glioblastoma. Untargeted GC-TOF mass spectrometry-based metabolomics was used given its su-
periority in identifying and quantitating small metabolites; this yielded 157 structurally identified
metabolites. Using Multinomial Logistic Regression (MLR) and GradientBoostingClassifier (GB
Classifier), ML models classified specimens based on metabolic changes. The classification perfor-
mance of these models was evaluated using performance metrics and area under the curve (AUC)
scores. Comparing post-radiation to pre-radiation showed increased levels of 15 metabolites: glycine,
serine, threonine, oxoproline, 6-deoxyglucose, gluconic acid, glycerol-alpha-phosphate, ethanolamine,
propyleneglycol, triethanolamine, xylitol, succinic acid, arachidonic acid, linoleic acid, and fumaric
acid. After chemoradiation, a significant decrease was detected in 3-aminopiperidine 2,6-dione. An
MLR classification of the treatment phases was performed with 78% accuracy and 75% precision
(AUC = 0.89). The alternative GB Classifier algorithm achieved 75% accuracy and 77% precision
(AUC = 0.91). Finally, we investigated specific patterns for metabolite changes in highly correlated
metabolites. We identified metabolites with characteristic changing patterns between pre-surgery
and post-surgery and post-radiation samples. To the best of our knowledge, this is the first study to
describe blood metabolic signatures using ML algorithms during different treatment phases in pa-
tients with glioblastoma. A larger study is needed to validate the results and the potential application
of this algorithm for the characterization of treatment responses.

Keywords: glioblastoma; metabolomic profiling; machine learning; treatment response; concurrent chemoradiation

1. Introduction

Key Points:

â Specific metabolomic changes are associated with concurrent chemoradiation;
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â Metabolomics has the potential to characterize treatment phases in glioblastoma
patients;

â In the future, metabolomics may enable the detection of early or distant recurrence.

Glioblastoma is the most common aggressive primary brain tumor in adults and is
the leading cause of central nervous system cancer-related death [1]. First-line treatments
typically include surgery, radiation therapy (RT), and temozolomide (TMZ) chemotherapy,
leading to improvement in 2-year survival rates compared with previous treatments [2].
Despite these treatments, glioblastoma universally recurs, and the overall prognosis re-
mains poor with a 5-year relative survival rate of 6.6% [3]. One of the reasons for tumor
relapse is that surviving or dormant tumor cells may acquire new genetic mutations that
result in treatment resistance [4]. Many cancer mutations remodel tumor cell metabolism in
order to thrive in hostile microenvironments, such as hypoxia, which is typical in glioblas-
toma [5]. These mutations will cause plasma metabolic changes that are detectable using
metabolomic techniques at the time of brain tumor diagnosis [6]. However, little is known
about the changes in metabolic profiles in patients after concurrent radiation and TMZ.

Patterns of changes in multivariate data are best uncovered using machine learning
(ML) tools. Resulting ML models could then be used to improve the accuracy of tumor
diagnosis and choose optimal treatment regimens in the settings of clinical trials that
compare different treatment options. Proven to be useful in non-invasive diagnostic
approaches for several diseases, such as lung cancers [7–9], blood metabolites can be useful
markers in assessing a tumor. Therefore, combining ML techniques with metabolomics is a
promising strategy for monitoring changes in tumors over time, both in tumor diagnosis
and responses to treatment.

In this report, we prospectively enrolled a cohort of patients with isocitrate dehydro-
genase (IDH) wildtype glioblastoma, as defined by the new World Health Organization
classification, and performed untargeted metabolomics before and after surgery, as well
as before and after concurrent chemoradiation. Here, we propose a data-driven approach
combining untargeted metabolomics with two classification algorithms to outline specific
changes in each stage of treatment in glioblastoma patients. We then screened for changes
in the levels of metabolites that were highly correlated during each treatment stage.

2. Methods

All 36 patients had histopathologically confirmed diagnoses of IDH wildtype glioblas-
toma, World Health Organization Grade 4 (WHO Grade 4). The study protocol was
approved by the Institutional Review Board of the University of California Davis and
written informed consent was obtained. Demographic and clinical data for the study
subjects were obtained from a medical record review. Patients received standard-of-care
initial treatment with surgical resection, concurrent RT, and chemotherapy. Blood samples
were collected before surgery, two days after surgery, prior to starting radiation therapy,
and after completing radiation therapy.

2.1. Metabolomic Profiling

Untargeted plasma metabolomics via gas chromatography–time of flight mass spec-
trometry (GC-TOF MS) was performed at the UC Davis West Coast Metabolomics Center.
Detailed methods, including plasma extraction and plasma metabolomics, have been re-
ported previously [10–12]. In summary, primary metabolites were analyzed using gas
chromatography–time of flight mass spectrometry (GC-TOF MS). Samples were extracted
with 1 mL of −20 ◦C cold, degassed acetonitrile:isopropanol:water (3:3:2, v/v/v). In total,
500 µL of supernatant was evaporated to dryness using a CentriVap (Labconco, Kansas,
MO). Metabolites were derivatized in two steps as published previously [12]: first, carbonyl
groups were protected by methoximation; second, acidic protons were exchanged against
trimethylsilyl groups to increase volatility. A 0.5 µL sample was injected with 25 s of
splitless time on an Agilent 6890 GC (Agilent Technologies, Santa Clara, CA, USA) using a
Restek Rtx-5Sil MS column (30 m × 0.25 mm, 0.25 µm) and 1 mL/min Helium gas flow.
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Oven temperature was held at 50 ◦C for 1 min, ramped up to 330 ◦C at 20 ◦C/min, and
held for 5 min. Data were acquired at −70 eV electron ionization at 17 spectra/s from 85 to
500 Da at 1850 V detector voltage on a Leco Pegasus IV time-of-flight mass spectrometer
(Leco Corporation, St. Joseph, MI). The transfer line temperature was held at 280 ◦C with
an ion source temperature set at 250 ◦C. Standard metabolite mixtures and blank sam-
ples were injected at the beginning of the run and for every ten samples throughout the
run for quality control. Raw data were preprocessed using ChromaTOF version 4.50 for
baseline subtraction, deconvolution, and peak detection. Binbase was used for metabolite
annotation and reporting 13.

2.2. Statistical Studies

Any missing values were replaced with half-minimum imputation. Data for each
compound were then log-transformed for normality and then auto-scaled to make the
dataset more Gaussian-distributed and, hence, better suited for univariate analyses. All
analyses used linear mixed models with compound intensity as the dependent variable,
plasma included as a fixed effect, and the subject included as a random effect. The pre-
surgery (0), two days post-surgery (S), pre-radiation (pre-RT), and immediate post-radiation
(post-RT) treatment samples were included, and the fixed effect of treatment (0 vs. S) (PR
vs. post-RT) was a predictor variable in the model and the effect of interest. The values of
interest were the regression coefficients and the associated p-value for each compound. The
p-values were not corrected for multiple comparisons.

2.3. ML Modeling: Data Preprocessing and Machine Learning Models

In the present study, we implemented two basic ML algorithms—Multinomial Lo-
gistic Regression (MLR) [13] and GradientBoosting (GB Classifier). MLR applies logistic
regression to multiclass problems. The GB Classifier combines many weak learning models
together to create a strong predictive model with enhanced effectiveness in classifying
complex datasets. Data preprocessing was performed on the raw dataset using the Stan-
dardScaler module to adjust features to the same scale. The current treatment category
values were mapped according to the following scheme: “0—pre-surgery”: 0; “S—post-
surgery”: 1; “PR—pre-radiation”: 2; “post-RT—post-radiation”: 3. The parameters for
the MLR classifier were C = 100, multi-class = multinomial, maximum iterations = 4000,
penalty = 12, and solver = sag. The GB Classifier algorithm was used with the following
parameters: learning rate = 0.05, max depth = 8, max features = 16, and number of estima-
tors = 60. To analyze the performance of the proposed algorithms, accuracy, precision, and
receiver operating characteristic (ROC) were evaluated to validate the predictive ability of
the models.

The accuracy, precision, recall, and ROC AUC scores were calculated for the test set
using the scikit-learn library in python [14]. The accuracy score was computed using the
sklearn.metrics.accuracy_score () function, which evaluates the true labels according to the
following equation, which is defined as

accuracy(y, ŷi) =
1

nsamples

{nsamples−1}

∑
{i=0}

(ŷi = yi)

where ŷi is the predicted value of the i-th sample, and yi the corresponding true value.
The precision was computed using the sklearn.metrics.precision_score function and

defined as the ratio of true positives/(true positives + false positives). Recall was cal-
culated using the sklearn.metrics.recall_score function and defined as the ratio of true
positives/(true positives + false negatives).

Finally, area under the receiver operating characteristic curve (ROC AUC) scores were
computed using the sklearn.metrics.roc_auc_score function, which were then compared
between the LR and GB models and also compared with the ideal value of 1 [15]. The
confusion matrix was used to visually describe the accuracy of the different models in
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identifying the treatment status, including the actual vs. predicted values. Machine learning
models were created in Python (version 3.6) installed through Anaconda and using the
scikit-learn package [16] on a computer equipped with an Intel (R) Core™ i7-10700T
CPU @ 2.00GHz.

3. Results
3.1. Patients

In total, 36 patients with glioblastoma, IDH wildtype, WHO Grade 4 (determined via
immunohistochemistry), were identified at the UC Davis Neuro-Oncology clinic (18 MGMT
methylated, 16 MGMT unmethylated, 2 MGMT status unknown). There were 21 males and
15 females, the median age at diagnosis was 63.5 years, the median BMI at diagnosis was
28, and 30 patients self-identified as white. All patients underwent surgical intervention at
our institution. The number of available samples per stage of treatment was: 0: 36, S: 32,
PR: 28, and post-RT: 17 (Table 1). Two patients did not receive RT or TMZ due to poor
clinical conditions and functional status.

Table 1. Demographics of patients: “0”, pre-surgery sample; “S”, two days post-surgery sample;
“PR”, pre-radiation sample; and “RT”, immediate post-radiation sample.

Patient # Sex Ethnicity Age at Dx yr BMI at Dx 0 S PR RT

1 M White 60 40 X X X X

2 M White 72 30 X X X

3 M Hispanic 43 28 X X X

4 M Asian 49 57 X X X

5 F White 78 23 X X

6 M Hispanic 65 22 X X X

7 M White 72 41 X X X

8 M White 80 24 X X X X

9 F White 61 27 X X X

10 F White 69 25 X X X

11 M Indian 60 27 X X X

12 F White 61 25 X X X

13 F White 52 27 X X

14 M White 62 30 X X X

15 M White 69 31 X X X X

16 M White 67 44 X X

17 F White 82 28 X X X

18 F White 55 29 X X

19 M African
American 47 37 X X X X

20 M White 63 30 X X X X

21 F White 86 27 X X X

22 F White 64 31 X X X X

23 M White 56 22 X X X X

24 F White 69 26 X X X X
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Table 1. Cont.

Patient # Sex Ethnicity Age at Dx yr BMI at Dx 0 S PR RT

25 F NA 69 27 X X X

26 M White 64 36 X X X X

27 M White 68 28 X X X

28 M White 69 28 X X X X

29 F White 58 27 X X X

30 F white 66 27 X X X

31 M White 55 28 X X X X

32 F White 60 20 X X X

33 M White 58 28 X X X

34 M White 53 30 X X X

35 M White 58 26 X X X

36 M White 76 35 X

3.2. Metabolomic Changes

We identified 157 unique metabolites with a retention index and mass spectral match-
ing [12]. Compared with pre-surgical samples, the two days post-surgical plasma samples
showed significant increases in aromatic amino acids using p-values, including tryptophan,
phenylalanine, and tyrosine, among other metabolites (Figure 1), while sugar alcohols and
lipid metabolites showed significant decreases post-surgery, including sorbitol, mannitol,
glucuronic acid, mannose-6-phosphate, glycerol, 6-deoxyglucitol, and gluconic acid, as well
as oleic acid, linoleic acid, linolenic acid, 3-hydroxybutyric acid, and gamma-tocopherol
(Figure 1 and Supplementary Table S1).
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Figure 1. Volcano plot prepared from metabolites, displaying the comparison between pre-surgery
samples, “D0”, and post-surgery samples, “S”; significance threshold p < 0.05. A positive value (right
upper quadrant metabolites above dotted red line) means that “S” is higher than “0” (metabolite
increased after surgery). A negative value (left upper quadrant metabolites above dotted red line)
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means that “S” is lower than “0” (metabolite decreased after surgery). The X-axis is a standardized re-
gression estimate (beta); the Y-axis is -Log10P. Colors displayed on the right reflect group metabolites
by superclass. “Organic compounds” include organic nitrogen compounds, organic oxygen com-
pounds, and organoheterocyclic compounds. “Lipids” include prenol lipids, glycerolipids, and sterol
lipids. “Other” includes metabolites with a lower match score or library match (3-aminopiperidine-
2,6-dione, 9-myristoleate, succinate semialdehyde, and phosphate (increased after surgery)). Detailed
metabolites with significant changes can be found in Supplementary Table S1.

When comparing pre-radiation vs. post-radiation samples (Figure 2), significant
increases were noted in specific amino acids, including glycine, serine, threonine, and
oxoproline, in addition to sugar alcohols such as xylitol, 6-deoxyglucose, gluconic acid,
glycerol-alpha-phosphate, ethanolamine, arachidonic acid, linoleic acid, propyleneglycol,
and triethanolamine, along with unsaturated fatty acid, TCA metabolites, succinic acid, and
fumaric acid. A significant decrease post-radiation was only noted for 3-aminopiperidine-
2,6-dione (pyroglutamine) (Table 2).
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Figure 2. Volcano plot prepared from metabolites, displaying the comparison between pre-radiation
samples, “PR”, and post-radiation samples, “post-RT”; significance threshold, p < 0.05. A positive
value (right upper quadrant metabolites) means that “post-RT” is higher than “PR” (metabolite
increased after radiation). A negative value (left upper quadrant metabolites) means that “post-RT”
is lower than “PR” (metabolite decreased after radiation). The X-axis is a standardized regression
estimate (beta); the Y-axis is -Log10P. Colors displayed on the right reflect group metabolites by
superclass. “Organic compounds” include organic nitrogen compounds, organic oxygen compounds,
and organoheterocyclic compounds. “Other” includes one metabolite with a lower match score or
library match (3-aminopiperidine-2,6-dione (decreased after chemoradiation)). Detailed metabolites
with significant changes can be found in Table 2.
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Table 2. Detailed metabolites with significant changes. Subclass information obtained using
Metabolomics Workbench (https://www.metabolomicsworkbench.org/databases/refmet/index.
php) (accessed on 26 December 2022). “NA”, lower match score or library match.

BinBase Name PubChem Superclass Subclass rq _est p-Value

3-aminopiperidine-
2,6-dione 134508 NA NA −0.54 0.033

succinic acid 1110 Organic acids TCA acids 0.45 0.03

fumaric acid 444972 Organic acids TCA acids 0.67 0.027

threonine 6288 Organic acids Amino acids 0.45 0.028

glycine 750 Organic acids Amino acids 0.66 0.002

serine 5951 Organic acids Amino acids 0.66 0.012

glycerol-alpha-
phosphate 754 Organic acids

Organic
phosphoric

acids
0.93 0.003

xylitol 6912 Carbohydrates Sugar alcohols 0.53 0.023

6-deoxyglucose 441480 Carbohydrates Hexoses 0.64 0.003

glucuronic acid 94715 Carbohydrates Sugar acids 0.46 0.049

linoleic acid 5280450 Fatty acyls Unsaturated
FA 0.57 0.004

arachidonic acid 444899 Fatty acyls Unsaturated
FA 0.56 0.027

ethanolamine 700
Organic
nitrogen

compounds

1,2-
aminoclcohols 0.45 0.042

triethanolamine 7618
Organic
nitrogen

compounds

Tertiary
amines 0.59 0.018

propyleneglycol 259994
Organic
oxygen

compounds
1,2-diols 0.52 0.015

oxoproline 7405 Organoheterocyclic
compounds

Pyrroline
carboxylic

acids
0.65 0.004

4. ML Models for Classifying Treatment Stage

In total, 105 samples were randomly divided with 70% of the data allocated to the
training dataset and 30% allocated to the testing dataset. Between the two established
models, the accuracy of MLR was 0.78, followed by the GB Classifier with 0.75. The ROC
AUC score values were 0.89 for MLR and 0.91 for the GB Classifier. The highest precision
score was for the GB Classifier (0.77), followed by MLR (0.75). The highest recall score was
for MLR (0.78). (Figure 3).

The 2 models correctly classified 12 out of 12 patient samples during the pre-surgery
stage, as shown in the confusion matrices of these models on 32 samples of the test data.
Since our goal was to develop algorithms that are able to classify a set of metabolomics data
into one of four treatment stages, we opted to use a 4×4 confusion matrix to determine
which of the model classifications were right or wrong. Pairwise comparisons reflected
a diagonally populated confusion matrix, indicating that our models were capable of
identifying correct treatment stages. The performance scores (Figure 3E) were close between
the two models. The MLR algorithm correctly classified four out of five samples for the
post-surgery stage. The GB Classifier, on the other hand, classified five out of five samples
for this stage. For pre-radiation and post-concurrent chemoradiation therapy samples,
the MLR Classifier algorithm showed the most accurate classification of pre-radiation vs.
post-radiation, where three out of six samples were correctly classified by MLR model
versus two out of six by the GB model (Figure 3).

https://www.metabolomicsworkbench.org/databases/refmet/index.php
https://www.metabolomicsworkbench.org/databases/refmet/index.php
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Figure 3. Machine learning algorithm for the classification of clinical stages based on untargeted
metabolomics. (A,B) The Multinomial Logistic Regression model: “pre-surgery”: 0; “post-surgery”: 1;
“pre-radiation”: 2; “post-radiation”: 3. (A) The receiver operating characteristics (ROC) curve. (B) The
confusion matrix when tested on the test dataset. (C,D) The Gradient Boosting model: (C) the receiver
operating characteristics (ROC) curve; (D) the confusion matrix when tested on the test dataset.
(E) Model performance comparison: Comparison of multinomial regression and Gradient Boosting
models based on the accuracy, precision, recall, and ROC AUC score of the testing dataset.

5. Correlation Analysis

Identifying characteristic metabolite patterns associated with the clinical stages can
provide helpful insights that can be used together with prediction models to come up with
better decisions. In addition, this approach could identify changes in hub metabolites
independent of the model prediction. We decided to focus on metabolites that are strongly
correlated for the following reasons: first, strongly correlated metabolites are likely to be in
the same metabolic pathway, and, secondly, we wanted to simplify the metabolic profile
per clinical stage by selecting a subset of detected metabolites.

To forecast a pattern of metabolite changes per clinical stage, specifically during tumor
presence (pre-surgery), post-surgery, pre-radiation, and post-radiation, we computed
pairwise correlations using Pearson correlation with a particular cut-off (positive pairs
r > 0.90). The result was twenty-one metabolites shown in a heatmap (Supplementary
Figure S1). Comparing pre-surgery to post-radiation showed a similar pattern of changes to
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that in pre-surgery and post-surgery (Supplementary Figure S2). Comparing pre-radiation
to post-radiation for the 21 metabolites showed a significant decrease in linoleic acid.

Next, we investigated specific patterns for metabolite changes in the 21 selected
metabolites. Comparing pre-surgery to post-surgery samples, the results showed a sig-
nificant increase, p < 0.0001, for deoxy-pentitol, deoxytetronic acid, fucose, deoxyglucose,
isoleucine, leucine, lactose, and lactulose; p < 0.01 for fumaric acid, heptanoic acid, succi-
nate semialdehyde, indoxyl sulfate, and mandelic acid; and p < 0.05 for caproic acid and
threonic acid and a significant decrease, p < 0.0001, for linolenic acid, linoleic acid; p < 0.01
for gluconic acid; and (p < 0.05) for gluconic acid lactone.

Based on the heatmap correlations (Supplementary Figure S1), few metabolites from
the filtered 21 metabolites showed high correlations. Among these were the correlations
between deoxypentitol and lactulose, lactose, ribitol, arabitol, 2-dexosytetronic acid, and
fumaric acid (Figure 4A,B). This could suggest a correlation with the pentose phosphate
pathway, especially with increased levels of nucleic acids noted after surgery (Figure 1).Metabolites 2023, 13, x FOR PEER REVIEW 10 of 15 
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Comparing post-surgery to pre-radiation, there was a significant increase (p < 0.05)
in deoxypentitol, heptanoic acid, leucine, and isoleucine, while there were no significant



Metabolites 2023, 13, 299 10 of 13

changes for other metabolites (Supplementary Figure S2C). Comparing post-surgery to
post-radiation, a significant increase, p < 0.01, was found for deoxy-pentitol and p < 0.001
for arabitol (Supplementary Figure S2C).

6. Discussion

In this study, we demonstrated specific plasma metabolomic changes associated with
surgery and chemoradiation treatment in patients with pathologically confirmed IDH
wildtype glioblastoma. Our study compared two ML algorithms using samples from
patients diagnosed with glioblastoma and found that an MLR algorithm can better classify
the phase of treatment in post-operative patients in training and testing groups.

The first-line treatment for patients with glioblastoma is typically surgery, RT, and
chemotherapy. Patients with suspected brain tumors discovered on imaging are usually re-
ferred for surgical intervention because this provides tumor tissue for histological diagnosis
and molecular testing, and the extent of resection is an important prognostic factor. While
glioblastoma tumors vary between patients in their molecular features, similar treatments
have been applied to the majority of these tumors due to the lack of effective and specific
treatment options. Although MRI is the best non-invasive technique to evaluate responses
to treatment, it usually carries limited value shortly after radiation therapy. There is no set
of imaging features that can fully predict tumor responses to treatment with a high level of
accuracy, and the interpretation of these features is not easy to standardize. This is particu-
larly relevant in the context of post-radiation scans. Little is known about the metabolomic
changes associated with early treatment stages such as surgery and chemoradiation. In
these situations, it would be useful if metabolomics in the future could help assess tumor
response to treatment.

Our study compared prospectively collected blood metabolomic profiles obtained from
glioblastoma IDH wildtype patients before and after surgical resection as well as before
and after concurrent RT with TMZ chemotherapy. A metabolite-by-metabolite analysis
of the pre-radiation vs. post-radiation samples led to the detection of 15 metabolites that
increased after radiation therapy, while 1 metabolite decreased. Obtaining a metabolomic
profile for patients may help in the improvement of treatment strategies, and several
compound classes such as sugar alcohols were previously detected as markers in other
cancers [10]. Glycine and serine charge methyl-donors in one-carbon metabolism [17], a
critical pathway in nucleotide metabolism via SAM, folate, and methionine cycles [18].
Ethanolamine and glycerol-alpha-phosphate are building blocks for lipid metabolism, and
they reportedly shift the equilibrium from ethanolamine to phosphoethanolamine reported
in breast cancer [19]. An increase in 6-deoxyglucose and gluconic acid is an interesting
observation, especially when coupled with observed decreased gluconic acid post-surgery.
Along with other sugar alcohols, these metabolites may indicate nonclassical glucose
utilization, as also observed in liver cancer and kidney cancers [10,20,21].

Cancer treatment (surgery, radiation therapy, and chemotherapy) in our study samples
altered the levels of both endogenous and exogenous compounds. The endogenous changes
can be rationalized as typical cancer-related compounds, including glycine/serine (for
changes in methylation status via glycine dehydropenase and one-carbon metabolism),
lipid metabolism that responds to cell replication (via the backbones of complex lipids,
such as glycerol-phosphate and ethanolamine, but also arachidonic acid and linoleic acid),
and TCA cycle alterations (via succinic and fumaric acid, highlighting the importance
of succinyl COA-efflux for biosynthetic purposes). In addition, 3-aminopiperidine 2,6-
dione is an isomer of methylhydrouracil and dihydrothymine, pointing to alterations
in nucleoside biosynthetic pathways. Deoxyglucose, however, might be interpreted as
an overflow of oxidative pathways aberrant to glycolysis; a more likely explanation is
that these metabolites are hexose. Further confirmation of some of these metabolites is
required, while a few exosome compounds, specifically, propyleneglycol, triethanolamine,
and xylitol, may stem from altered gut microbials due to chemoradiation stress. Having
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said that, the full implication of exogenous metabolites in treatment or treatment stage is
not fully clear.

In two recent studies [4,22], approximately 20% of mutations and copy-number vari-
ants generated were new in tumor samples obtained from recurrent tumors (surgery #2)
versus the initial diagnosis (initial surgical resection). Little is known about the underlying
metabolic alterations that accompanied these mutations or how they may promote either
tumor recurrence or resistance to treatment in patients with glioblastoma. Metabolomics
can be used to broadly detail metabolic reprogramming in the fields of neuro-oncology,
clinical diagnostics, and prognostics [23]. Chinnaiyan et al. reported a metabolomic profile
in tumor tissue (blood was not assessed): phosphoenolpyruvate accumulation and de-
creased pyruvate kinase were highly correlated with an aggressive subgroup of high-grade
glioma [24]. Of note, pyruvate kinase activity was measured here using a colorimetric
assay. In addition, a retrospective study identified a unique plasma metabolomic profile
that was predictive of prognosis in glioblastoma patients [25], reporting that higher levels
of methionine and arginine were associated with a 37% and 34%, respectively, increased
probability of two-year survival, while increased levels of kynurenate were associated
with a 55% decreased probability of two-year survival. Furthermore, in another study, a
metabolomic profile was reported to correlate with glioblastoma versus lower-grade glial
tumor phenotypes [26]. A recent review of 47 metabolomic profiling studies pointed out
that the absence of prospective longitudinal metabolomic studies, such as our study, has
impeded the realization of the full potential of metabolomic profiling in cancer diagnosis
and prognosis [27].

Based on the correlation analysis, we sought to study selected metabolites positively
correlated by more than 90%. Our decision for this rigorous correlation cut-off was based
on our interest in identifying a pattern of change in specific metabolites across three clinical
stages: pre-surgery, post-surgery, and post-radiation. We focused on metabolites that
significantly change in pre-surgery vs. post-surgery to study the pattern of change in
these metabolites post-surgery (tumor-free) and compare this pattern to later stages during
treatment, specifically, post-radiation. This could explain, at least in part, the limited
overlap between our findings and previous studies, as those studies concentrated on the
later stages of the disease. We reported the highest correlations between deoxypentitol and
lactulose, lactose, ribitol, arabitol, 2-dexosytetronic acid, and fumaric acid (Figure 4A,B).
This, along with increased levels of nucleic acids noted after surgery, could suggest the
correlating involvement of the pentose phosphate pathway, which is known to be involved
in glioblastoma [28]. We argue that the metabolites that significantly change post-surgery
reflect a tumor-free condition, and a similar pattern in comparing post-radiation to pre-
surgery will suggest a positive prognosis, while deviation from this pattern could suggest
relapse or a negative prognosis.

The generalization of our prediction models is limited by the small sample size and
the collection of the samples being restricted to one center. An additional external dataset
from a broader geographical area would limit model bias and allow us to evaluate model
generalization. Furthermore, the study is missing control groups consisting of samples from
normal donors. However, comparing metabolites pre-surgery, post-surgery, pre-concurrent
chemoradiation, and post-concurrent chemoradiation longitudinally in the same patient is
considered to be using each patient as his/her own control in a prospective fashion.

Our prediction models do not include features of BMI, race, age, or gender. Although
these could play a significant role in recurrence, our study strongly argues for the pos-
sibility of developing more general models that can predict responses to treatment in
various groups of people. It is also important to note that, although our developed algo-
rithms showed prominent performance in classifying patients in each treatment group, it
remains unclear if these algorithms will show similar performance in predicting treatment
responses or tumor progression. It remains possible that selecting specific metabolites
based on correlation analysis will rule out other metabolites that are important to the
classification process.
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7. Conclusions

In our patient population with glioblastoma IDH wildtype, we identified several plasma
metabolite changes that could be associated with surgery, radiation, and chemotherapy. The
validation of these results in a larger cohort and a further investigation of the underlying
mechanism of these metabolites is still needed. Future validation may provide a guide for
monitoring responses to treatment. In this study, we designed and developed a Multinomial
Logistic Regression algorithm that could classify treatment phases in glioblastoma patients
undergoing surgery and concurrent chemoradiation.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/metabo13020299/s1: Figure S1: Heatmap of Pearson’s correlation
coefficients between the plasma concentrations of metabolites with a cut-off of r > 0.90. Significance of
pairwise comparison detailed in the results section. The correlation score can be visualized through
the scale bar on the right. Figure S2: Comparative profiling of highly correlated metabolites per
treatment stage. The lines represent the mean of the scaled data for each metabolite. A: Comparison
of levels of highly correlated metabolites in pre-surgery vs. post-surgery. B: Comparison of levels
of highly correlated metabolites in pre-radiation vs. post-radiation. C: Comparison of levels of
highly correlated metabolites in the four stages of treatment. Table S1: Detailed metabolites with
significant changes. Req rounded to the second decimal place. Subclass information obtained using
Metabolomics Workbench (https://www.metabolomicsworkbench.org/databases/refmet/index.
php) (accessed on 26 December 2022). “NA”, lower match score or library match.
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