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Abstract: Designing innovative biological crop protection strategies to stimulate natural plant im-
munity is motivated by the growing need for eco-friendly alternatives to conventional biocidal
agrochemicals. Salicylic acid (SA) and analogues are known chemical inducers of priming plant
immunity against environmental stresses. The aim of the study was to study the metabolic re-
programming in barley plants following an application of three proposed dichlorinated inducers
of acquired resistance. 3,5-Dichloroanthranilic acid, 2,6-dichloropyridine-4-carboxylic acid, and
3,5-dichlorosalicylic acid were applied to barley at the third leaf stage of development and har-
vested at 12, 24, and 36 h post-treatment. Metabolites were extracted using methanol for untargeted
metabolomics analyses. Samples were analysed by ultra-high performance liquid chromatography
coupled to high-definition mass spectrometry (UHPLC-HDMS). Chemometric methods and bioinfor-
matics tools were used to mine and interpret the generated data. Alterations in the levels of both
primary and secondary metabolites were observed. The accumulation of barley-specific metabolites,
hordatines, and precursors was observed from 24 h post-treatment. The phenylpropanoid pathway, a
marker of induced resistance, was identified among the key mechanisms activated by the treatment
with the three inducers. No salicylic acid or SA derivatives were annotated as signatory biomarkers;
instead, jasmonic acid precursors and derivatives were found as discriminatory metabolites across
treatments. The study highlights differences and similarities in the metabolomes of barley after
treatment with the three inducers and points to the triggering chemical changes associated with
defence and resistance. This report is the first of its kind, and the knowledge acquired provides
deeper insight into the role of dichlorinated small molecules as inducers of plant immunity and can
be used in metabolomics-guided plant improvement programmes.

Keywords: antimicrobial metabolites; barley; Hordeum vulgare; liquid chromatography; mass
spectrometry; metabolomics; multivariate data analysis; secondary metabolites

1. Introduction

Plants are naturally exposed to a plethora of stresses, which severely affect their growth
and yield. Upon exposure to biotic stresses, molecular communication with the plant takes
place and may lead to a beneficial association or a disease. In this interaction between
two biological organisms, the resistance or susceptibility is determined by the ability to
ward off/defend against the stress-inducing environment in which each finds itself. Plants
have evolved an innate immune system against microbial threats consisting of preformed
defensive barriers and constitutive chemical deterrents and inducible defences based on
newly synthesised defence proteins and antimicrobial chemicals [1–3]. Resistance responses
might not always be effective due to not being timeously triggered or not being launched
at the required intensity. Moreover, some pathogens have developed certain strategies
to circumvent host defences, thus resulting in disease. Abiotic environmental stressors
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can also have a negative impact on the resistance or tolerance of plants towards a specific
strain of pathogen [4], necessitating the use of antimicrobial chemicals for disease control.
As a result of public concern over the risks associated with pesticide usage, alternative
control strategies are receiving much attention in order to limit unfavourable hazardous
environmental side effects.

Induced resistance (IR) can be described as an altered metabolic state that is activated
once the host plant’s immune system is triggered or activated by a pathogen attack or
other biotic stresses [5]. Fundamentally, as part of IR, systemic acquired resistance (SAR)
is known to depend on salicylic acid (SA) and induced systemic resistance (ISR) relies on
beneficial microbes and hormones, such as jasmonic acid (JA) and ethylene (ET). However,
there is an interconnection involving more participatory mechanisms than SAR and ISR
in IR, creating a multi-layered network defining plant immunity [6–9]. The mediation of
SAR by the accumulation of SA has previously been demonstrated [5,10–14]. SAR is often
effective against a wide spectrum of pathogens and is regarded as the most agronomically
important type of plant immunity [15]. The activation of plant immune mechanisms can
be initiated by (a non-virulent) pathogen attack but also by treatment with natural or
synthetic compounds, such as SA and synthetic analogues [16,17]. Studies on IR elicited
by chemicals have revealed previously unknown features of the plant defence response,
including defence priming [18].

In addition to the mentioned IR associated with innate immunity, plants can also
acquire immunity upon treatment with certain biotic and abiotic stimuli, a phenomenon
mediated by preconditioning or priming for inducible defence [19,20]. Immune priming
or potentiation enables faster and/or stronger induction of inducible defences following a
successful attack by pathogens. As priming events boost multigenic basal resistance, the
ensuing protection against disease can be more resilient than race-specific resistance, which
is based on single resistance genes. Regardless of the fact that priming rarely provides
complete disease protection [21], the application of priming-inducing agents is increasingly
considered for exploitation in integrated pest and disease management [22,23].

SA performs a crucial role as an endogenous signalling molecule that activates various
aspects of plant defence. The phytohormone also performs important roles in growth and
development, respiratory pathways, and regulation of redox homeostasis [24–26]. The
exogenous application of SA and related synthetic analogues activating the plant defence
system has been reported in several studies [27–31]. Although very efficient in inducing
plant resistance, the phytotoxicity and rapid glycosylation of SA result in reduced efficacy
and have prevented its use as a plant protection molecule. Hence, synthetic chemical
analogues of SA, capable of mimicking various functions thereof, represent an attractive
alternative/substitute to the use of conventional biocidal agrochemicals [23,32]. Substi-
tution of SA with the electron-withdrawing element chlorine has displayed an increase
in SA activity [33]. Mono- and dichloro-substituted SA derivatives, such as 3,5-DCSA
and 2,6-dichloroisonicotinic acid (2,6-DCINA), were found to successfully increase to-
bacco plant resistance to pathogen attack through the induction and accumulation of
pathogenesis-related (PR) proteins [31,34]. It was further established that mono or multi-
ple substitution(s) at positions three and/or five on SA were more active at inducing the
PR-1a protein than those at positions two, four, and six, and SA itself [33]. Relatedly, a
screening of 60,000 unique chemicals for inducers of pathogen-responsive reporter genes in
Arabidopsis seedlings led to the discovery of 114 synthetic elicitor candidates, including
3,5-dichloroanthranilic acid (3,5-DCAA). Upon treatment with 3,5-DCAA, Arabidopsis ef-
fectively develops resistance to virulent isolates of the oomycete Hyaloperonospora parasitica
and Pseudomonas syringae DC3000 [28].

Adaptive metabolic reprogramming in plants is often a result of the exposure to a
single or a multitude of external stimuli or environmental pressures. Such variation can be
observed in a wide variety of primary and secondary metabolites, including ionic inorganic
compounds, hydrophilic carbohydrates, amino acids, organic compounds, and compounds
linked to hydrophobic lipids. Investigating the metabolic perturbations caused by chemical
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activators of priming or inducers of IR can significantly contribute to gaining insights into
the unique vs. shared features of the host response towards these inducers. In this study,
the host was barley (Hordeum vulgare L., ‘Hessekwa’ cultivar), the fourth most important
cereal crop in the world. Barley is primarily used for animal feed and human food and
alcoholic beverage production. The widely adaptable, short-seasoned, and early maturing
crop is farmed as a summer or winter crop in temperate and tropical climates, respectively.
In plant science, barley is commonly used as a model plant, particularly when assessing
plant resilience to environmental stress [35,36].

Untargeted metabolomics approaches combined with advanced chemometric tools
were employed to investigate the metabolic reprogramming in leaves following treat-
ment with synthetic (functional) analogues of SA: 3,5-dichlorosalicylic acid (3,5-DCSA),
3,5-dichloroanthranilic acid (3,5-DCAA), and 2,6-dichloropyridine-4-carboxylic acid
(2,6-DCP-4-CA, also known as 2,6-DCINA), in order to evaluate their potential for the
induction of a state of enhanced resistance in barley plants. The importance of metabolic
reprogramming and priming to improve abiotic stress tolerance in a variety of significant
crops is being supported by growing research.

2. Materials and Methods
2.1. Barley Plant Material and Growth Conditions

Barley seeds were collected from the experimental line ‘Hessekwa’ cultivated in
Bredasdorp, in the Western Cape region of South Africa. ‘Hessekwa’ is a rainfed winter
crop, and seeds were provided by the South African Barley Breeding Institute (SABBI). In
the current study, seeds were grown as previously described [37,38]. Briefly, the plants
were grown in a plant growth room under well-controlled conditions: 12 h fluorescence
light (≈85 µmol m−2 s−2) and 12 h dark cycle at 22–27 ◦C. Surfaced-sterilised (70% ethanol)
and soaked (in sterile water for 2 h) barley seeds were planted in pasteurised (at 70 ◦C)
soil. The plants were watered twice a week with distilled water containing a water-soluble
chemical fertiliser (Multisol ‘N’, Culterra, Muldersdrift, South Africa). The plants were
grown for 21 d (or 16 d post-emergence) before treatment with the inducers. At that
time, the seedlings were at the physiological stage 13 according to the Zadoks growth and
development scale [37,38].

2.2. Barley Plant Treatment with Priming Inducers

All chemicals, namely, 3,5-dichlorosalicylic acid (3,5-DCSA), 2,6-dichloropyridine-4-
carboxylic acid (2,6-DCP-4-CA), and 3,5-dichloroanthranilic acid (3,5-DCAA) were obtained
from Merck–Sigma-Aldrich, Johannesburg, South Africa. These inducers were dissolved in
dimethylsulphoxide (DMSO, 1 µL/mL; BDH Chemicals, England) mixed with 0.05% of wet-
ting agent (Effekto, Pretoria, South Africa). Control plants received the same concentration
of DMSO and wetting agent. Following the foliar application (40 sprays = ±6 mL/pot) of
200 µM of 3,5-DCSA, 2,6-DCP-4-CA, and 3,5-DCAA, treatment groups were kept separately,
and leaves (the entire aerial parts of the plants, 1 cm above the surface) were harvested
after 12, 24, and 36 h, respectively. The concentration of the inducers and the time interval
of the investigation were chosen based on several optimisation studies that indicated no
morphological effects. The experimental design included three independent biological
replicates for each treatment.

2.3. Metabolite Extraction from Seedlings and Pre-Analytical Sample Preparation

Barley shoot tissues were harvested and snap-frozen in the liquid nitrogen to quench
metabolic activity. Metabolites were extracted from the leaves of each replicate with 80%
cold aqueous methanol (1:10 w/v ratio). Following homogenisation for 1 min with an Ultra-
Turrax homogeniser, and sonication for 10 s with a probe sonicator (Bandelin Sonopuls,
Berlin, Germany), the homogenates were centrifuged at 5100× g and 4 ◦C for 20 min.
Supernatants were concentrated to 1 mL using a rotary evaporator at 45 ◦C and further
evaporated to complete dryness in a dry bath pre-heated at 45 ◦C. The reconstitution of
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dried extract was completed with 50% UHPLC-grade methanol (Romil, Cambridge, UK)
in a 1:10 m/v ratio. In preparation for chromatographic analyses, extracts were filtered
through 0.22 µm nylon filters into chromatography vials fitted with 500 µL inserts, capped,
and stored at 4 ◦C.

2.4. Sample Analyses on Mass Spectrometry-Based Analytical Platforms (Ultra-High Performance
Liquid Chromatography—High Definition Mass Spectrometry (UHPLC-HDMS))

The Waters Acquity UHPLC hyphenated with a Waters SYNAPT G1 QTOF (quadrupole
time-of-flight) mass spectrometer system (Waters Corporation, Milford, MA, USA) was used
to analyse the aqueous-methanol extracts. The chromatographic separation of samples was
completed using a Waters HSS T3 reverse phase C18 column (150 mm × 2.1 mm × 1.8 µm)
thermostatted at 60 ◦C. The concave gradient elution was carried out at a flow rate of
0.4 mL.min−1 using a binary solvent system consisting of water (eluent A) and acetonitrile
(eluent B; Romil Pure Chemistry, Cambridge, UK), both of which contained 0.1% formic
acid. For the first min of the elution, 95% A and 5% B were kept constant. When the
gradient was applied, the chromatographic condition was changed to 10% A and 90% B for
10 s, followed by 5% A and 95% B for 1 min and 50 s, before being restored to the original
condition at the end of 28 min. Each sample was injected with a 2 µL volume over the
course of a 30 min run. To prevent measurement bias, all sample extracts were randomised.
Additionally, pooled quality control (QC) samples were also used to evaluate the stability
of the LC-MS system. Blanks consisting of 50% MeOH were used to monitor potential
carry-over. Data acquisition was based on three independent biological replicates, and each
was analysed in triplicate; thus, n = 9.

The TOF MS analyser was used in V-optics mode, and centroid spectral data were
acquired using both positive and negative electrospray ionisation (ESI), with a scan range
of 50–1200 Da and a scan time of 0.1 s. The cone and desolvation gas flows were at
50 L.h−1 and 550 L.h−1, respectively. Nitrogen was used as a nebuliser gas at a flow rate of
700 50 L.h−1. The sampling and extraction cone voltages were 40 V and 4.0 V, respectively,
while the capillary voltage was set at 2.5 kV. The desolvation temperature was set at
450 ◦C, and the source temperature was fixed at 120 ◦C. Leucine encephalin (50 pg·mL−1,
[M + H]+ = 556.2771 and [M − H]− = 554.2615) was used as lock mass, sampled every
15 s, and producing an average intensity of 350 counts per scan. The lock mass serves
to correct the centroid mass values in the sample for small deviations from the accurate
mass measurement. Both unfragmented and fragmented (using an MSE method, 10–40 eV)
data were acquired. Fragmentation data were used for downstream metabolite structural
elucidation and annotation.

2.5. Chemometrics: Data Mining

UHPLC-MS extracted raw data (analysed in positive and negative ionisation modes)
was processed using the MarkerLynx XS™ application management tool of the MassL-
ynx XS software, version 4.1 (Waters Corporation, Milford, MA, USA) to generate the
corresponding data matrices. For precise peak detection and alignment, the software uses
the unique ApexTrack (also termed ApexPeakTrack) algorithm. A modified Savitzky-Golay
smoothing and integration was used prior to the computation of peak intensities. The
sample was normalised using the total ion intensities associated with each peak. The
processing parameters were set at a mass range of 50–1200 Da, a mass window of 0.05 Da,
the intensity threshold (noise elimination level parameter) was set at 100 counts, a mass
tolerance of 0.05 Da, and a retention time (Rt) range of 1.5–25.0 min of the chromatograms.

For statistical modelling, generated data matrices were exported to the ‘soft inde-
pendent modelling of class analogy’ (SIMCA) software, version 14, equipped with the
‘omics skin’ function (Sartorius, Umeå, Sweden). As specified in the results section, data
were scaled prior to computing chemometric models. As part of the chemometrics models
generated, the unsupervised method, principal component analysis (PCA), was applied to
reduce the dimensionality of the data and to reveal groupings, trends, and similarities ex-
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isting between treatments. Moreover, the supervised model, orthogonal projection to latent
structures-discriminant analysis (OPLS-DA), was also computed to classify the samples
(binary classification), generate descriptive statistics, and provide potential biomarkers.
Models were evaluated using the predictive power, Q2, and the explained cumulative varia-
tion in the matrix X, R2X (cum), also known as the ‘goodness of fit’ parameter. Additionally,
the cross-validated predictive residual analysis of variance (CV-ANOVA) was taken into
account to statistically evaluate the accuracy of the OPLS-DA models created. A p-value
of less than 0.05 suggested a strong model. Moreover, a permutation test was performed
on 100 randomly initiated permutations to validate the models. Discriminant features or
ions, with both high correlation and covariation, are located at the extreme ends of the
generated loading S-plots (e.g., [p(corr) ≥ 0.5, ≤−0.5, and (p1) ≥ 0.1, ≤−0.1]) and their
statistical significance was assessed on variable importance in projection (VIP) plots which
summarise the importance of features. The VIP scores determine the level of significance of
each ion in the dataset, and all selected features had VIP scores between 1 and 2.

In the MetaboAnalyst 5.0 (www.metaboanalyst.ca/, accessed on 1 May 2022) [39] plat-
form, dendrogram heatmaps, which allowed the visualisation of the distribution of selected
metabolites across the conditions (different time-points and treatments), were constructed.
In addition, Metabolomics Pathway Analysis (MetPA), also housed in the MetaboAnalyst
bioinformatics software, was used to uncover the key metabolic pathways that define
induced responses in barley treated with 3,5-DCAA, 2,6-DCP-4-CA, and 3,5-DCSA. KEGG
(Kyoto Encyclopedia of Genes and Genomes, www.genome.jp/kegg/pathway.html, ac-
cessed on 10 May 2022) [40] identifiers for each annotated metabolite were used as inputs,
and high-quality KEGG metabolic pathways were used as the backend knowledge base.

2.6. Metabolite Annotation

To comprehensively annotate the measured metabolome of barley shoot tissue, molecu-
lar networking methods were applied. Briefly, following conversion of ‘Waters’ (.raw) spec-
tral files into the ‘analysis base file’ (ABF) format using Reifys Abf converter software [41],
the spectral data were uploaded into the Mass Spectrometry-Data Independent AnaLysis
(MS-DIAL; http://prime.psc.riken.jp/, accessed on 15 May 2022) [42] software for process-
ing with parameters set at mass accuracy 0.05; minimum peak height 10 amplitude, and the
Rt tolerance 0.2 min. The MS-DIAL processed files (GnpsMgf and GnpsTable) were then
exported into the Global Natural Product Social Sphere (GNPS; https://gnps.ucsd.edu/,
accessed on 3 June 2022) [43] using the WinSCP server for molecular networking. A feature-
based molecular networking (FBMN) was computed with a mass tolerance set at 0.05; the
minimum pair cosine score was set at 0.6 with a minimum of 4. The search for analogues
setting was turned off. Furthermore, to increase the chemical insights that can be obtained
from the spectral data, FBMN outputs were combined with outputs from substructural
annotation by MS2 latent Dirichlet allocation (MS2LDA), in silico annotation (by Network
Annotation Propagation, NAP), and the automated chemical classification (through Classy-
Fire) into the enhanced molecular networking workflow, MolNetEnhancer. MS2LDA is
a tool that decomposes molecular fragmentation data derived from large metabolomics
experiments into annotated Mass2Motifs or discovers Mass2Motifs from experimental
data, while MolNetEnhancer enables the chemical annotation, visualisation, and discovery
of the subtle substructure diversity within molecular families [44,45]. Furthermore, an
expert-guided metabolite annotation was performed by manually inspecting individual
spectra and mass fragmentation as previously described [37,38]. The metabolite annotation
and putative identification was completed and confidently reported herein in accordance
with level 2 of the Metabolomics Standards Initiative (MSI) [46].

www.metaboanalyst.ca/
www.genome.jp/kegg/pathway.html
http://prime.psc.riken.jp/
https://gnps.ucsd.edu/
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3. Results
3.1. Chromatographic and Mass Spectrometric Analyses and Molecular Networking Approach to
Uncover the Metabolic Space of Barley Leaves Treated with Inducers

Metabolomics studies aim to identify and quantify small molecules involved in
metabolic processes. Due to its high throughput and good coverage of metabolites, UHPLC–
MS has increasingly been used as a platform of choice for such studies when combined
with soft electrospray ionisation (ESI). Reported herein, reverse phase chromatographic
separation with mass spectrometric detection revealed differences in peak population
(presence or absence) and peak intensities (reduced or increased) of analytes present in
methanol-extracted samples, visible on the MS chromatograms. These are time- and
treatment-related differences observed between the controls (non-treated) and treated
conditions (Figures S1–S3). In addition, a broad coverage of midpolar to nonpolar was
also noted with analytes eluting throughout the run time. It is worth pointing out that
all three inducers, 3,5-DCAA, 3,5-DCSA, and 2,6-DCP-4-CA, were detected in the sam-
ples from treated plants. These inducers were characterised as depicted in Figure 1A–C,
showing the extracted ion chromatograms (XIC) of each inducer and the corresponding
spectra and structures. A pattern representative of the presence of chlorine atom(s) was
observed. The two isotopes of chlorine (35Cl and 37Cl) displayed fragment ions separated
by two m/z units. In addition, the inducers were also characterised by the loss of the
carboxyl group (neutral loss, NL:45) generating fragments with m/z of 159/161, 145/147,
and 160/162 for 3,5-DCAA, 2,6-DCP-4-CA, and 3,5-DCSA, respectively. In some cases, the
loss of an HCl (NL:36) molecule was also observed. Furthermore, the presence of inducers
or their absorption by barley shoot tissue was demonstrated by an increase in the relative
concentration (peak area intensities) over time before dropping to the point of stability. The
highest relative concentration in barley was observed at 12 h for 3,5-DCAA and 3,5-DCSA;
and at 24 h for 2,6-DCP-4-CA. 3,5-DCAA was the highest in the plants at all the time points
under investigation (12 h, 24 h, and 36 h) (Figure 1D).

For metabolome characterisation, a molecular networking (MN) strategy, i.e., Mol-
NetEnhancer, was applied (as described in the methodology section). This allowed a
comprehensive exploration and enrichment of chemical annotations, discovering the subtle
substructural diversity within molecular families. Furthermore, this MN strategy allowed
the visualisation of molecular families with class annotations. Six molecular families were
visualised and highlighted in Figure 2. These were lipids and lipid-like molecules, phenyl-
propanoids and polyketides, organoheterocyclic compounds, benzenoids, organic oxygen
compounds, and alkaloids and derivatives. When zooming into these superfamilies, the
phenylpropanoids and polyketide superfamily was dominated mainly by flavonoid gly-
cosides. These superfamilies of metabolites served as a template for the annotation of the
discriminant metabolites.

3.2. Multivariate Data Analyses: Statistical Description, Evaluation, and Exploration of Changes
Observed in the UHPLC-MS Data

Unsupervised chemometrics methods were applied to reveal trends in the datasets
obtained from the UHPL-MS analyses. The principal components analysis (PCA) allowed
us to summarise information in multidimensional datasets. From the PCA models, some
distinct clustering is revealed, indicating treatment- and time-related differences between
and within samples (Figures 3 and S4). As a general rule, samples grouped together have
more in common (at a metabolome level) than those further apart.



Metabolites 2023, 13, 666 7 of 24
Metabolites 2023, 13, x FOR PEER REVIEW 7 of 26 
 

 

 
Figure 1. Presence of xenobiotic dichlorinated inducers in barley shoot tissue extracts from different 
time points. (A–C): Extracted ion chromatograms (XIC) and corresponding mass spectrum charac-
teristics of the inducers: 3,5-DCAA, 2,6-DCP-4-CA, and 3,5-DCSA; the structure of each compound 
is also represented, and the fragmentation site is indicated with the red line. (D): Relative concen-
tration of inducers in barley shoot tissue. Error bars indicate the standard deviations of the average 
peak areas of the samples. 

For metabolome characterisation, a molecular networking (MN) strategy, i.e., 
MolNetEnhancer, was applied (as described in the methodology section). This allowed a 
comprehensive exploration and enrichment of chemical annotations, discovering the sub-
tle substructural diversity within molecular families. Furthermore, this MN strategy al-
lowed the visualisation of molecular families with class annotations. Six molecular fami-
lies were visualised and highlighted in Figure 2. These were lipids and lipid-like mole-
cules, phenylpropanoids and polyketides, organoheterocyclic compounds, benzenoids, 
organic oxygen compounds, and alkaloids and derivatives. When zooming into these su-
perfamilies, the phenylpropanoids and polyketide superfamily was dominated mainly by 
flavonoid glycosides. These superfamilies of metabolites served as a template for the an-
notation of the discriminant metabolites. 

Figure 1. Presence of xenobiotic dichlorinated inducers in barley shoot tissue extracts from different
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Thus, assessing the scores plots of generated PCA models (Figures 3 and S4), treatment-
and time-related sample groupings can be observed, which point to underlying metabolic
reprogramming within barley shoot tissue due to the inducer treatments. Except for
3,5-DCSA in the positive ESI mode, controls are separated from the treated, irrespective
of the time point. Looking at the controls in each treatment, the time points 12 h and
36 h grouped together and separated from the 24 h, and a slightly similar pattern can
also be observed within treated samples (Figure 3C–H). This gives an indication of a
possible diurnal effect on the plants. When focusing on each time point (Figure 3I–K), a
clear grouping pattern was particularly observed at 24 h between all treatments, showing
3,5-DCSA- and 2,6-DCP-4-CA-treated samples grouped but separated from the control and
DCAA treated samples grouping away from the control and other treatments (Figure 3J).
This observation drew more attention to the 3,5-DCAA treatment at 24 h. Although able
to indicate differences between treatment groups, unsupervised chemometrics are not
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classification or discrimination methods per se, hence less informative in terms of features
that explain the differences between sample groups. A supervised method was then
used, as described below, to uncover features or metabolites responsible for differential
sample groupings.
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(‘Hessekwa’) samples. The enriched molecular network depicts structurally similar nodes as molec-
ular families/clusters, with the annotated metabolites, MS2LDA (MS2 latent Dirichlet allocation)
substructures, and Network Annotation Propagation (NAP) annotations, assigned class annotations,
represented by coloured nodes and nodes with no class annotation as grey.

3.3. Discriminant Analyses: Treatment- and Time-Related Metabolites and Fold Changes

The supervised learning method, orthogonal projection to latent structure discriminant
analysis (OPLS-DA), was performed, and an example is shown in Figure 4. In Figure 4A, the
OPLS-DA score plot shows group separation in an OPLS-DA score space. The predictive
capability of the computed OPLS-DA model was validated using a permutation test. This
consists of comparing the observed R2 and Q2 values with randomly permutated ones
(n = 100). As seen in the example below, the R2 and Q2 values of all computed models were
statistically better (or higher) than the 100 permutated ones (Figure 4B). The OPLS loading S-
plot allowed the extraction of variables related to each treatment and time point (Figure 4C).
Features with both high correlation and covariation were considered, [p(corr) ≥ 0.5,≤−0.5,
and (p1) ≥ 0.1, ≤−0.1]. In addition, variable importance in projection (VIP) score plots
were used to evaluate the statistical significance of each feature. All selected features had a
variable VIP score above 1 (Figure 4D).
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Figure 3. Principal component analysis (PCA) score plots of ESI(–) data from shoot extracts of the
’Hessekwa’ cultivar of Hordeum vulgare. All data were UV (unit variance) scaled, and the calculated
Hoteling’s T2 with a 95% confidence interval is represented by the ellipses present in each PCA score
plot. (A): a 12-component model of all conditions (including quality controls, QCs), explaining 59.5%
variation and predicting 41.6% variation; (B) a 12-component model of all conditions (excluding QCs)
explaining 60.7% variation, and predicting 42.2% variation. (C): a 6-component model of 3,5-DCAA
treated and non-treated samples at 12, 24, and 36 h, respectively, explaining 54.6% variation and
predicting 37.2% variation; (D): same as (C) but coloured based on time points; (E): a 7-component
model of 2,6-DCPCA treated and non-treated samples, explaining 60.6% variation and predicting
41.1% variation; (F): same as (E) but coloured based on time points. (G): a 7-component model of
3,5-DCSA treated and non-treated sample, explaining 53.8% variation and predicting 29.9% variation;
(H): same as (G) but coloured based on time points. (I): a 4-component model of all treated and non-
treated samples at 12 h, explaining 56.5% variation, and predicting 41.7% variation; (J): a 4-component
model of all treated and non-treated samples at 24 h, explaining 54.4% variation, and predicting
35.5% variation; (K): a 4-component model of all treated and non-treated samples at 36 h, explaining
50.1% variation, and predicting 33.2% variation. (The corresponding set of diagrams for ESI (+)
data is presented in Figure S4). As observed in (A,B), (C–H) were generated to better visualise the
time-dependent changes in each treatment, while (I–K) highlight the treatment-dependent variation
at each selected time point.
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Figure 4. Supervised learning methods for analyses of ultra-high performance liquid
chromatography–mass spectrometry (UHPLC–MS) data. Orthogonal partial least squares discrim-
inant analysis (OPLS-DA) modelling and feature selection were performed based on the unique
metabolite profiles of ‘Hessekwa C12h’ (control at 12 h) and ‘Hessekwa DCAA 12 h’ (treatment at 12 h)
leaf extracts in negative ionisation mode. (A) OPLS-DA score plots show a clear separation between
the two conditions. The model is made of one predictive component and one orthogonal component
(R2X = 57.5%, R2Y = 98.9%, Q2 = 96.1%, CV-ANOVA p-value= 4.6539 × 10−9). (B) OPLS-DA vali-
dation: Permutation test analysis performed with 100 randomly selected models and showing the
above model to be the best among the permutated ones. (C) Loading S-plots showing the features
responsible for sample clustering, located at the ‘outlier’ ends of the S-plots with both high correlation
and covariation, [p(corr) ≥ 0.75 and (p1) ≥ 0.1], are highlighted in red. These features are statistically
significant candidates as biomarkers related to the DCAA treatment. (D) A variable importance
in projection (VIP) plot corresponding to the model above and pointing out the mathematical sig-
nificance of each feature responsible for the discrimination of the treated vs. control conditions. A
VIP score >1 is considered as significant in the projection, and the higher the score values, the more
significant the features are.

In total, 66 discriminant metabolites belonging to the above-mentioned superfamilies
(Figure 2) were annotated/putatively identified as previously described by us [37,38]. These
compounds and the corresponding fold changes are presented in Table 1. Compounds with
a fold change (FC) > 1 were considered positively correlated to the treatment, and those
<1 were negatively correlated. In 3,5-DCAA-treated samples, the highest fold changes
were observed with isorhamnetin-3-O-glucoside (FC: 3.49) at 24 h, 4-O-p-coumaroylquinic
(FC: 5.58), sinapoylagmatine (FC: 3.08), and isovitexin 2”-O-arabinoside (FC: 6.34) at 36 h.
In the case of the 2,6-DCPCA treatment, the most positively correlated compounds were
mainly fatty acids and derivatives, such as 9,12,13-trihydroxy-10,15-octadecadienoic acid
(9,12,13-triHODE) isomer II (FC: 10.73), trihydroxyoctadecenoic acid (triHOME) (FC: 4.59) at
12 h; 9,12,13-triHODE isomer I, 9-oxo-12,13-dihydroxy-10E,15Z-octadecadienoic acid (9-oxo-
12,13-diHODE), and a 12-oxophytodienoic acid (OPDA) conjugate and linolenoylglycerol
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isomer I, at both 12 and 36 h. With the 3,5-DCSA treatment, hordatine A isomer II (FC: 3.49),
isovitexin 2”-O-glucoside (FC: 10.97), isovitexin 2”-O-arabinoside (FC: 11.45), and a proline
(Pro) derivative, Pro betaine (FC: 15.26), were metabolites with the highest fold change
at 36 h. It was also noted that except for valine and proline betaine in extracts from
3,5-DCSA-treated leaves, all amino acids were negatively correlated to all treatments.
Subsequently, Venn diagrams were generated for better visualisation of differences across
time in individual treatments and at each time point and across treatments.

Table 1. List of all annotated (putatively identified) metabolites extracted from leaves of the barley
cultivar ‘Hessekwa’ treated with 3,5-DCAA, 2,6-DCP-4-CA, and 3,5-DCSA, and harvested at 12, 24,
and 36 h post-treatment. The compounds were extracted from the OPLS-DA S-plots, and the fold
changes were calculated using a SIMCA software algorithm and are indicated where a metabolite
was selected as a significant biomarker. Blue: 3,5-DCAA, Green: 2,6-DCP-4-CA, Orange: 3,5-DCSA,
Purple: Control. Different shades of the same colour indicated a specific time point (ranging from
lighter to darker, with the former corresponding to 12 h and the latter to 36 h; e.g., 3,5-DCAA 12 h
was compared to Control 12 h and metabolites with a FC > 1 were shaded with light blue while those
with a FC < 1 were shaded with purple.

ESI
Mode

Compounds Rt
(min) m/z

DCAA
Fold Change

DCPCA
Fold Change

DCSA
Fold Change

12 h 24 h 36 h 12 h 24 h 36 h 12 h 24 h 36 h
1 – p-Coumaric acid derivative 0.86 404.103 • • • • • • 1.48 1.18 1.16
2 – 4-O-p-Coumaroylquinic acid 1.15 337.084 • • 5.58 • • • • • •
3 – 3-Hydroxycoumarin 1.25 161.043 • • • • 0.58 • • • •
4 – 3-O-p-Coumaroylquinic acid 3.06 337.112 • • • • 0.83 • • 0.78
5 – Sinapic acid hexose 5.14 385.113 • 0.65 2.18 2.21 • 4.59 1.86 • 2.12
6 – Dihydroferulic acid 4-O-glucuronide 7.01 371.096 0.87 0.84 1.087 • • • 0.82 0.84 •
7 + Coumaroylputrescine 2.39 235.145 • • • • 1.68 • • • •
8 + Coumaroylhydroxyagmatine 2.57 293.157 • 1.37 1.27 • 1.45 • • 1.15 1.09
9 + Coumaroylagmatine 4.06 277.161 0.35 1.33 1.09 • 1.62 1.17 • 1.34 1.07
10 – Feruloylhydroxyagmatine 4.49 323.133 • 0.73 • • 0.84 • • 0.74 •
11 + Feruloylagmatine 5.30 307.172 0.612 • • • • 1.14 • • •
12 + Sinapoylagmatine 6.17 337.186 • • 3.08 • 0.32 • • • •
13 – Sinapoylhydroxyagmatine 6.30 351.126 • 0.93 0.93 0.88 • 0.89 • 0.92 0.92
14 – Hordatine B hexose 3.81 787.364 0.818 1.14 1.17 0.74 1.10 0.91 0.78 1.16 1.22
15 – Hordatine A hexose 4.14 757.353 0.80 • • 0.63 1.12 0.80 0.75 • •
16 – Hordatine C hexose isomer I 4.63 817.376 • • • 0.68 1.24 • 0.72 1.31 •
17 – Hordatine C hexose isomer II 6.26 771.200 • 1.92 • • • • • • •
18 – Hordatine B isomer I 7.28 579.304 0.63 1.13 1.11 0.86 0.67 • 1.14 •
19 + Hordatine A Isomer I 7.72 551.304 0.01 1.34 • 0.85 • • • 1.32 0.92
20 – Hordatine A isomer II 7.76 549.294 • • • • • 2.61 • • 3.49
21 + Hordatine B isomer II 7.97 581.319 0.06 1.41 0.82 • • • • 1.50 •
22 + Hordatine C + 46 isomer I 7.99 655.320 0.83 1.09 1.12 0.87 • 0.88 • 1.17 0.92
23 + Hordatine C isomer II 8.67 611.330 • • • • • • • 1.38 •
24 – Isoorientin 7-O-glucoside(Lutonarin) 6.43 609.144 1.45 1.81 1.11 • 1.22 1.13 1.35 1.24 1.15

25 – Isoorientin
7-O-[6”-sinapoyl]-glucoside 10.53 815.205 1.40 1.26 • • 0.73 • • • •

26 – Isovitexin 7,6”-di-O-glucoside 8.15 755.205 • • 0.85 0.53 • 0.55 • • 0.73
27 + Isovitexin -7-O-glucoside (Saponarin) 8.39 595.166 0.56 1.21 0.78 0.93 • 0.87 1.06 1.31 0.87
28 – Isovitexin 7-O-rhamnosylglucoside 8.81 739.208 1.09 0.93 0.89 0.91 • 0.86 • • •
29 – Isovitexin 2”-O-glucoside 9.79 593.150 • • • • • • • 0.01 10.97
30 – Isovitexin 2”-O-arabinoside 9.93 563.139 • 0.01 6.34 • • • • 0.01 11.45
31 – Isovitexin 10.59 431.097 0.66 • 0.29 0.40 2.09 0.13 • 2.02 0.43

32 – Isovitexin
7-O-[6”-sinapoyl]-glucoside 11.42 799.210 1.16 0.77 1.18 1.09 0.65 1.47 • 0.70 •

33 –
Isovitexin
7-O-[X”-feruloyl]-glucoside
(Feruloylsaponarin)

11.82 769.200 0.89 0.93 • 0.85 • • 0.84 • •

34 – Apigenin 7-O-arabinosylglucoside 11.90 563.140 • • 0.82 • • • • • 0.85

35 – Apigenin 6-C-arabinoside
8-C-glucoside 8.97 563.140 1.52 • • • • • • • •

36 – Isoscoparin 7-O-glucoside 8.99 623.160 • 1.31 0.85 • 1.29 0.78 1.10 1.26 •
37 + Isoscoparin 2”,6”-di-O-glucoside 10.89 787.209 • 1.53 • • 1.29 • • • •
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Table 1. Cont.

ESI
Mode

Compounds Rt
(min) m/z

DCAA
Fold Change

DCPCA
Fold Change

DCSA
Fold Change

12 h 24 h 36 h 12 h 24 h 36 h 12 h 24 h 36 h

38 – Isoscoparin
7-O-[6”-sinapoyl]-glucoside 11.53 829.221 • • • 0.72 • • • • •

39 – Isoscoparin
7-O-[6”-feruloyl]-glucoside 11.95 799.211 • • • • 1.32 0.72 • 1.25 •

40 – Isorhamnetin-3-O-glucoside 9.74 477.107 • 3.49 • • • • • 2.43 •
41 – 6-Prenylnaringenin 19.02 339.215 • 0.19 0.68 5.42 0.82 3.60 3.07 0.53 1.80
42 + Hydroxytryptamine 1.67 177.102 • 2.47 2.50 • 1.31 • 1.84 1.76 1.26
43 – Coumaroyltryptamine 2.60 289.129 • 1.29 1.55 0.76 1.19 • 1.15 1.14 1.15
44 + Valine 0.88 118.086 • • 0.77 • • • 1.26 • •
45 + Tyrosine 1.14 182.081 0.50 • 0.72 0.70 • 0.58 0.63 • 0.61
46 + Tyrosine derivatives 1.14 276.107 0.33 1.60 • • • • • • •
47 + Isoleucine 1.31 132.102 • • 0.74 • 0.72 0.55 0.61 • 0.69
48 + Phenylalanine 1.65 166.087 • 0.82 0.58 0.64 0.743 0.44 0.51 0.76 0.52
49 + Proline betaine 2.05 144.139 • • • • • • • • 15.26
50 – Tryptophan 2.43 203.080 • • 0.84 0.76 0.65 0.65 0.71 0.74 0.63
51 – Asparaginylglucose 4.24 293.122 • 0.79 • • • • • 0.81 •
52 – Citric acid 1.14 191.017 • 0.55 • • 0.50 • • 0.49 •
53 – Isocitric acid 0.93 191.017 • 0.69 • 1.29 0.42 • 0.41 •
54 – Citric acid derivative 1.39 306.117 • • • • 0.85 • • • •
55 – Malic acid 0.95 133.012 • • 0.74 • 0.74 1.22 1.27 0.73 •
56 – 12-Hydroxyjasmonate sulfate 16.61 305.129 • • 2.93 • • • • • •

57 – Dihydrojasmonic acid (H2JA)
conjugate 16.80 419.173 • • • • • 2.14 • • 1.34

58 – 9,12,13,TriHODE isomer I 16.53 327.216 • 0.39 0.70 3.52 • 2.23 1.67 0.61 1.69
59 – 9,12,13,TriHODE Isomer II 16.64 327.216 • • • 10.73 • • • • •
60 – TriHOME 17.25 329.232 • 0.31 • 4.59 • • 2.13 0.46 •
61 – 9-Oxo-12,13-diHODE 17.45 325.200 • 0.14 • 6.31 • 3.51 2.41 0.43 2.27
62 – OPDA conjugate 19.55 309.205 • 0.23 • 3.90 • 2.47 3.73 0.31 •
63 + Linolenoylglycerol isomer I 20.69 353.267 • • 2.12 1.93 • 3.08 1.71 • 1.71
64 + Linolenoylglycerol isomer II 20.98 353.265 • • 1.70 • • 2.71 1.64 • 1.70
65 + Linolenoylglycerol isomer III 21.80 353.263 • • 1.72 • • • • • •
66 + Linolenoylglycerol isomer VI 22.07 353.263 2.57 • • • • 1.63 2.17 0.70 •

• = annotated in MS chromatograms, (+) ESI positive mode, (–) ESI negative mode.

3.4. Time-Related Differences and Similarities in the Chemical Profiles of Barley Leaves, following
Foliar Application of 3,5-DCAA, 2,6-DCP-4-CA and 3,5-DCSA

The Venn diagrams in Figure 5 indicate that there is a wide diversity of metabolites
distributed across time in each treatment condition. Starting with extracts from 3,5-DCAA-
treated leaves (Figure 5A; Table 1), four metabolites were specifically found as discriminant
at 12 h, and these were feruloylagmatine (a precursor in the biosynthesis of hordatines
B and C), an isomer of hordatine A, linolenoylglycerol, and the flavonoid apigenin 6-C-
arabinoside 8-C-glucoside. At 24 h, specific discriminant metabolites included organic
acids citric and isocitric acid, flavonoids, such as isoscoparin 2”,6”-di-O-glucoside, and
phenolic- and fatty-derivatives. Twelve discriminant metabolites were found specifically
at 36 h post-treatment with 3,5-DCAA. These included some amino acids, a chlorogenic
acid and sinapoylagmatine. As part of the flavonoids and fatty acid derivatives, isovitexin
7,6”-di-O-glucoside, apigenin 7-O-arabinosylglucoside, 12-hydroxyjasmonate sulphate,
and linolenoylglycerol isomers I and II were noted. In addition to the specific metabolites
annotated, some were overlapping across time points. In total, 10 signatory metabolites
were found across all time points and were represented on a dendrogram heatmap to show
their differential distribution and to highlight the relationship among the sample groups.
As seen on the dendrogram heatmap below the Venn diagram in Figure 5A, the common
metabolites were mainly the barley-specific hydroxycinnamic acid amides (HCAAs), hor-
datine B isomer I and II, and the corresponding glycosylated form, hordatine C isomer
I, and coumaroylagmatine. In addition, dihydroferulic acid 4-O-glucuronide, lutonarin
(luteolin as aglycone), saponarin, isovitexin 7-O-rhamnosylglucoside, and isovitexin 7-O-
[6”-sinapoyl]-glucoside (all with apigenin as aglycone) were also found. The heatmap
shows an increase in the relative concentration of the HCAAs over time. Lutonarin was
also up-regulated at each time point. The dendrogram corresponding to the samples shows
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treatments branching apart from controls and an interesting association of control samples
at 12 and 36 h, both separated from 24 h.
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coumaroylputrescine, sinapoylagmatine, a feruloyagmatine derivative, coumaroylhy-
droxyagmatine, 3-hydroxycoumarin, and hydroxytryptamine. Finally, at 36 h, the five 
specific discriminant metabolites included feruloylagmatine, hordatine A isomer II, dihy-
drojasmonic acid conjugate, and linolenoylglycerol isomers II and VI. Four metabolites 
were overlapping across the 12 and 24 h time points and between 12 and 36 h, where 11 
metabolites were shared and included coumaroyltryptamine, sinapoylhydroxyagmatine, 
saponarin, Tyr, and linolenoylglycerol isomer I, to list a few. Coumaroylagmatine, luto-
narin, and malic acid were among the six metabolites shared between 24 and 36 h. Seven 
discriminant metabolites were overlapping across all time points. Looking at the dendro-
gram heatmap in Figure 5B, hordatine A and B hexose were less abundant at 12 h and 36 
h. At these same time points, isovitexin 7-O-[6″-sinapoyl]-glucoside and 6-
prenylnaringenin were more abundant. Isovitexin followed the same pattern as hordatine 
A and B hexose and was more abundant at 24 h. A down-regulation of Trp and Phe at all-

Figure 5. Venn diagrams and dendrogram heatmaps of discriminant metabolites. The distribution
of metabolites across time points (12, 24, and 36 h) following foliar application of (A) 3,5-DCAA,
(B) 2,6-DCP-4-CA, and (C) 3,5-DCSA is displayed. While Venn diagrams were generated from all
the annotated discriminant metabolites (Table 1), the dendrogram heatmaps were generated from
shared metabolites (red arrows) across all three-time points to highlight the differences in the relative
concentration over time. Metabolites common to the two groups are discussed in the text. The
numerical values in the Venn diagram correspond to the number of unique metabolites at each
time-point and overlapping metabolites across the different conditions.

Regarding extracts from 2,6-DCP-4-CA-treated leaves, five metabolites of the phenyl-
propanoids and fatty acid derivatives were found exclusively at 12 h. At 24 h, 11 metabo-
lites were specific to the time point, amongst which were 3-O-p-coumaroylquinic acid,
coumaroylputrescine, sinapoylagmatine, a feruloyagmatine derivative, coumaroylhydrox-
yagmatine, 3-hydroxycoumarin, and hydroxytryptamine. Finally, at 36 h, the five specific
discriminant metabolites included feruloylagmatine, hordatine A isomer II, dihydrojas-
monic acid conjugate, and linolenoylglycerol isomers II and VI. Four metabolites were over-
lapping across the 12 and 24 h time points and between 12 and 36 h, where 11 metabolites
were shared and included coumaroyltryptamine, sinapoylhydroxyagmatine, saponarin,
Tyr, and linolenoylglycerol isomer I, to list a few. Coumaroylagmatine, lutonarin, and
malic acid were among the six metabolites shared between 24 and 36 h. Seven discriminant
metabolites were overlapping across all time points. Looking at the dendrogram heatmap
in Figure 5B, hordatine A and B hexose were less abundant at 12 h and 36 h. At these same
time points, isovitexin 7-O-[6”-sinapoyl]-glucoside and 6-prenylnaringenin were more
abundant. Isovitexin followed the same pattern as hordatine A and B hexose and was more
abundant at 24 h. A down-regulation of Trp and Phe at all-time points was also noted. On
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the dendrogram, the ‘treatment’ groups were clearly separated from the corresponding
controls; however, the treatment at 24 h was closer to the corresponding control.

In extracts from 3,5-DCSA-treated leaves, three metabolites were specifically found
at 12 h, namely, hordatine A hexose, isovitexin 7-O-[X”-feruloyl]-glucoside and Val. At
24 h, 11 metabolites were found, specific among which were hordatine B and hordatine
C, and asparaginylglucose. Finally, five were found at 36 h and included hordatine A
isomer II, isovitexin 7,6”-di-O-glucoside, apigenin 7-O-arabinosylglucoside, dihydrojas-
monic acid, and proline betaine. Here, seven metabolites were shared among the 12 and
24 h treatment groups, including hordatine C hexose isomer I, malic acid, and an oxylipin,
12-oxo-phytodienoic acid (OPDA) conjugate. Sinapic acid hexose, linolenoylgycerol isomer
I and II, Tyr, and Ile were overlapping between 12 and 36 h. Finally, coumaroylagmatine,
coumaroylhydroxyagmatine, sinapoylhydroxyagmatine, hordatine A, and C isomer I was
among the eight metabolites shared between 24 and 36 h. Common metabolites to all
three-time points included Trp and Phe, both down-regulated at all time points and lu-
tonarin, hydroxytryptamine and coumaroyltryptamine, all up-regulated throughout, as
shown on the heatmap. Again, all control samples clustered separately from the treated
and control 24 h branches away from control 12 and 36 h, respectively (Figure 5C).

3.5. Treatment-Related Similarities and Differences in the Chemical Profile of Barley Leaves,
following Foliar Application of 3,5-DCAA, 2,6-DCP-4-CA, and 3,5-DCSA

For comparison of all treatments across the chosen time points, Venn diagrams were
generated and are represented in Figure 6. At 12 h, among the specific metabolites,
coumaroyl- and feruloylagmatine and hordatine B were found as discriminant mark-
ers in extracts from 3,5-DCAA-treated leaves, Val, and Ile in 3,5-DCSA-treated samples and
isocitric acid in 2,6-DCP-4-CA-treated samples. Hordatines A and B hexose, saponarin,
isovitexin 7-O-[X”-feruloyl]-glucoside, and Tyr were all found negatively correlated to
every treatment. The dendrogram shows a clear separation between the control and the
treated samples (Figure 6A).

At 24 h, metabolites responsible for the uniqueness of each condition involve hordatine
C hexose and sinapic acid hexose in extracts from 3,5-DCAA-treated leaves, hordatine C in
extracts from 3,5-DCSA-treated leaves and coumaroylputrescine, and sinapoylagmatine in
extracts from 2,6-DCP-4-CA-treated leaves. On the dendrogram heatmap, shared metabo-
lites to all three treatments were hydroxytryptamine, coumaroyltryptamine, lutonarin,
hordatine B, and its hexosylated form up-regulated in extracts from 3,5-DCAA-treated
leaves and closely related to the profile of the 3,5-DCAA treatment. Both coumaroylagma-
tine and coumaroylhydroxyagmatine were up-regulated in all three conditions but seemed
to be more associated with the 2,6-DCP-4-CA treatment. Metabolites closely associated
with the 3,5-DCSA treatment were a feruloylagmatine derivative and 6-prenylnaringenin,
both down-regulated in the treated samples (Figure 6B).

In Section 2.2, the PCA plots revealed an interesting trend at 24 h, where a clearer
sample separation was highlighted between the control and all treatments. Keeping
such observation in mind, the relative quantification of barley-important metabolites was
evaluated at 24 h. These metabolites were the hordatines and the main flavonoids present
in the plant, lutonarin, and saponarin. In addition, two alkaloids, coumaroyltryptamine
and hydroxytryptanine, previously not annotated in non-stressed plants [38], were also
evaluated (Figure S5). An increase in the biosynthesis of the selected metabolites is observed
upon priming, especially with 3,5-DCAA treated samples. Among these, saponarin was by
far the most abundant metabolite in the extracts, irrespective of the treatments.
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Figure 6. Venn diagrams and dendrogram heatmaps of discriminant metabolites. The distribution
of metabolites across treatments (3,5-DCAA, 2,6-DCP-4-CA, and 3,5-DCSA) at (A) 12, (B) 24, and
(C) 36 h post-treatment is displayed. While Venn diagrams were generated from all the annotated
discriminant metabolites (Table 1), the dendrogram heatmaps were generated from shared metabolites
(red arrow) to all three treatments to highlight the differences in the relative concentration at a
specific time point. The numerical values in the Venn diagrams correspond to the number of unique
metabolites associated with each treatment and the number of overlapping/shared metabolites
across the different conditions. Similarly to 12 h, at 36 h, hordatine B was specifically found in
extracts from 3,5-DCAA-treated leaves in addition to 12-hydroxyjasmonate sulfate, an isomer of
linolenoylglycerol, and other classes of metabolites. Examples of specific metabolites associated
with the 3,5-DCSA and 2,6-DCP-4-CA treatments included proline betaine and an OPDA conjugate,
respectively. Hordatine B hexose and an isomer of hordatine C were found across all treatments
at each time point, and the levels were relatively higher in the 3,5-DCAA samples. Sinapic acid
hexose, coumaroylagmatine, 6-prenylnaringenin, 9,12,13-triHODE isomer I, and linolenoyglycerol
isomers I and II were all found up-regulated in extracts from 2,6-DCP-4-CA treatments. The relative
concentration of sinapoylhydroxyagmatine, saponarin, isovitexin, isovitexin 7,6”-di-O-glucoside, Trp,
Leu, and Tyr were down-regulated at 36 h in all treated samples. Here, lutonarin was closely related
to 3,5-DCSA and up-regulated in all treated samples. Looking at the dendrogram, similar profiles
were observed between DCAA and the control samples and between 2,6-DCP-4-CA and 3,5-DCSA
treatments (C).

4. Discussion
4.1. Distribution of Metabolite Classes and Metabolic Pathways Analyses for Biological Interpretation

As discussed above, common and specific responses were observed, featuring fluc-
tuations in metabolites grouped as phenolic acids and derivatives, flavonoids, fatty acids
and derivatives, amino acids, organic acids, and alkaloids, listed in descending percentage
order across all treatments (Figure 7). These classes belonged to the superfamilies identified
on the MolNetEnhancer network (Figure 2). While nuanced differences in the % values



Metabolites 2023, 13, 666 16 of 24

were noted between the three treatments, the overall patterns were similar, suggesting that
the three dichlorinated inducers (3,5-DCAA, 2,6-DCP-4-CA, and 3,5-DCSA) trigger the
same type of response in the barley leaves.
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Figure 7. Metabolite class distribution of all annotated discriminant metabolites across all treatments
with dichlorinated inducers of acquired resistance. Discriminant metabolites in barley belonged to
different classes, as previously identified on the MolNetEnhancer network (Figure 2). Blue: 3,5-DCAA,
Green: 2,6-DCP-4-CA, and Orange: 3,5-DCSA.

In the environment, barley plants naturally interact with numerous living organisms,
instigating a perturbation in the immune system. SA is a key plant immune hormone that
is essential for the development of plant immunity. It was one of the first endogenous plant
compounds to be documented as an inducer of SAR [31,47,48] and, eventually, metabolic
changes. The barley cultivar, ‘Hessekwa’ was treated with synthetic functional analogues
of SA, namely, 3,5-DCAA, 2,6-DCP-4-CA, and 3,5-DCSA, and metabolic perturbations and
associated reprogramming was evident from PCA models (Figure 3) and in Table 1 and
Figures 5 and 6.

Functional analyses (i.e., pathway enrichment analysis) using differential (discrim-
inant) metabolites (Figure 8; Table S1) revealed phenylpropanoid biosynthesis, alpha-
linolenic acid metabolism, aminoacyl-tRNA biosynthesis, the TCA cycle, Trp metabolism,
Phe, Trp, and Tyr catabolism, and the glyoxylate and dicarboxylate metabolism only to
name the most significant and/or the most impactful pathways. These pathways are asso-
ciated with both primary and secondary metabolism and were identified in all treatments
with different levels of significance and impact. These differences can be seen, for example,
in the 3,5-DCAA and 3,5-DCSA treatments, where the phenylpropanoid biosynthesis was
the most significant pathway and in the case of the 2,6-DCP-4-CA treatment, the TCA cycle.
Similar to this study, in tobacco and wheat plants, pathogen- and chemical-induced SAR
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was characterised by the de novo production of phenylpropanoid pathway chemicals in
the leaf, regardless of the signalling pathway [49,50].
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Figure 8. Metabolomic Pathway Analysis (MetPA) as generated by MetaboAnalyst ver. 5.0 with
(A): 3,5-DCAA, (B): 2,6-DCP-4-CA, and (C): 3,5-DCSA data. The size of the circle reflects the path-
way impact score, while the colour of each circle is based on p-values (darker colours imply more
significant changes of metabolites in the relevant pathway). TCA: tricarboxylic acid; Trp: tryptophan;
Phe: phenylalanine.

4.2. Biological Implication with Regard to Plant Protection

In addition to alterations in transcription, the adaptive responses of plants to environ-
mental cues also involve post-translational protein modifications, metabolite alteration,
and/or accumulation. These changes all work together to produce a particular physio-
logical response or phenotype. Depending on the system under investigation, chemical
and biological priming agents may each exhibit a level of specificity in their action mech-
anisms that prepares the plant in a different mode [51]. In this context, it was proposed
that metabolites that are strongly affected by chemical or biological inducers (the priming
agents) are named ‘priming compounds’ since their effect on plant metabolism is to trigger
the synthesis of ‘primed compounds’ that assist to counteract the stress. At the same time,
these additionally identified metabolites point to defence pathways that the plants deploy
to “get ready for the battle” [51].

It has been regarded that a primary metabolism only performs a supportive role in
plant defence and that the energy saved by the down-regulation of primary metabolism
is diverted and used for defence responses. However, the up-regulation of metabolic
pathways associated with primary metabolism may also occur during plant defence, and it
was proposed that such up-regulation modulates signal transduction cascades that lead to
plant defence responses [52]. Amino acids participate in plant growth and development,
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signalling processes, and stress responses. In addition to being building blocks for protein
biosynthesis, they also perform pivotal roles in several pathways associated with secondary
metabolism [53,54]. Free amino acids are essential for SAR in plants, and their presence
has previously been attributed to the plant’s tolerance [55,56]. The negative correlation
between the Tyr, Phe, and Trp levels and the treatments observed in this study might be
attributed to the rapid use of the compounds in the biosynthesis of secondary metabolites
involved in plant defence, and for de novo protein synthesis as in the case of pathogenesis-
related (PR) proteins. For instance, Phe is the substrate of the first committed step in the
phenylpropanoid pathway (the most significant pathway to respond to 3,5-DCAA and
3,5-DCSA, Figure 8), which results in the biosynthesis of phenolic compounds, including
hydroxycinnamic acids (HCAs) and flavonoids. In addition, amino acids can be converted
into precursors or intermediates in the TCA cycle, supporting the mitochondrial metabolism
and the production of ATP [57,58]. Consequently, it can be speculated that there is an
imbalance in the ratio between amino acid anabolism and catabolism. The level of amino
acids produced might not be proportional to the plant’s requirement for energy and
other processes.

Trp in barley seedlings is a precursor to simple indole alkaloids, gramine, and
tryptamine. Coumaroyltryptamine and hydroxytryptamine were found to be discrim-
inatory and positively correlated to the treatments (Figure S5; Table 1). The decrease in
Trp could also be linked to the accumulation of tryptamine derivatives which participate
in plant protection. In previous studies, tryptamine and derivatives accumulated in the
member of the grass family (Poaceae species) following the application of compounds,
such JA as and fungal pathogens [59,60]. The reliance of both the constitutive and inducible
defence mechanisms on the Trp pathway was previously demonstrated [60].

Commenting on energy, functional analogues of SA are used to activate induced resis-
tance; however, this process consumes a lot of energy and interferes with other metabolic
functions. Therefore, balancing the trade-off between defence and growth may be key to
a plant’s success [20]. Alterations in the production of organic acids, crucial contributors
to energy production, were noted, and the TCA cycle was one of the most significant
pathways observed, especially in the 2,6-DCP-4-CA treatment. There was a positive cor-
relation between malic acid with 2,6-DCP-4-CA and 3,5-DCSA treatments at 36 and 12 h,
respectively. Citric and isocitric acid were consistently found as discriminative metabolites
and negatively correlated to all treatments at 24 h. In Pastor et al., 2014, [51], the TCA
cycle was activated and potentiated in β-aminobutyric acid (BABA)-primed Arabidopsis
plants. Organic acids are essential to all plant species as they constitute good storage for
carbon, perform a role in CO2 fixation and stomatal conductance, help plants deal with
excess cations, and are reversibly implicated in the biosynthesis of amino acids and other
compounds [61,62]. Specifically, citrate is produced in the TCA cycle from the condensa-
tion of oxaloacetate, the end product of a previous turn of the cycle, and acetyl-CoA and
provides a bridge between carbohydrate and fatty acid metabolism.

The majority of fatty acid derivatives were positively correlated to the treatments
at 12 and 36 h. These compounds are alternative sources of energy for plant growth
and development. Of special interest and part of discriminant metabolites are the JA
derivatives, such as 12-hydroxy-JA sulphate, only found in the 3,5-DCAA treatment, and
dihydro-JA found in both 2,6-DCP-4-CA and 3,5-DCSA treatments. Moreover, a conjugate
of OPDA, the precursor of JA, was also increased due to the 2,6-DCPCA and 3,5-DCSA
treatments. Jasmonates are by-products of the classical octadecanoid oxylipin pathway
deriving from alpha-linolenic acid metabolism, identified here as a significant metabolic
pathway [63,64]. Recent studies have elaborated on the direct and active roles of fatty acids
and their breakdown products on various defence mechanisms [65]. They are involved in
the regulation of plants’ basal, effector-triggered, and systemic immunity, and perform an
important role in NADPH oxidase activation which result in the biosynthesis of reactive
oxygen species (ROS). In addition to regulating plant growth and development, JA is
crucial in the resistance against both biotic and abiotic stresses. It acts as a mobile signal for
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SAR and is translocated via vasculature [66]. Despite being clearly characterised by the
molecules they synthesise, JA, SA, and ET signalling pathways interact both cooperatively
and antagonistically in a range of responses [13,66]. While the first reports elaborated
on the inhibitory effect of SA on JA actions in tomatoes, positive crosstalk between the
two phytohormones has also been highlighted in a number of systems [67,68]. These
hormones were not annotated in the study; however, as mentioned above, precursors of JA
and JA derivatives were annotated, suggesting the activation of this pathway and a state of
alertness (primed state).

Phenolic acids and conjugated derivatives are end products in the phenylpropanoid
pathway. The activation of the phenylpropanoid pathway is associated with enhanced
resistance to stresses. The chlorogenic acid, 4-O-p-coumaroylquinic acid, was found up-
regulated in 3,5-DCAA treated plants at 36 h. Sinapic acid hexose accumulated in all
treated plants at 12 and 36 h. Pastor et al. [51] hypothesised that phenolics and sinapates
are compounds produced in primed plants that support the biosynthesis of metabolites
functioning in cell wall reinforcement. Coumaroylagmatine, a well-known precursor of hor-
datine A and B, was positively correlated to all treatments at 24 and 36 h. Feruloyagmatine
and sinapolyagmatine, on the other hand, were only found to be positively correlated to
2,6-DCP-4-CA at 24 h and 3,5-DCAA at 36 h, respectively. Increased production of HCAAs
was reported in maize after insect herbivory attack [69,70]. In a study by [58], the HCAA
coumaroylputrescine accumulated in barley leaves treated with JA. Here, the positive corre-
lation of the compound to the 2,6-DCP-4-CA treatment at 24 h was also observed. Similarly,
to the precursors, hordatine A, B, and C production, was increased mostly at 24 h in both
3,5-DCAA and 3,5-DCSA (Figure S5; Table 1, and hordatine B at 36 h in the case of the
2,6-DCP-4-CA treatment (Table 1). The synchronised increase in the relative content of both
hordatines and precursors highlights the role of both the phenylpropanoid- and polyamine
pathways in plant immunity. The role of these barley-specific metabolites in antimicrobial
defences was previously highlighted [37,38], and the increase in their production can be
related to the preconditioning of the plants. From the time point at which the increase in
the production of hordatines and precursors occurred, it might be speculated that in the
‘Hessekwa’ cultivar it takes at least 24 h to induce a positive correlation to the treatment.
In terms of specific markers for each treatment in this class of metabolites, a derivative
of p-coumaric acid, 4-O-p-coumaroylquinic acid, and p-coumaroylputrescine were only
found up-regulated by 3,5-DCSA, 3,5-DCAA, and 2,6-DCP-4-CA, respectively. It might be
suggested that each treatment uses different molecules to perform similar functions.

Flavonoids are structurally related compounds performing crucial roles in biotic and
abiotic stresses [71], and in transcriptional and growth regulation [72]. The glycosylated
derivatives of luteolin and apigenin (lutonarin and saponarin, respectively) are the most
dominant flavonoids in barley and were annotated as discriminant metabolites in all
treatments at almost all time points. While lutonarin was always up-regulated, saponarin
levels increased only at 12 and 24 h in samples from 3,5-DCSA treated plants and at 24 h
with 3,5-DCAA treatment. Both compounds are good antioxidants [73] and are proposed as
protectants against UV-B radiation [74]. The aglycones have very similar chemical structures
and do not differ meaningfully in their antibacterial activity. Likewise, the presence and
location of the sugar group(s) in the flavone glucosides do not have a significant effect on
the antibacterial activity [75]. Isovitexin 2′-O-glucose was up-regulated only at 24 h and
down-regulated at 12 and 36 h, while 6-prenylnaringenin followed the opposite pattern.
Here, the diurnal and nocturnal responses might influence the pattern of accumulation
since some mechanisms are activated in the presence of light and others in the absence.

Several studies have demonstrated that induction of plant immune and defence re-
sponses can be associated with enhanced expression of the phenylalanine ammonia-lyase
(PAL) gene(s). PAL is the first enzyme in the phenylpropanoid pathway and is responsible
for the production of phenolic compounds, such as phenolic acids and derivatives, and
flavonoids. The fluctuation of these compounds in the plants is evidence of the plants’
reaction to the treatments. Despite the fact that SA is the only specific phenolic molecule



Metabolites 2023, 13, 666 20 of 24

that is extensively used as a biochemical marker for SAR, the implication of phenolics in
the identification of plant damage and plant signalling during the development of SAR
is acknowledged. In wheat, DCPCA significantly increased the phenolic content [42]. In
fact, the first artificial substances that were demonstrated to activate SAR were 2,6-DCINA
acid and its methyl ester [19,76,77]. In tobacco, 2,6-DCINA and 3,5-DCSA were reported to
be efficient at enhancing PR1 protein expression and resistance against the tobacco mosaic
virus (TMV) [34,77]. Compared to SA, the dichlorinated 3,5-DCSA was found to be more
active at inducing resistance against TMV [32]. 3,5-DCAA has been established as an
inducer of transient and rapid resistance to pathogens in Arabidopsis by simultaneously
engaging two different branches of the plant defence signalling network: NPR1-dependent
and NPR1-independent responses [28]. The interaction of 3,5-DCAA with defence sig-
nalling pathways takes place either downstream or independently of SA perception and
accumulation. Here, in the absence of SA-related metabolites as discriminant biomarkers,
it might be speculated that these treatments in barley, or at least in the ‘Hessekwa’ cultivar,
are not SA-dependent. In priming, multiple layers of induced defence mechanisms can
be involved. Enhanced responses developed upon treatment with these inducers were
mostly observable through the activation of the TCA cycle, phenylpropanoid pathway, and
alpha-linolenic acid metabolism, converting the metabolome of the naïve plants to a primed
state. This was attained by the fluctuation of common and specific protective metabolites,
such as the accumulation of JA conjugates. Due to the nature of untargeted metabolomics,
it is difficult to distinguish between ‘priming agents’ and ‘primed compounds’ [51], but
the annotated metabolites and the identified metabolic pathways were supportive of a
defensive role and its link to priming. The investigation of molecular and biochemical
mechanisms in priming events is still ongoing [78], and this study is a contribution in
that regard.

5. Conclusions

Timeous activation of defence mechanisms has proven to be of great importance
for the plant’s survival under environmental stressors. In this context, the fluctuation of
several metabolites was observed on the shoot tissue of the barley cultivar ‘Hessekwa’
using xenobiotic dichlorinated substitutes of salicylic acid, anthranilic acid, and isonico-
tinic acid (3,5-DCSA, 3,5-DCAA, and 2,6-DCP-4-CA/2,6-DCINA). It is known that even
a subtle change in the substitution site of a compound can significantly affect the physic-
ochemical properties thereof and, ultimately, the biological activity; this was reiterated
in this study. 3,5-DCAA, 2,6-DCP-4-CA, and 3,5-DCSA were proposed as chemicals with
either induced/acquired resistance or priming activity. There is a relationship between
the two concepts, and while there is considerable overlap between the phenotypes of the
SAR and ISR states, the underlying triggers and mechanisms of action differ. With priming
inducers, it has recently become apparent that defence priming should be regarded as an
adaptive part of induced resistance and that specific defence mechanisms also depend
strongly on the primed state. The question has been raised whether metabolism (and thus
also metabolites, i.e., the ‘primed compounds’) can store and process information regarding
induced/imprinted/primed responses to changing environments.

Applying untargeted metabolomics approaches, specific and, interestingly, shared
mechanisms were highlighted; notably the activation of the phenylpropanoid pathway,
the TCA cycle, and the alpha-linolenic acid metabolism by all three inducers. With regard
to metabolites annotated in the study, it is important to note that in some cases, they
were either conjugated compounds, substrates, or precursors in the biosynthesis of the
main components in plant immunity. For example, no signalling molecules (SA, JA, and
ET) were present as discriminant metabolites. Instead, JA derivatives and oxylipins, key
components in the phytohormone biosynthesis, were found to be discriminative and were
mostly up-regulated in treated samples conditions. The presence of related compounds
but not the main actors themselves can be perceived as the plant’s readiness to quickly
produce more specific defence-related metabolites in response to environmental stress
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(e.g., pathogen attacks). It was then suggested that plants use metabolic imprints (i.e., the
metabolic changes that last beyond recovery from stress events) and priming (e.g., the
imprints that function to prepare for upcoming stresses) to integrate diverse environmental
stress histories. The lack of SA accumulation in this study led to the speculation that the
mechanism of priming by dichlorinated xenobiotics (at least in the ‘Hessekwa’ cultivar of
barley) does not rely on SA and derivatives but rather on JA and derivatives. Hordatines
(known phytoanticipins/phytoalexins in barley), their hexosylated conjugates and precur-
sor molecules were also found as important discriminant markers of inducer treatment
with a time-lapse of 24 h required to enhance the biosynthesis. In addition, the flavonoid
profile was also altered and specific markers were apigenin 6-C-arabinoside 8-C-glucoside,
isoscoparin 7-O-[6”-sinapoyl]-glucoside, and isovitexin 2”-O-glucoside, associated with the
3,5-DCAA-, 2,6-DCP-4-CA-, and 3,5-DCSA-treatments, respectively. Although examples
of flavanones and flavonols were amongst the discriminant metabolites, the large number
of flavones (as glycosidic derivatives of apigenin and luteolin) were especially prevalent.
The increase in the production of tryptamine derivatives, precursors in the biosynthesis of
various indole alkaloids, pointed to their participation in defence-related mechanisms and
their contribution to the preconditioned state.

Metabolomics approaches, combined with chemometric analysis, have proven to be
valuable tools in revealing the metabolic perturbation and reprogramming resulting from
the above-mentioned treatments. Chemometrics tools allowed the exploration of large
datasets and also to discriminate among the different conditions. All three dichlorinated
xenobiotic priming inducers were good candidates in perturbing plant metabolic pathways
associated with metabolites involved in defence. Although presenting specific markers, the
mechanisms of action seem to be similar. Regardless of nuanced differences, their effects
appear to work toward the same goal of establishing an enhanced defensive environment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo13050666/s1, Figure S1. Ultra–high performance liquid chromatography–mass spec-
trometry (UHPLC–MS) base peak intensity (BPI) chromatograms (negative ionisation) of shoot
extracts from the ‘Hessekwa’ cultivar treated with DCAA, DCPCA, and DCSA for 12, 24, and 36 h.
(Comparison of time-dependent changes). Figure S2. Ultra–high performance liquid chromatography–
mass spectrometry (UHPLC–MS) base peak intensity (BPI) chromatograms (positive ionisation) of
shoot extracts from the ‘Hessekwa’ cultivar treated with DCAA, DCPCA, and DCSA for 12, 24,
and 36 h. (Comparison of time-dependent changes). Figure S3. Ultra–high performance liquid
chromatography—mass– spectrometry (UHPLC–MS) base peak intensity (BPI) chromatograms (neg-
ative ionisation) of shoot extracts from the ‘Hessekwa’ cultivar treated with DCAA, DCPCA, and
DCSA and harvested after 12 h, 24 h, and 36 h. (Comparison according to inducer). Figure S4.
Principal component analysis (PCA) score plot models of ESI (+) data from shoot extracts of the
’Hessekwa’ cultivar of Hordeum vulgare. Figure S5. Relative quantification (based on average peak
area values) of selected primed/induced metabolites at 24 h. Hordatine A, B, and C; flavones lu-
tonarin, saponarin, and alkaloids hydroxytryptamine and coumaroyltryptamine. Table S1. Metabolic
pathways generated from Metabolomics Pathway Analysis (MetPA) in MetaboAnalyst 5.0 involve
selected annotated metabolites. Blue: 3,5-DCAA; Green: 2,6-DCP-4-CA, and Orange: 3,5-DCSA.
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