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Abstract: The guidelines for the management of patients affected by propionic acidemia (PA) recom-
mend standard cardiac therapy in the presence of cardiac complications. A recent revision questioned
the impact of high doses of coenzyme Q10 on cardiac function in patients with cardiomyopathy (CM).
Liver transplantation is a therapeutic option for several patients since it may stabilize or reverse CM.
Both the patients waiting for liver transplantation and, even more, the ones not eligible for trans-
plant programs urgently need therapies to improve cardiac function. To this aim, the identification
of the pathogenetic mechanisms represents a key point. Aims: This review summarizes: (1) the
current knowledge of the pathogenetic mechanisms underlying cardiac complications in PA and
(2) the available and potential pharmacological options for the prevention or the treatment of cardiac
complications in PA. To select articles, we searched the electronic database PubMed using the Mesh
terms “propionic acidemia” OR “propionate” AND “cardiomyopathy” OR “Long QT syndrome”.
We selected 77 studies, enlightening 12 potential disease-specific or non-disease-specific pathogenetic
mechanisms, namely: impaired substrate delivery to TCA cycle and TCA dysfunction, secondary
mitochondrial electron transport chain dysfunction and oxidative stress, coenzyme Q10 deficiency,
metabolic reprogramming, carnitine deficiency, cardiac excitation–contraction coupling alteration,
genetics, epigenetics, microRNAs, micronutrients deficiencies, renin–angiotensin–aldosterone system
activation, and increased sympathetic activation. We provide a critical discussion of the related
therapeutic options. Current literature supports the involvement of multiple cellular pathways in
cardiac complications of PA, indicating the growing complexity of their pathophysiology. Elucidating
the mechanisms responsible for such abnormalities is essential to identify therapeutic strategies going
beyond the correction of the enzymatic defect rather than engaging the dysregulated mechanisms.
Although these approaches are not expected to be resolutive, they may improve the quality of life and
slow the disease progression. Available pharmacological options are limited and tested in small co-
horts. Indeed, a multicenter approach is mandatory to strengthen the efficacy of therapeutic options.
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1. Introduction

Propionic acidemia (PA; MIM #606054) is a rare organic aciduria due to the inherited
deficiency of the mitochondrial enzyme propionyl-CoA carboxylase (PCC). PCC is a biotin-
dependent enzyme active in the mitochondrial matrix that catalyzes the conversion of
propionyl-CoA to methylmalonyl-CoA. On PCC converge the catabolism of four essential
amino acids (isoleucine, methionine, threonine, and valine), odd-chain fatty acids, the
side chain of cholesterol, and propionyl-CoA derivates generated by anaerobic bacterial
fermentation. The end-product of these pathways is succinyl-CoA, a substrate of the
tricarboxylic acid (TCA) cycle [1]. PCC deficiency results in a decreased availability of
succinyl-CoA, together with the accumulation of propionyl-CoA and its toxic metabolites,
such as methylcitrate, 3-hydroxypropionate, tiglylglycine, and propionylglycine [1].

The incidence of PA is difficult to estimate due to its rarity and varies depending
on the population evaluated. Estimates of incidence in Western populations range from
1:50,000 to 1:500,000 births. In other populations, such as Saudi Arabia, the incidence may
be higher, around 1 in 2000 births [2].

The genetic heterogeneity of PA leads to different clinical pictures, ranging from se-
vere early onset to mild late onset forms [3]. Patients may present with acute or chronic
symptoms at any age. Major chronic disease manifestations include neurological com-
plications, hematologic abnormalities, hearing loss, and cardiac complications such as
cardiomyopathy (CM) or acquired long QT syndrome (aLQTS) [2–4].

CM has been considered a complication of PA since 1993 when Massoud et al. de-
scribed six cases of dilated CM (DCM) out of 19 patients with PA (age range: 13 months–
8 years) [5]. A study run in a larger cohort estimated that the DCM prevalence rate is 23%
(6 out of 26 patients, with a mean age of the onset of 7 years; age range: 5–11 years) [6].
A recent longitudinal observational monocentric study of 18 PA patients described CM
in 7 patients (39%, age range: 3–19.5 years) [7]. Two of the patients had DCM, whilst five
patients presented hypokinetic non-dilated cardiomyopathy. Finally, a case series of 10 PA
patients (ages ranging between 2.5 and 20.2 years) observed reduced fractional shortening
(FS) < 30% in 40% of the cases [8].

Although DCM is the type of CM associated more closely with PA, hypertrophic
cardiomyopathy and left-ventricular non-compaction have also been diagnosed [9,10].

No correlation exists between CM and metabolic stability, degree of the phenotype, or
remaining enzymatic activity [4]. CM can rapidly progress and lead to arrhythmias, heart
failure (HF), and cardiogenic shock [4].

aLQTS has been considered a complication of PA since 1993 when Massoud et al.
reported the first case [5]. The estimated prevalence is not clear, ranging from 22% to 70%
of patients [8,11]. No correlation exists between the occurrence of prolonged QTc and
biochemical indices [8], the number of metabolic decompensation, and the severity of the
phenotype [7]. Arrhythmias may lead to severe events, including sudden cardiac arrest
(SCA) [12,13].

The guidelines for the management of patients with PA recommend regular cardiac
examinations, including electrocardiograms and echocardiograms [3,4]. If the patient
presents CM or long QTc, standard cardiac therapy should be implemented together with
optimized metabolic treatment and monitoring [3].

The more recent revision argued the clinical relevance of high doses of coenzyme Q10
(CoQ10) on cardiac function [4].

The standard of care for HF in adult patients has recently been renewed in the guide-
lines of the European Society of Cardiology (ESC) and the American Heart Association
(AHA) [14,15]. For the pediatric age, the management of HF was defined in a consensus
paper of the International Society of Heart and Lung Transplantation (ISHLT) [16].

Despite an improvement in the overall prognosis over the past few decades, the
long-term outcome of PA patients with cardiac complications remains unsatisfactory. Liver
transplantation (LT) has been proposed as a therapeutic option for selected PA patients with
metabolic instability or CM. Some studies included very small numbers of patients with
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varying posttransplant follow-up periods and outcomes. A very recent systematic review
and meta-analysis of currently available literature on LT in PA patients (including 21 studies
involving 70 individuals) concluded that despite the risk of LT-related complications, LT is
a safe and beneficial therapeutic option, with good patient and allograft survival rates [17].
However, the recurrence of CM after LT has been reported [18,19]. Finally, not all PA
patients are eligible for liver transplant programs.

Patients waiting for liver transplantation, as well as those not eligible for the transplant
program, need therapies aiming at improving or preventing CM. Towards this goal, the
identification of the pathogenetic mechanisms underlying CM and aLQTS represents a
key achievement.

2. Aim of the Review

This review summarizes:

− The current knowledge of the pathogenetic mechanisms responsible for cardiac com-
plications in PA;

− The therapeutic options for the prevention or treatment of cardiac complications in PA.

3. Material and Methods

To select articles, we searched the electronic database PubMed using the Mesh “propi-
onic acidemia” OR “propionate” AND “cardiomyopathy” OR “Long QT syndrome”.

The criteria for inclusion in the review were: (i) study population: PA patients or PA
models AND CM OR aLQTS; (ii) type of study: any type; (iii) contents: studies reporting data
about pathogenetic mechanisms responsible for CM or aLQTS or about treatments performed
in the study population; (iv) publication date: last 20 years (2002-2022); (v) language: English.

Exclusion criteria: (i) full paper not available; (ii) studies not yet published; (iii) studies
not reporting data about pathogenic mechanisms or treatments in the study population;
(iv) studies reporting data about liver transplantation; (v) languages other than English.

Abstracts were reviewed, and the most relevant publications were used. Next, we
screened the reference list of the selected studies.

4. Results

Our strategy identified a total of 6907 papers. After carefully reviewing titles, we
excluded 6657 records out of scope for our analysis.

Upon the examination of the full text, we further excluded 226 studies reporting
outcomes not relevant to our study. We added 53 other studies by screening the reference
cited, for a total of 77 studies included in this review (Figure 1).

4.1. Impaired Substrate Delivery to TCA Cycle and TCA Dysfunction

The heart needs a large amount of energy to allow both ionic equilibrium and muscle
fiber contraction. Under physiological conditions, energy management can be described
in three main stages: substrates reach the TCA cycle, the TCA cycle, and oxidative phos-
phorylation (OXPHOS) [20]. The fluxes of molecules entering the TCA are severely dis-
turbed in PA, and the contribution of propionyl-CoA metabolism to the succinyl-CoA
pool is limited [1]. The surplus of propionyl-CoA sequestrates oxaloacetate and generates
methylcitrate [21], further depleting the TCA cycle [22]. Finally, the accumulation of toxic
metabolites that may inhibit pyruvate dehydrogenase complex or other enzymatic steps of
the TCA cycle may further jeopardize the TCA cycle [1,23] (Figure 2).

In rat hearts perfused with high concentrations of propionate, severe perturbations
of energy metabolism were observed, most likely due to mitochondrial CoA trapping,
inhibition of fatty acid oxidation, and increased glucose oxidation. Supplementation with
L-carnitine did not resolve CoA sequestration and did not change the propionate-mediated
fuel switch [24].
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Figure 1. PRISMA flow diagram of study selection. 

4.1. Impaired Substrate Delivery to TCA Cycle and TCA Dysfunction  
The heart needs a large amount of energy to allow both ionic equilibrium and mus-

cle fiber contraction. Under physiological conditions, energy management can be de-
scribed in three main stages: substrates reach the TCA cycle, the TCA cycle, and oxidative 
phosphorylation (OXPHOS) [20]. The fluxes of molecules entering the TCA are severely 
disturbed in PA, and the contribution of propionyl-CoA metabolism to the succinyl-CoA 
pool is limited [1]. The surplus of propionyl-CoA sequestrates oxaloacetate and generates 
methylcitrate [21], further depleting the TCA cycle [22]. Finally, the accumulation of toxic 
metabolites that may inhibit pyruvate dehydrogenase complex or other enzymatic steps 
of the TCA cycle may further jeopardize the TCA cycle [1,23] (Figure 2). 

In rat hearts perfused with high concentrations of propionate, severe perturbations 
of energy metabolism were observed, most likely due to mitochondrial CoA trapping, 
inhibition of fatty acid oxidation, and increased glucose oxidation. Supplementation with 
L-carnitine did not resolve CoA sequestration and did not change the propio-
nate-mediated fuel switch [24].  

Measures to promote anabolism, a low-protein diet, laxative agents, prebiotics, and 
antibiotics, are commonly used in PA patients to reduce exogenous and colonic-derived 
propionate supply [3]. A case report described the potential benefits derived from sup-
plementation with a daily mixture of bifidobacteria in association with antibiotic therapy 
to restore gut microbiota bifidobacteria population against propionate producers [25]. 
Nevertheless, no clinical trials have specifically investigated the role of laxative agents, 
prebiotics, probiotics, and antibiotics in PA patients with CM or aLQTS.  

Citric acid, an anaplerotic substrate of the TCA cycle, has been suggested as a ther-
apeutic opportunity for PA patients [26]. Citric acid (7.5 mEq/Kg per day) was adminis-
tered for 4 weeks in three patients with PA. Along with the treatment, a significant in-
crease in urinary levels of several TCA metabolites compared to baseline values was no-
ticed [27]. Nevertheless, there are no data on the use of citric acid in PA patients suffering 
from CM or aLQTS.  
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OXPHOS deficiencies have been reported in the myocardium of PA patients with 
CM, including complex I [9], complex III [9,28], or complex IV [29]. Low complex I activ-
ity has also been observed in vivo in a genetic mouse model of PA (Pcca−/−) (A138T). In 
particular, an increase in reactive oxygen species (ROS) production was documented in 
heart sections, suggesting that oxidative stress may be part of the pathophysiology of CM 
[30]. 

Cardiomyocytes derived from induced pluripotent stem cells (iPSCs) of a PA patient 
also showed a significantly decreased OXPHOS, as suggested by the decrease in the 
ATP-coupled oxygen consumption ratio, maximal oxygen consumption rate, and reserve 
capacity compared to the controls [31].  

These observations are in accordance with the alterations in mitochondrial OXPHOS 
function (low activities of several mtETC complexes) and redox homeostasis (increased 
ROS and oxidative stress markers) reported in PA mice tissues [30] and in samples from 
PA patients [28,32–34]. 

Propionyl-CoA and other metabolites can act as mitochondrial toxins impairing 
OXPHOS [23,35]. Interestingly, mtDNA depletion and ultrastructural mitochondrial 
abnormalities, leading to multiple respiratory chain deficiency [20], have been docu-
mented in PA patients [28–30]. In detail, electronic microscopy of myocardial biopsy 
identified abnormally enlarged mitochondria with atypical crista in a patient presenting 
a severe DCM [29]. 

Figure 2. TCA cycle and Propionic acidemia. TCA is fed by the propionate pathway, glycolysis,
and fatty acid oxidation (via acetyl-CoA). Methylmalonil-CoA mutase (Mut) is the last step in the
propionate pathway and feeds succinyl-CoA into the TCA cycle. Intermediates and enzymes of
interest are listed (enzymes are in the blue boxes). The ”toxin” methylcitric acid is also illustrated.
Abbreviations: CS (citrate synthase), aconitase 2 (ACO2), isocitrate dehydrogenase 2/3 (IDH2/3),
2-αketoglutarate dehydrogenase complex (αKGDHc), succinate synthase (SS), succinyl-CoA syn-
thetase (SCS), methylmalonyl-CoA mutase (Mut), propionyl-CoA carboxylase (PCC), succinate
dehydrogenase (SDH), fumarate hydratase (FH), malate dehydrogenase 2 (MDH2), and pyruvate
dehydrogenase (PDH).
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Measures to promote anabolism, a low-protein diet, laxative agents, prebiotics, and
antibiotics, are commonly used in PA patients to reduce exogenous and colonic-derived
propionate supply [3]. A case report described the potential benefits derived from supple-
mentation with a daily mixture of bifidobacteria in association with antibiotic therapy to
restore gut microbiota bifidobacteria population against propionate producers [25]. Never-
theless, no clinical trials have specifically investigated the role of laxative agents, prebiotics,
probiotics, and antibiotics in PA patients with CM or aLQTS.

Citric acid, an anaplerotic substrate of the TCA cycle, has been suggested as a thera-
peutic opportunity for PA patients [26]. Citric acid (7.5 mEq/Kg per day) was administered
for 4 weeks in three patients with PA. Along with the treatment, a significant increase in
urinary levels of several TCA metabolites compared to baseline values was noticed [27].
Nevertheless, there are no data on the use of citric acid in PA patients suffering from CM
or aLQTS.

4.2. Secondary Mitochondrial Electron Transport (mtETC) Chain Dysfunction and
Oxidative Stress

OXPHOS deficiencies have been reported in the myocardium of PA patients with CM,
including complex I [9], complex III [9,28], or complex IV [29]. Low complex I activity has
also been observed in vivo in a genetic mouse model of PA (Pcca−/−) (A138T). In particular,
an increase in reactive oxygen species (ROS) production was documented in heart sections,
suggesting that oxidative stress may be part of the pathophysiology of CM [30].

Cardiomyocytes derived from induced pluripotent stem cells (iPSCs) of a PA patient
also showed a significantly decreased OXPHOS, as suggested by the decrease in the
ATP-coupled oxygen consumption ratio, maximal oxygen consumption rate, and reserve
capacity compared to the controls [31].

These observations are in accordance with the alterations in mitochondrial OXPHOS
function (low activities of several mtETC complexes) and redox homeostasis (increased
ROS and oxidative stress markers) reported in PA mice tissues [30] and in samples from PA
patients [28,32–34].

Propionyl-CoA and other metabolites can act as mitochondrial toxins impairing OX-
PHOS [23,35]. Interestingly, mtDNA depletion and ultrastructural mitochondrial abnor-
malities, leading to multiple respiratory chain deficiency [20], have been documented
in PA patients [28–30]. In detail, electronic microscopy of myocardial biopsy identified
abnormally enlarged mitochondria with atypical crista in a patient presenting a severe
DCM [29].

Since the redox state in the heart stems from the balance between ROS and intrinsic
antioxidant systems [36], antioxidants have been proposed as potential therapeutic com-
pounds for PA. Rivera-Barahona et al. investigated in the Pcca−/− (A138T) mouse model
the impact of two compounds acting on mitochondrial red-ox metabolism: (i) mitochon-
drial targeted MitoQ (basically, a lipophilic cation triphenylphosphonium—TPP- linked
to ubiquinone that accumulates within mitochondria following the membrane potential),
predicted to ameliorate mitochondrial lipid peroxidation, and (ii) resveratrol, a natural
phenol with antioxidant capability as it induces antioxidant enzymes and mitochondrial
biogenesis. The oral administration of MitoQ or resveratrol decreased lipid peroxidation
and induced the expression of antioxidant enzymes [37]. Notably, PA mice treated with
resveratrol or MitoQ recovered normal brain natriuretic peptide (BNP) expression levels.
Accordingly, antioxidants treatment (Tiron, Trolox, resveratrol, and MitoQ) lessened ROS
content and increased the levels of two antioxidant enzymes (superoxide dismutase and
glutathione peroxidase) in fibroblasts of PA patients [38]. These outcomes warrant further
investigations of the therapeutic efficacy of antioxidants as adjuvant therapy in CM linked
to PA. Nevertheless, several doubts jeopardize the use of these antioxidants, in particular,
MitoQ, in clinical practice. In fact, MitoQ may elicit mitochondrial stress. MitoQ consists
of a lipophilic cation (TPP coupled to ubiquinone via an alkyl chain. The alkyl chain
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can increase mitochondrial inner membrane permeability, thus leading to swelling and
depolarization of the mitochondria [39] and a decrease in mtDNA content [40].

4.3. Coenzyme Q10 Deficiency

Coenzyme Q10 (CoQ10), also known as ubiquinone, plays a key role in mtETC. CoQ10
promotes the transfer of electrons from complex I to complex III and from complex II to
complex III. Furthermore, CoQ10 spares the cell membrane from lipid peroxidation and
oxidative stress by inhibiting enzymes involved in ROS production [41].

The oxidative stress induced by HF spoils antioxidant systems, including CoQ10 [36].
In patients with HF, low plasmatic CoQ10 concentrations associate with a poorer NYHA
functional class, lower left ventricular ejection fraction (LVEF), and higher plasma con-
centrations of amino-terminal fragments of the BNP (NT-proBNP) [42]. Furthermore,
patients presenting a more dangerous HF (classes III and IV) have reduced plasmatic and
myocardial levels of CoQ10, indicating that CoQ10 reduction may follow HF severity [43].

Baruteau et al. [29] described markedly reduced CoQ10 levels (224 pmol/mg, reference
range 942–2738), atypical cristae, enlarged mitochondria, and low complex IV activity
in the myocardial biopsy of a patient with PA and severe DCM. Interestingly, CoQ10
supplementation (from 1.5 to 25 mg/Kg/day) improved DCM. However, the authors did
not confirm that high-dose CoQ10 supplementation restored myocardial CoQ10 levels.
CoQ10 supplementation has been discussed as a potential therapeutic option to improve
left ventricular (LV) function in another paper, where a fatal HF in a pediatric patient with
PA was associated with low complexes I + II and I + III in the liver, suggesting the presence
of a secondary CoQ10 deficiency [25].

Several studies have investigated the effectiveness of CoQ10 supplementation in
patients (not suffering from PA) with HF [44,45]. However, the heterogeneity of the patients’
cohorts, the different designs of the studies, and the different dosages of CoQ10 used did
not allow to draw conclusive results [15,43].

4.4. Metabolic Reprogramming

In physiological conditions, the heart utilizes large amounts of fatty acids as substrates.
However, it demonstrates remarkable metabolic flexibility as it is capable of utilizing
different substrates, including ketone bodies and amino acids. In the failing heart, reduced
cardiac function is accompanied by overt energy metabolism perturbations and impaired
metabolic flexibility. A hallmark of HF is indeed the “switch” in the substrate consumption
from fatty acids toward glucose [46].

Using an isotope-based metabolic flux approach, Wang et al. found that the perfusion
of rat hearts with propionate brought the accumulation of propionyl-CoA, mitochondrial
CoA trapping, and inhibition of fatty acid oxidation with a concomitant increase in glucose
oxidation [24]. These findings provided evidence that metabolic reprogramming may
lead to cardiac dysfunction in PA. It is possible that mtDNA depletion, together with
oxidative damage, contributes to the decline in respiratory function and to the metabolic
reprogramming towards glycolysis (Warburg effect) [30].

Ketone bodies are an alternative fount of acetyl-CoA for pyruvate carboxylation and
TCA cycle anaplerosis upon fatty acid or glucose metabolism impairment. Thus, Baruteau
et al. [29] tested whether D,L-beta-hydroxybutyrate (D,L-BHB) can reverse the CM seen
in PA. The authors reported an improvement in cardiac function in a PA patient with
severe DCM treated with D,L-BHB (200 mg/Kg/day). However, given the simultaneous
co-treatments with other mitochondria agents (CoQ10, riboflavin, thiamine, L-carnitine,
metronidazole, vitamin D), it was impossible to retrospectively determine the real im-
pact of each compound. However, a racemic mixture of D,L-BHB ameliorated CM in
other metabolic disorders such as multiple acyl-CoA dehydrogenase deficiencies [47] and
glycogen storage disease type III [48].
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4.5. Carnitine Deficiency

In PA, the increase in the levels of propionyl-CoA esters might determine possible
direct toxicity on the myocardium and, at the same time, impairment of energy metabolism
secondary to the consumption of carnitine [49]. He et al. recently investigated metabolic
perturbations in organs of Pcca−/− (A138T) mice under a chow diet and acute adminis-
tration of [13C3]propionate. They observed the largest increase in propionylcarnitine in
the Pcca−/− (A138T) heart highlighting the vulnerability of the heart to high circulating
propionate [50].

Baruteau et al. described reduced myocardial free carnitine levels in a patient with PA
and severe DCM [29], and it is known that carnitine deficiency may induce electromyocar-
dial alterations [51].

In another patient with severe DCM, the plasma acylcarnitine levels measured during
acute HF were not altered. However, the correlation between plasma acylcarnitine levels
and muscular or myocardial levels or levels is not robust [52]. Murdach et al. [9] reported
reduced levels of carnitine (both free and total) in the myocardium but normal plasma
carnitine levels in an 8-year-old patient with PA who died of HF and ventricular fibrillation.
In the same patient, very low levels of complexes I + III were documented both in the
cardiac muscle and the skeletal muscle, and the autopsy documented cardiac hypertrophy.

In patients with PA, supplementation of L-carnitine (at the usual dosage of 100 mg/Kg
per day) is recommended to maintain its plasmatic level within the normal range, thus
improving the metabolic stability of patients [4]. However, the role of plasma supplementa-
tion in restoring myocardial carnitine pools and favoring the elimination of intramyocardial
derivatives of propionyl-CoA remains to be established. In rat hearts perfused with propi-
onate, L-carnitine supplementation did not reduce mitochondrial CoA trapping and did
not modify the metabolic switch induced by propionate [24].

4.6. Cardiac Excitation-Contraction Coupling Alteration

Heart mechanical contraction is triggered by an electric stimulus in the so-called
excitation–contraction (E-C) coupling. Cardiomyocyte Ca2+ equilibrium and E-C coupling
frequently become abnormal in cardiac pathologies, such as CM and arrhythmias [53].
Tamayo et al. demonstrated that cardiac dysfunction in Pcca−/− (A138T) mice associated
with lower systolic Ca2+ release ([Ca2+]i transients), reduction of the sarcoplasmic reticu-
lum (SR) Ca2+ intake, impaired Ca2+ re-uptake by the SR-Ca2+ ATPase (SERCA2a) pump
and SERCA2 oxidation [54]. In mitochondria isolated from rat hearts, as well as in heart
homogenates or cardiomyocytes, the perfusion with maleic acid and PA reduced mito-
chondrial membrane potential, NAD(P)H content and Ca2+ retention capacity, and caused
swelling in Ca2+-loaded mitochondria [23]. In iPSC-derived cardiomyocytes, Alonso-
Barroso et al. [31] found increased levels of proteins responding to endoplasmic reticulum
stress and calcium perturbations.

Since a reduction of SERCA activity is a recognized hallmark of CM and abnormal Ca2+

handling increases the risk for arrhythmias [55], an altered EC coupling could contribute to
the onset of cardiac complications in PA. Intriguingly, metabolites produced in PA might
also directly affect other membrane channels and, eventually, cardiomyocyte membrane
polarization [8,56].

4.7. Genetics

Although the possibility exists that PA patients with cardiac complications carry
mutations both in genes encoding for PCC and in other genes involved in congenital
LQTS or genetic CM (i.e., ion channel subunits), this has never been reported, even if
whole-exome sequencing frequently supports inherited metabolic disorders diagnosis.

Moreover, QTc interval prolongation is not congenital in patients with PA and is almost
absent in infants, suggesting that cardiac complications arise as a consequence of ongoing
progressive defects [8]. CM incidence increases with ageing, supporting the progressive
feature of cardiac involvement in PA [7]. However, it cannot be ruled out that ion-channel
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polymorphisms causing subclinical alterations in ion-channel function may play a role in
CM [8].

4.8. Epigenetics

Post-translational modification of histones regulates gene expression and is involved
in adverse cardiac remodeling [57]. Abnormal metabolites found in patients with PA may
indirectly modulate the expression of genes critical for cardiac function [58]. Acetyl-CoA, as
well as other metabolites such as butyryl-CoA, succinyl-CoA, and, notably, propionyl-CoA,
can participate in this process [59].

Two pathways can potentially explain the epigenetic regulation of gene expression
involved in pathological cardiac remodeling in PA: (1) the inhibition of histone deacetylases
(HDACs) by propionate, resulting in increased histone acetylation [59–61]; (2) histone
propionylation by propionyl-CoA acting as a false-substrate for histone acetyltransferases
(HATs). Propionylation of lysine 14 in histone 3 (H3K14pr) promotes chromatin accessibility
and stimulates transcription [62]. In vivo, PCC deletion alters global histone propionylation
levels [62].

4.9. MicroRNAs

MicroRNAs (miRNAs) include short, non-coding, single-stranded RNAs of
20–24 nucleotides in length. miRNAs are essential players in gene expression regulation.
They act post-transcriptionally on complementary mRNA sequences leading to degradation
or translational repression [63]. A single miRNA can control the expression of multiple
mRNAs, while each mRNA can be the target of several miRNAs. This miRNA–mRNA
network governs many pivotal biological processes, such as cellular differentiation, prolifer-
ation and apoptosis processes, cellular metabolism, and mitochondrial dysfunction [64,65].
miRNA dysregulation is implicated in various cardiac pathologies such as arrhythmias,
cardiac hypertrophy, and HF [66] and may trigger cardiac complications in PA [67].

Rivera-Barahona et al. identified a clear dysregulation of miRNAs and the target
mRNAs expression profile in tissue samples from the Pcca−/− (A138T) mouse model and
in plasma samples from patients with PA [67]. Interestingly, the miRNA expression profile
identified in iPSC-derived cardiomyocytes of a patient with PA showed consistent overlap
with the findings in the mouse model [34].

More recently, a miRNA analysis was conducted in vitro and in vivo in a series of
plasma samples from PA patients and two complementary models: (1) the heart gathered
from Pcca−/− (A138T) mice and [2] an immortalized atrial cell line, HL-1 cells, treated with
propionate. In mouse myocardium, the authors reported an overt upregulation of several
miRNAs involved in heart disease, for example, the miRNA-22 regulating PI3K/AKT
pathway, among the molecular trigger of cardiac hypertrophy and fibrosis [68].

4.10. Micronutrients Deficiencies

Beyond CoQ10 deficiency, other micronutrients may relate to the mitochondrial alter-
ations in PA. Indeed, mtETC requires adequate levels of CoQ10, zinc, copper, selenium,
and iron for efficient production of ATP [43]. Noteworthy, up to 50% of HF patients lack
one or more micronutrients. Patients with HF may experience micronutrient deficiency as
the consequence of reduced intestinal absorption and augmented urinary excretion due to
diuretics and impaired renal glomerular or tubular function, also exacerbated by oxidative
or pro-inflammatory stress [43].

The recent ESC guidelines for the treatment of chronic HF suggest supplementation in
case of nutritional deficiencies but clarify that the use of micronutrients may be limited to a
specific subset of patients [14,69]. Currently, no data describe the impact of micronutrient
supplementation in PA patients with CM or aLQTS.



Metabolites 2023, 13, 563 9 of 19

4.10.1. Selenium

Selenium deficiency is recognized among the possible causes of HF, even in the most
recent ESC guidelines [14]. In fact, severe selenium deficiency has been associated with a
rare form of DCM, Keshan’s disease [70], reversible by selenium supplementation [71].

Selenium deficiency might also contribute to CM and aLQTS in patients with PA [8].
Selenium is present in selenocysteine, an amino acid necessary for the synthesis of se-
lenoproteins, such as the crucial antioxidant enzymes glutathione peroxidase (GPX) and
thioredoxin reductase (TXNRD). The role of selenoproteins in the heart is not completely
understood, but their deficiency is known to increase oxidative stress [43]. In human car-
diomyocytes, the lack of selenium jeopardizes mitochondrial function and OXPHOS, and
increases intracellular ROS levels, which can be corrected by restoring selenium levels [72].

No study has addressed selenium deficiency in PA-related CM. Nevertheless, some
studies have demonstrated a reduction of cardiovascular (CV) mortality or a positive effect
on myocardial performances in non-PA patients supplemented with selenium [45,73,74].
The clinical relevance of those findings is undermined by the lack of randomized clinical
trials on the use of selenium supplements alone in patients with HF. A common consensus
is building on the idea that only patients with selenium deficiency could benefit from
selenium supplements [43,75].

4.10.2. Iron

Iron is directly involved in mtETC complexes as it is a critical component of many
enzymes involved in ATP production [43]. Iron deficiency (ID) damages the mitochondrial
function and morphology of human cardiomyocytes, leading to impaired ATP produc-
tion and reduced contractility and relaxation of cardiomyocytes [76]. In non-PA patients
with HF and ID, impaired oxidative mitochondrial function was documented in skeletal
muscle [77–79]. Compared with non-ID HF, ID-HF subjects are characterized by lower
muscle strength, more severe phosphocreatine depletion, and higher intracellular acidosis
upon exercise. This clinical picture is consistent with an early metabolic shift to anaerobic
glycolysis [79].

Currently, no study has investigated ID in PA-related CM. Nevertheless, several
clinical studies have documented that intravenous (iv) iron administration in non-PA
patients with HF and reduced LVEF (HFrEF) brings benefits to the symptoms, quality of
life, and exercise capacity [80–82]. The ESC guidelines recommend testing for ID for all
patients with HF needs. In the case of ID, iv iron treatment should be considered [14]. The
2017 AHA/ACC guidelines made similar recommendations [15].

4.10.3. Vitamin D

Vitamin D deficiency has been described in some cases of reversible HF associated
with severe hypocalcemia [83]. However, randomized control trials reported no major
improvement in clinical outcomes upon calciferol supplementation [84]. A severe vitamin
D deficiency was found in a patient with PA and severe DCM [29]. No data exist on the
role of vitamin D supplementation in PA patients with cardiac complications.

4.10.4. Zinc

Zinc organizes the catalytic site of >300 enzymes, including the angiotensin-converting
enzyme (ACE) and zinc-dependent superoxide dismutase (Cu/Zn-SOD). Zn-dependent
proteases modulate angiotensin function, underlining the crucial role of zinc in the regula-
tion of the pathways triggered by ACE [43].

A recent review of the literature suggests that zinc deficiency in HF may result from
a reduced intake or a diminished absorption of the micronutrient, a strong inflammatory
state, the hyper-activity of the renin–angiotensin–aldosterone axis, and hyperzincuria due
to HF medications [85].

Although the prevalence of zinc deficiency is uncertain, serum zinc concentrations are
lower in patients with HF [43,86]. Amongst patients with HF, NYHA class, age, and use of



Metabolites 2023, 13, 563 10 of 19

ACE inhibitors and angiotensin II receptor blockers (ARBs) negatively affect serum zinc
concentrations [43,87].

Nevertheless, little evidence supports zinc supplementation [86,88]. Myocardial biop-
sies gathered from patients with malabsorption-associated CM showed that zinc supple-
ments increased heart content of zinc with amelioration of cardiomyocyte physiology [86].
No data are available specifically for PA.

4.10.5. Thiamine

Thiamine (vitamin B1) is required for cellular energy production [89]. Thiamine
deficiency is prevalent in HF patients [90]. Nevertheless, the benefits of thiamine supple-
mentation in HF treatment have been assessed only in small groups of patients, and the
evaluation of thiamine supplementation in patients with HF has shown mixed results [91].
The most recent ESC guidelines list thiamine deficiency as a possible cause of HF [14]. The
ESC guidelines recommend evaluating micronutrient supplementation, including thiamine,
in case of nutritional deficiencies [14]. No data are available specifically for PA.

4.10.6. Riboflavin

Vitamin B2, also known as riboflavin, plays a major role in energy metabolism. Vitamin
B2 is metabolized to flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN),
two key electron carriers [91]. Pilot studies demonstrate that vitamin B2 deficiency is more
common in the HF population. However, the most convincing results about the beneficial
role of riboflavin in cardiac function came from animal models [91,92]. In humans, B-
vitamin supplementation did not significantly reduce deficiency rates in patients with
HF [93]. No data are available specifically for PA.

4.10.7. Biotin

Biotin (vitamin B7) is a prosthetic group shared by several key enzymes involved
in energy metabolism, including PCC. Consequently, biotin deficiency could have a role
in CM pathophysiology. However, cardiac tissue seems to be relatively insensitive to
biotin deficiency [91], and HF has not been associated with a high prevalence of biotin
deficiency [91].

Biotin supplementation is often used in PA patients, especially before the differential
diagnosis [94,95]. Nevertheless, its use in the chronic management of PA patients lacks
evidence of efficacy [57].

4.11. The Renin–Angiotensin–Aldosterone System

The renin–angiotensin–aldosterone system (RAAS) orchestrates a pivotal physiologic
response to renal hypoperfusion on the basis of HFrEF. RAAS finally results in the for-
mation of angiotensin II which is a powerful vasoconstrictor and has detrimental effects
in chronic HF, eliciting vascular and cardiac remodeling and progressive myocardial fi-
brosis [96]. Angiotensin-converting enzyme inhibitors (ACE-i) were the first drugs that
reduced mortality and morbidity in patients with HFrEF [14]. According to the ESC, AHA,
and ISHLT guidelines, treatment with ACE-I is a Class I recommendation in patients with
HFrEF [14–16].

In PA patients with HF, no randomized controlled trials investigated the use of ACE-I.
In a monocentric observational study, Kovacevic et al. evaluated diastolic function in 18 PA
patients, seven of whom progressed towards an overt LV systolic dysfunction. All patients
treated with lisinopril experienced SF deterioration over time [7].

The rise in aldosterone levels, frequently observed in patients with HFrEF despite the
use of ACE-I [97], is associated with the progression of myocardial hypertrophy and fibrosis.
Mineralocorticoid receptor antagonists (MRA) and the angiotensin receptor–neprilysin
inhibitor sacubitril/valsartan may provide benefits [14,15]. However, the use of MRA
or angiotensin receptor–neprilysin inhibitor sacubitril/valsartan in PA patients has not
been evaluated.
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Na+-glucose cotransporter-2 (SGLT2) inhibitors are glucose-lowering drugs that reduce
the CV risk in type 2 diabetes mellitus. They are the new mainstay treatment for CV
diseases as they significantly reduce CV mortality, hospitalizations, and improve symptoms
in patients with HF. The exact mechanisms by which SGLT2-i carry out such benefits are
not completely understood and might be related to sodium balance, energy homoeostasis,
and mitigation of cellular stress [98]. Recently, both the FDA [99] and the EMA [100]
have produced a Drug Safety Communication on the risk of diabetic ketoacidosis (DKA)
in diabetic patients treated with SGLT2 inhibitors. The increased risk of DKA suggests
extreme caution in the use of these drugs in PA patients.

4.12. Increased Sympathetic Activation

The persistent increase in sympathetic activation in response to HF results in ele-
vated myocardial oxygen consumption, myocardial fibrosis, and apoptosis. Beta-blockers
(BB) antagonize the detrimental effects of sympathetic activation, reduce mortality and
morbidity, and improve symptoms in adult patients with HFrEF [14]. The evidence sup-
porting the use of BB in children is weaker, and a cautious and slow up-titration is always
recommended [16].

Given that, in LQTS (congenital or acquired), ventricular arrhythmias are often trig-
gered by adrenergic activation, BB plays a key role in reducing arrhythmic risk [101]. In
PA patients with aLQTS or CM, no randomized controlled trials evaluated the use of
BBs. In a monocentric observational study, four patients with increased QTc were treated
prophylactically with BBs (two with propranolol and two with metoprolol). No patients
showed ventricular arrhythmias or cardiac events [7]. Another paper described the use of
propranolol in two sisters with PA and prolonged QTc [102].

5. Discussion

PA is a complex and heterogeneous disease involving multiple cellular pathways
beyond the primary enzyme defect. Therefore, it is unlikely that a single mechanism may
cause cardiac complications.

Since the heart is a highly energy-demanding organ, altered energy metabolism in
the myocardium is considered a major driver of pathological cardiac manifestations in
PA. Indeed, cardiac involvement, in the form of CM or arrhythmia, is common in several
energy metabolism disorders, including mitochondrial electron transport defects [103] and
fatty acid oxidation disorders [104].

In addition, since cell energy is mostly obtained thanks to the mitochondria, especially
via the TCA cycle and electron transport chain, pathogenetic mechanisms targeting these
pathways have been extensively investigated as potential causes of cardiac disease in PA.

Since cardiac complications are observed in vivo despite good metabolic control and
without a correlation with the metabolic severity, mechanisms other than the accumulation
of toxic compounds have been suggested as causative. Deficiency of nutrients, intermedi-
ates or cofactors, mitochondrial ultrastructural changes, and increased oxidative stress can
all contribute to the development of cardiac complications. Intriguing new hypotheses are
emerging involving miRNA signatures and epigenetic mechanisms. miRNA expression in
PA is influenced by the age of the patients and by the tissue under consideration. Clearly,
multiple factors regulate the molecular adaptations to PA. All these mechanisms add to the
complex pattern of the phenotypes and may mediate the chronic changes associated with
the natural history of the disease [64].

The knowledge of these pathogenetic mechanisms comes from preclinical studies,
exploiting a variety of experimental models such as: [1] in vitro systems, namely patient-
derived cells, immortalized cell lines, or mouse cells (treated or not treated with propi-
onate); [2] the Pcca−/− (A138T) mice, with an estimated PCC activity of 2% [105].

The murine model is a robust tool for studying the pathophysiology of PA, and it
allows the characterization of the cardiac phenotype [30,37]. However, mouse models have
some limitations, reflecting the structural and physiological differences between mouse
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and human hearts [106,107]. In vitro disease models based on iPSCs offer unprecedented
opportunities. IPSCs can model different genetic backgrounds, originate any type of
cell in the organism, and represent an almost unlimited source of biological material for
physiological investigations and preclinical drug validation.

Current guidelines for the management of patients with MMA and PA do not recom-
mend any specific treatment for CM or aLQTS in patients with PA outside of standard
cardiac therapy [2,4]. However, there are accepted medications for cardiac complications in
PA and medications considered potentially dangerous (Table 1). Weak evidence is reported
for CoQ10 supplementation [4] (Table 2).

Table 1. Accepted medications for cardiac complications in propionic acidemia and medications
considered potentially dangerous.

Accepted Potential Harmful References

ACE-inhibitors
(ACE-i) X [7]

Mineralcorticoid receptor
antagonists (MRA) X -

Angiotensin receptor-neprilysin
inhibitor sacubitril/valsartan X -

Na+-glucose cotransporter-2
(SGLT2) inhibitors X [99,100]

Beta-blockers
(BBs) X [7,102]

No randomized controlled trials investigated the benefits of standard cardiac ther-
apy or CoQ10 supplements in PA patients with CM. Moreover, the finding that rou-
tine ACE-I treatment does not improve SF in PA-CM [7] urges the evaluation of further
treatment options.

Few collaborative efforts aimed at a better understanding of the natural history of
cardiac disease in PA. The few longitudinal descriptions of these patients come principally
from case reports, anecdotal experience, or observational monocentric study. The different
data collection strategies, differences in treatments, and approaches among the centers,
together with the retrospective nature of the analyses, reduce the relevance of the studies
described above.

The strengths of this review are: it sheds light on the pathogenesis of PA-associated
cardiac complications and identifies potential targets for therapy. As such, it has the
potential to guide the development of novel therapeutic approaches and improve the
clinical outcomes of PA patients with cardiac complications.

Table 2. Current micronutrient recommendations for patients with HF and for patients with PA.

Heart Failure in General References Propionic Acidemia References

Coenzyme Q10 Not conclusive results. [15,43] Weak evidence [25,29]

Vitamin D

Lack of evidence.
Vitamin D deficiency has been described in
some cases of reversible HF associated with

severe hypocalcemia, but routine
supplementation has not proven beneficial.

[15,83] No data -

Thiamine

Lack of evidence.
Thiamine deficiency is recognized as a

cause of HF, but routine supplementation
has not proven beneficial.

[14,15] No data -
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Table 2. Cont.

Heart Failure in General References Propionic Acidemia References

Carnitine Lack of evidence [15]

Carnitine supplementation is
recommended to maintain its

plasmatic level within the normal
range, thus improving the

metabolic stability of patients

[4]

Vitamin E Potentially harmful. [15] No data -

Selenium

Selenium deficiency is recognized as a cause
of HF.

A common consensus is building on the
idea that only patients with selenium

deficiency could benefit from selenium
supplements.

[14,43,75] No data -

Iron

Iron deficiency has been associated with
clinical instability. Treatment is

recommended in the case of iron depletion.
Routine oral supplementation has not

proven beneficial.

[14,15] No data -

Zinc

Routine supplementation has not proven
beneficial. Little evidence supports zinc

supplementation in the case of
zinc deficiency.

[15,86,88] No data -

Riboflavin Multivitamins have not proven beneficial. [15] No data -

Biotin Multivitamins have not proven beneficial. [15]
Its use in the chronic management

of PA patients lacks evidence
of efficacy

[57]

6. Conclusions and Future Directions

Current pharmacological therapeutic options for cardiac complications in PS are
limited and tested only in a few individuals. Due to the limited case numbers per center,
only a multicenter approach and prospective randomized controlled studies can provide
strong evidence of the efficacy of treatments.

Further studies are needed to gain a better understanding of the underlying patho-
genetic mechanisms. Emerging information on pathogenesis may suggest novel therapeutic
approaches not directed toward the correction of the enzymatic defects but rather targeting
the dysregulated mechanisms. Although these alternative approaches may not be resolu-
tive, they may improve the quality of life and slow the disease progression. Moreover, the
correction of these abnormalities may synergize with existing therapies.
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Abbreviations

ACE angiotensin-converting enzyme
ACEi ACE inhibitors
aLQTS acquired long QT syndrome
ARBs angiotensin II receptor blockers
BB beta-blockers
BNP brain natriuretic peptide
CM cardiomyopathy
CoQ10 Coenzyme Q10
CV cardiovascular
D,L-BHB D,L-beta-hydroxybutyrate
DCM dilated cardiomyopathy
FS fractional shortening
HAT histone acetyltransferases
HDACs histone deacetylase
HF heart failure
HFrEF HF with reduced LVEF
ID iron deficiency
Iv intravenous
iPSCs induced pluripotent stem cells
LT liver transplantation
LV left ventricular
LVEF left ventricular ejection fraction
miRNAs microRNAs
MRA mineralcorticoid receptor antagonists
mtETC mitochondrial electron transport chain
NT-ProBNP amino-terminal fragment of the BNP
OXPHOS oxidative phosphorylation
PA propionic acidemia
PCC propionyl-CoA carboxylase
RAAS renin–angiotensin–aldosterone system
ROS reactive oxygen species
SCA sudden cardiac arrest
SGLT2 Na+-glucose cotransporter-2
TCA tricarboxylic acid
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