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Abstract: The number of Candida spp. infections and drug resistance are dramatically increasing
worldwide, particularly among immunosuppressed patients, and it is urgent to find novel compounds
with antifungal activity. In this work, the antifungal and antibiofilm activity of thymoquinone (TQ), a
key bioactive constituent of black cumin seed Nigella sativa L., was evaluated against Candida glabrata,
a WHO ‘high-priority’ pathogen. Then, its effect on the expression of C. glabrata EPA6 and EPA7
genes (related to biofilm adhesion and development, respectively) were analyzed. Swab samples
were taken from the oral cavity of 90 hospitalized patients in ICU wards, transferred to sterile falcon
tubes, and cultured on Sabouraud Dextrose Agar (SDA) and Chromagar Candida for presumptive
identification. Next, a 21-plex PCR was carried out for the confirmation of species level. C. glabrata
isolates underwent antifungal drug susceptibility testing against fluconazole (FLZ), itraconazole
(ITZ), amphotericin B (AMB), and TQ according to the CLSI microdilution method (M27, A3/S4).
Biofilm formation was measured by an MTT assay. EPA6 and EPA7 gene expression was assessed by
real-time PCR. From the 90 swab samples, 40 isolates were identified as C. glabrata with the 21-plex
PCR. Most isolates were resistant to FLZ (n = 29, 72.5%), whereas 12.5% and 5% were ITZ and AMB
resistant, respectively. The minimum inhibitory concentration (MIC50) of TQ against C. glabrata
was 50 µg/mL. Importantly, TQ significantly inhibited the biofilm formation of C. glabrata isolates,
and EPA6 gene expression was reduced significantly at MIC50 concentration of TQ. TQ seems to
have some antifungal, antibiofilm (adhesion) effect on C. glabrata isolates, showing that this plant
secondary metabolite is a promising agent to overcome Candida infections, especially oral candidiasis.
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1. Introduction

Oropharyngeal candidiasis (OPC) is an opportunistic mucosal infection caused by
Candida species [1], and a frequent infection among immunocompromised patients, such as
those who received organ transplantation, submitted to long-term antibiotic therapy, cancer
and hematological malignancy patients undergoing chemotherapy or taking immunosup-
pressive drugs, or HIV-positive individuals [2]. OC is characterized by the presence of
creamy, white plaques on the tongue and buccal mucosa that generally leave a raw, painful,
and ulcerated surface when they are scraped [3]. High-risk patients suffering from OC not
only experience a lower quality of life, but may develop significant life-threatening invasive
candidiasis, where the causative agents enter the bloodstream and cause candidemia [4].

Candida albicans is still the most common causative agent of OPC; but the number of
non-albicans Candida (NAC) species (such as Candida glabrata (now known as Nakaseomyces
glabrata), Candida krusei (Pichia kudriavzevii), Candida parapsilosis, Candida tropicalis, Candida
kefyr, Candida dubliniensis or Candida guilliermondii (Meyerozyma guilliermondii), and Candida
orthopsilosis) has risen worldwide in clinical settings [5,6]. Unfortunately, the majority
of these species either are intrinsically less responsive to azole drugs (e.g., fluconazole,
itraconazole, clotrimazole, and econazole) or acquire a high level of resistance to antifungal
agents [7]. Candida glabrata is a commensal NAC yeast living in human mucosal surfaces
(e.g., the mouth esophagus and intestine), but it can easily turn into a pathogen, especially in
immunocompromised individuals, leading to a high rate of morbidity and mortality [8–11].
This species is frequently resistant to antifungal agents [12], owing a its capacity to produce
biofilms (microbial complex communities), which lead to recurrent infections and higher
rates of therapeutic failure [13–15]. It was designated as a ‘high-priority pathogen’ in the
2022 WHO fungal priority pathogen list [16].

The ability to adhere to epithelial cells of the oral cavity is a key initial step in the
pathogenicity of an OC infection [17]. C. glabrata biofilms have a complex network of genes,
which contribute to several pathogenesis and virulence features, such as the ability to
adhere to surfaces [18]. Among the adhesion genes that contribute to pathogenesis and
biofilm formation in C. glabrata, two of the most crucial and relevant ones are epithelial
adhesion genes EPA6 and EPA7 [19–23]. The expression of EPA6 and EPA7 genes has also
been shown to be highly induced in biofilms. Epa6 is also known to mediate the binding of
C. glabrata to the human extracellular matrix protein, fibronectin, which clearly indicates
the importance of these genes in the biofilm maturation and, consequently, in the progress
of oral Candida disease [24].

With the widespread use (and misuse) of antifungals, drug-resistant, and uncommon
Candida species associated with oral infections (e.g., OPC) have considerably increased [25–27].
As conventional drugs become less effective, there is an urgent need for new approaches,
such as active natural products from medicinal plants, which can act as novel and effective
therapeutic strategies against pathogens [28].

This is the case of Nigella sativa L. seeds, which have been used in traditional folk
medicine all over the world for over 2000 years. Indeed, N. sativa L. is among the top-
ranked herbal medicines based on current evidence. Their seeds contain fixed and essential
oils, proteins, alkaloids and saponins associated with several bioactivities. The quinine
components, especially thymoquinone (TQ) (a major bioactive component of the essential
oil), 2-methyl-5-isopropyl-1-benzoquinone, is responsible for the pharmacological effects
of black seed, such as antihistaminic, hypoglycemic, antibacterial, antihypertensive, anti-
inflammatory, and immune-enhancing effects. TQ is frequently used in the Middle East,
North Africa, and South Asia. Furthermore, TQ has been reported to exhibit an interest-
ing antifungal activity [29–31]. For instance, N. sativa L. has demonstrated a significant
fungicidal effect against Fusarium oxysporum and has been revealed to be a natural, environ-
mentally friendly fungi toxicant [32]. In a similar study in Iran, N. sativa L. TQ had strong
an antifungal effect on Trichophyton mentagrophytes, Microsporum canis, and Microsporum
gypseum (several pathogenic dermatophyte strains) [31]. Interestingly, a study indicated
that at higher TQ concentrations, with a steep dose–effect relationship, the growth of a
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clinical isolate of Fusarium solani was effectively inhibited as compared with that of am-
photericin B, which gave shallow dose–effect relationship [33]. However, the synergistic
activity of TQ with antifungal drugs represents a promising finding. This is the example of
a recent study, in which the results showed that TQ and nystatin had a synergistic effect on
standard strains of Candida [34].

In view of the past and present literature, the current study aimed to test the antifungal
and antibiofilm bioactivity of TQ, as an alternative or adjunctive therapeutic agent against
40 oral clinical isolates of C. glabrata from ICU hospitalized patients who underwent
treatment in a clinical setting, in comparison to common antifungal drugs, fluconazole,
itraconazole, and amphotericin B. This had not been assessed against clinical isolates of
C. glabrata before. In addition, an alternative comprehensive multiplex PCR assay, 21-plex
PCR, was evaluated for its identification accuracy. Moreover, to our knowledge, for the
first time, an additional mechanism of action of TQ, possibly related to the downregulation
of the expression of C. glabrata EPA6 and EPA7 genes (directly related to biofilm adhesion)
was also explored.

2. Materials and Methods
2.1. Study Design

In this study, 90 hospitalized patients in intensive care unit (ICU) wards from teaching
hospitals in Iran were enrolled from December 2017 to May 2018. Men and women >18 years
old with clinical signs of oral candidiasis were included.

2.2. Thymoquinone and Antifungal Drugs

Aliquots of 400 uL/mL were prepared in dimethyl sulfoxide (DMSO, Sigma-Aldrich,
USA) and kept in storage at −20 ◦C. Thymoquinone (Sigma-Aldrich, USA) was used at
concentrations of 400–0.78 µg/mL [35], Amphotericin B (AMB) (Sigma Chemical Corpo-
ration, St. Louis, MO, USA) was used at concentrations of 0.016–16 µg/mL, Fluconazole
(FLZ) (Pfizer, New York, NY, USA) was used at concentrations of 0.063–64 µg/mL, and
Itraconazole (ITZ) (Santa Cruz Biotech, Dallas, TX, USA) was used at concentrations of
0.016–16 µg/mL.

2.3. Patients’ Characteristics

All patients were examined by specialist clinicians for signs and symptoms of OC.
Patients that met the following criteria were considered to be OC positive: (a) presence of
thrush (pseudomembranous) in the oral cavity, and (b) acquisition of positive yeast growth
from a swab sample [36]. Oral mucositis was defined by observing erythematous and ul-
cerative lesions and all stages of mucositis (mild, moderate, and severe) were included [37].
This study was reviewed by ethical committee members of the Tarbiat Modares University,
and ethical approval was granted with this number: IR.MODARES.REC.1400.109. Informed
consent was obtained from all patients whose identity was anonymized to researchers by
using a numerical code identifier (1–90). Demographic data, such as age, gender, underly-
ing diseases, the history of antibiotic and antifungal therapy, immunosuppressing therapy,
clinical symptoms of OC, and previous history of OC, were recorded in a questionnaire for
OC-positive patients. Patients under 15 years old (both male and female) and pregnant
women were excluded from this study.

2.4. Clinical Specimens Processing and Identification of Isolates

Specimens were taken from the tongue and buccal mucosal lesions of the symptomatic
patients using sterile cotton swabs and immediately transferred into falcon tubes contain-
ing sterile phosphate-buffered saline (PBS 1×, 1M). Initially, samples were subjected to
direct microscopic examination to observe the yeast structures, followed by culturing on
Sabouraud dextrose agar medium (SDA, Sigma–Aldrich, Burlington, MA, USA), and then,
were incubated at 35 ◦C for 48 h. After they grew, plates with more than 400 colonies
were considered as positive culture, as previously described [38]. To obtain pure colonies
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for each species, they were streaked on CHROMagar (CHROMagar Candida, France) and
incubated for 48 h at 35 ◦C for presumptive identification. All isolates were definitely
identified by 21-plex PCR. For this purpose, total DNA of the Candida isolates was extracted
with a Yeast DNA extraction kit (Poyagene Azema, Tehran, Iran), and 21-plex PCR was
used to accurately identify the isolates according to a previous method [39]. PCR products
were run on 2% agarose gel, stained with GelRed (BioTium, CA, USA), and visualized
with a gel documentation device (Gel Doc XR+, BioRad, Hercules, CA, USA). Finally, C.
glabrata isolates were chosen for further examinations, as the focus of attention in this study
(Figure S1, Supplementary File).

2.5. Antifungal Susceptibility Testing (AFST)

Antifungal susceptibility profile analysis of C. grabrata was carried out according
to the Clinical and Laboratory Standards Institute (CLSI, M27-A3/S4) guideline [40,41].
Plates were incubated at 35 ◦C for 24 h, and visual data were recorded. C. glabrata (ATCC
90030), C. krusei (ATCC6258), and C. parapsilosis (ATCC22019) were used for quality control
purposes. MIC50 for FLZ, ITZ, and TQ was defined as the minimum concentration of drugs
to inhibit 50% of fungal growth, whereas for AMB, the MIC endpoint was considered to
be the lowest concentration that inhibited 100% of fungal growth as compared with that
of the drug-free control [42]. All tests were performed in triplicate, and proper positive
and negative controls were used for tests. The growth of fungi was checked visually. MIC
values of FLZ and ITZ were interpreted based on clinical breakpoints (CBP) [40].

2.6. Real-Time PCR Assay

To evaluate the effect of TQ on EPA6 and EPA7 gene expressions, RNA was extracted
from C. glabrata isolates, after exposure to MIC50 (50 µg/mL) for 24 hr of TQ [42]. Since TQ
at MIC50 could inhibit 50% of fungal growth, we used this concentration (50 µg/mL) to
understand the effect of this concentration on the gene expression profiles in C. glabrata.
For this purpose, the cell pellets of C. glabrata were suspended in 1 mL ice-cold RNX-plus
solution using the total RNA extraction kit (Cinagen, Tehran, Iran). RNA concentration was
measured using Nanodrop spectrophotometer (Nanodrop Technologies, Thermo-Fisher
Scientific) and kept at −20 ◦C until use. Next, cDNA was synthesized from RNA using
cDNA Synthesis kit (Parstous, Mashhad, Iran) according to the kit’s instructions using
MultiScribeTM reverse transcriptase. Subsequently, synthesized cDNA was subjected to
real-time PCR for evaluation of EPA6 and EPA7 gene expression of C. glabrata against
specific primers sequences (Table 1). ACT1 was chosen as a housekeeping gene. For this, a
total of 25 uL of mixture for each reaction was prepared, including High Rox PCR Master
Mix (SYBR™ Green, 2×), forward and reverse primers from each gene (10 pmol), deionized
water (ddH2O), and cDNA as a template. PCR was carried out with following program:
denaturation 95 ◦C for 5 min, elongation at 56 ◦C for 30 s, and extension at 72 ◦C for
1 min in 35 cycles for completing the reaction using the real-time PCR machine (Applied
Biosystems Step OnePlus). The specific primers for EPA6 and EPA7 were designed using
Allele ID primer design software (version 7.5). Results of the real-time PCR were analyzed
using REST 2009 software (Ver. 2.0.13) [42].

Table 1. List of C. glabrata primers used in real-time PCR.

Gene Primer Sequence

ACT1 Forward 5′-AGAGCCGTCTTCCCTTCCAT-3′

ACT1 Reverse 5′-TTGACCCATACCGACCATGA-3
EPA6 Forward 5′-AAAGCCTCAATGGTATGACAGAAGAC-3′

EPA6 Reverse 5′-CAGATGAATTTTGGAATGGGAAA-3′

EPA7 Forward 5′-GGCTGGCTTTCGTGCAATA-3′

EPA7 Reverse 5′-CGACGGACCCTTGTAAGATTGT-3′
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2.7. Antibiofilm Activity of TQ

The effect of TQ on C. glabrata biofilm ability was determined by using (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In the first step, the C.
glabrata biofilm was formed in flat-bottomed 96-well polystyrene cell culture plates with
low evaporation lids (Becton Dickinson, Franklin Lakes, NJ, USA) as follows: C. glabrata
cells were washed twice with PBS and suspended in RPMI-1640 cell culture medium
(Sigma-Aldrich, Saint Louis, MO, USA) without sodium bicarbonate, supplemented with
L-glutamine (Gibco, Grand Island, NY, USA). RPMI-1640 media were buffered with 0.165
M 3-morpholinopropane-1-sulfonic acid, MOPS (Nacalai Tesque, Kyoto, Japan), at pH 7.0.

C. glabrata cell suspension (100 µL) was adjusted to 1× 105 cells, which were dispensed
into wells. The plate was covered, sealed with parafilm, and incubated for 24 h at 37 ◦C.
After this time, cell suspension was aspirated and washed twice with PBS pH 7.4 to remove
non-adherent cells. Residual PBS in the wells was removed, and 100 µL of TQ prepared
in (DMSO, Sigma-Aldrich, Saint Louis, MO, USA) at a concentration of MIC50 was added
to each well. The plate was incubated for 24 h at 37 ◦C. Then, 50 µL of MTT solution was
prepared from MTT sodium salt (Sigma-Aldrich, Saint Louis, MO, USA) and added. The
plate was covered and incubated in the dark for 3 h at 37 ◦C. Finally, 150 µL of the DMSO
(dimethyl sulfoxide, Sigma-Aldrich, Saint Louis, MO, USA) was added into wells, and the
optical density at 570 nm was determined using a microplate reader (Biotek, Winooski, VT,
USA) [43]. Wells without TQ were considered to be negative controls.

3. Results
3.1. Clinical Data of the Patients

This study enrolled 90 hospitalized ICU patients with OPC. C. glabrata was isolated
from 40 patients. Among them, 21 (52.5%) were female (age range 34–83 years) and 19
(47.5%) were male (age range 15–85 years). Several underlying diseases were identified,
including Chronic obstructive pulmonary disease (COPD) (15%), cancer (32.5%), and
pneumonia (15%) (Table 2). C. glabrata was the most common Candida species isolated
from patients who stayed in the ICU for more than 7 days. Oropharyngeal cancer was the
most predominant underlying disease among hospitalized patients with OC in the ICU
(46.1%), followed by pneumonia and COPD. Candida species identified by 21-plex PCR in
the patients were as follows: C. glabrata (44.4%), C. albicans (33.3%) and C. krusei (8.8%) and
C. tropicalis (5.5%).

Table 2. Clinical features of the patients that participated in the ICU multi-center study.

Feature Total n (%) p Value

Age (age range 15–95 years mean ± SD 59 ± 11.4) <30 5 (5.5%) 0.06
>30 85 (94.4) 0.002

Gender (total n) n = 40
0.101Male 19 (47.5)

Female 21 (52.5)
Cancer Positive 13 (32.5)

1 COPD Positive 6 (15)
Pneumonia Positive 6 (15) 0.021

Previous use antifungal drugs 12 (30) 0.06
Antibacterial therapy 40 (100) 0.008

Immunosuppressive drugs 19 (47.5) 0.006
Duration of admission 3–10 days (>6 days) 0.007

Bold: statistically significant result (p < 0.05); 1 COPD (chronic obstructive pulmonary disease).

Moreover, we found an effect from the use of antibiotics (especially vancomycin),
antifungal drugs, and immunosuppressive drugs (frequently prednisolone) during hos-
pitalization in ICU and the presence of C. glabrata (compared to other species) in the oral
cavities of patients (p = 0.008, 0.006, and 0.007, respectively). On the other hand, there
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was not a significant association between the presence of C. glabrata of oral cavity and the
gender of patients (p = 0.101). We found a significant difference between the carriage of C.
glabrata and the age of the infected patients; those older than 30 years old were more likely
to be infected with C. glabrata than other species (p = 0.002).

3.2. Antifungal Susceptibility Testing (AFST) against TQ and Antifungal Drugs and the Effects of
TQ on the Biofilm Formation of C. glabrata

AFST was performed against the 40 C. glabrata isolates according to the CLSI (M27
A3/S4) standard method. The results of the MIC for FLZ, ITZ, AMB, and TQ revealed that
72.5% (n = 29) C. glabrata were resistant to FLZ (MIC ≥ 64 µg/mL), and 27.5% (n = 11) iso-
lates were sensitive and dose dependent (SDD) (MIC≤ 32µg/mL). In addition, 12.5% (n = 5)
of isolates were resistant to ITZ (MIC ≥ 2 µg/mL), 50% (n = 20) isolates were SDD (MIC
0.5–0.25 µg/mL), and 37.5% (n = 15) isolates were sensitive to ITZ (MIC ≤ 0.12 µg/mL).
On the other hand, only 5% (n = 2) of C. glabrata were resistant to AMB (MIC ≥ 1 µg/mL),
and 95% (n = 38) isolates were sensitive to AMB (MIC ≤ 1 µg/mL). The MIC50 of TQ was
50 µg/mL. The findings are represented in Table 3.

The inhibitory (antibiofilm) effect of TQ on C.glabrata biofilms was evaluated using
an MTT assay. Importantly, the results indicate that the biofilm formation ability was
reduced significantly (two times) in C.glabrata isolates exposed to MIC50 of TQ as compared
with that of the isolates without treatment with TQ, which were used as a control group
(p < 0.05).

3.3. Effects of TQ on the Expression of EPA6 and EPA7 Genes

To assess the expression of biofilm-related genes of C. glabrata in presence of TQ,
quantitative real-time PCR was carried out. Notably, the results showed that while the ex-
pression of EPA7 remained comparable to the control (p = 0.066), 100% of the isolates treated
with TQ (MIC50) showed a statistically significant downregulation of EPA6 (p = 0.012).
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Table 3. Antifungal susceptibility pattern of the C. glabrata isolates against antifungal drug.

TQ
MIC Range

25–100

FLZ
GM;10.11

ITZ
GM;0.51

AMB
GM;0.57

MIC50 MIC90 MIC50 MIC90
MIC

range
R
≥64 S SDD

≤32 MIC50 MIC90
MIC

range
R
≥2

SDD
0.5 ≤MIC ≤ 0.25

S
≤0.125 MIC50 MIC90

MIC
range R ≥ 2 S

≤1

50 100 16 64 4–64 (n = 29,
72.5%) 0 (n = 11,

27.5%) 0.5 1 0.125–
0.2

(n = 5,
12.5%)

(n = 20,
50%)

(n = 15,
37.5%) 0.5 1 0.25–2 (n =

2,−5%
(n = 38,
−95%

R: resistant; S: sensitive; SDD: sensitive dose dependent; GM: geometric mean (µg/mL); MIC (µg/mL): Minimum Inhibitory Concentration for azoles mentioned. MIC50 was noted to be
the lowest concentration of the drug that showed a 50% reduction of the growth of the test strain. MIC values of AMB were noted to be the lowest concentration of the drug that showed
a 100% reduction of the growth of the test strain compared to that of a control strain grown without AMB.
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4. Discussion

Although C. albicans is considered to be the major opportunistic fungal pathogen
causing OPC, the number of C. glabrata cases are dramatically increasing along with rates
of resistant [43–55]. Hence, great attention has been paid to alternative therapeutic agents
such as natural components extracted from plants with antifungal activity against drug
resistant yeast species [44].

In this work, we started by learning which Candida species are mostly involved in OPC
in high-risk hospitalized patients in Iranian ICU wards. The results showed that C. glabrata
was the most common Candida species recovered from the oral cavities of ICU patients,
followed by C. albicans, C. krusei, and C. tropicalis. In agreement with our study, Deorukhkar
et al. also reported a higher rate of NAC cases taken from various clinical samples, and C.
glabrata was the major isolate from candidemia cases [56]. Similarly, Mushi et al. indicated
that NAC were the predominant species isolated from the oral cavity of HIV-infected
individuals [57]. According to demographic characteristic, several comorbidities were
identified in the OPC patients (e.g., COPD and pneumonia) (Table 2). Moreover, that the
use of antibacterial/antifungals (e.g., vancomycin) and immunosuppressive drugs during
hospitalization in the ICU and the patients’ oral load of C. glabrata were directly related.
This clearly highlights the role of these drugs as predisposing factors in OPC [56]. Although
sex did not seem to matter, age was associated with the causative species.

C. glabrata has been ranked as a high-priority pathogen by the WHO [54], and the rest
of the work was focused on this yeast and a bioactive component of the medicinal plant, TQ
(as a potential drug). Based on the AFST findings, the high rate of FLZ-resistant C. glabrata
has been a matter of global concern in clinical settings [23,25]. Our results showed that
72.5% of C. glabrata were resistant to FLZ, while 12.5% and only 5% isolates were resistant
to ITZ. Similar results have been confirmed by other authors in Iran (although specifically,
HIV patients) [45]. In another study, most people infected with C. glabrata recovered from
OPC were resistant to FLZ; however, the rate of resistance to nystatin and miconazole was
low [46]. Likewise, people with OPC caused by NAC who recovered from COVID-19 had
a high level of resistance to FLZ, while AMB was the most effective drug against their
isolates [47]. Additionally, 50% of C. glabrata isolates recovered from the oral cavity of
patients who underwent dialysis had reduced susceptibility to FLZ [48].

The ability of these pathogens to form a biofilm is a prime virulence trait responsible
for their multidrug resistance, which often leads to the failure of therapeutic strategies [49].
The use of bioactive molecules with proper antifungal activity introduces a promising
opportunity to combat drug-resistant Candida spp. Therefore, we examined the inhibitory
effect of TQ on resistant C. glabrata isolates. The MIC50 of TQ against C. glabrata was
50 µg/mL, revealing a good inhibition (low concentration of TQ) of the biofilm formation,
which is in agreement with other similar studies. Al-Thobity et al. indicated that TQ
incorporated into the acrylic resin denture base material dramatically decreased C. albicans
adhesion [50]. Likewise, the nanoparticulated form of TQ showed more effective antifungal
activity against both planktonic bacteria and a biofilm of C. albicans as compared to those
of free TQ [51]. A study by Almshawit et al. showed that the fungicidal effect of TQ
on different Candida species, particularly C. glabrata, in both planktonic bacteria and a
biofilm. These authors indicated that this effect is probably related to the production of
oxidative stress via generation of reactive oxygen species, glutathion level reduction, and
the distribution of mitochondrial functions, causing cell death [52]. Similarly, a comparison
between a free TQ and liposomal TQ showed a positive effect against both FLZ-susceptible
or -resistant C. albicans. Liposomal TQ was the most effective one, and it imparted a high
survival rate to mice infected with FLZ-susceptible and -resistant isolates of C. albicans [43].

Although several mechanisms of action of TQ in Candida have been described (as
seen above), gene regulation disturbance has been poorly studied. Thus, we proceeded to
real-time PCR analysis of two of the most important biofilm adhesion genes. The results
showed that after TQ exposure (MIC 50 ug/mL), the level of EPA6 gene expression in C.
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glabrata was statistically significantly reduced (i.e., downregulation). This means that the
biofilm’s ability to adhere to a certain structure would be diminished. All taken together,
these results show that TQ significantly inhibits the growth of resistant C. glabrata and has
potential to halt the development of C. glabrata biofilms and, thus, the progression of the
C. glabrata OPCs [53]. We remind the readers that these results (clinical data) are rather
constricted by the power of this research, which was decreased by the limited number of C.
glabrata isolates [48].

5. Conclusions

Biofilm formation is a key attribute for the progression of infections. As a result, there
is a considerable amount of interest in natural anticandidal substances that are waiting
to be discovered. Our findings showed that TQ has the ability to reduce C.glabrata CFUs,
biofilm formation, and the adhesion of oral isolates, possibility being a molecule of interest
for future studies to act a novel adjunctive agent to fight OC and other biofilm-involving
infections. Previous work has been focused of the TQ anti-Candida mechanisms of action
such as disintegration and disorganization with an amorphous nucleus, oxidative stress, or
disturbing the cell membranes. Nonetheless, here, we also show that this natural compound
can disturb gene regulation, decreasing biofilm adhesion to the structures and, therefore,
their development.

Taken together, TQ is a promising therapeutic candidate to fight oral candidiasis, but
further in vitro and in vivo investigations are needed to prove its clinical applications.
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