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Auto-deconvolution algorithm workflow 
 

 

 

Figure S1. A flow diagram outlining automated blind deconvolution algorithm developed for this 

study. 

 



Image pre-processing 
From the raw data (.imzml format), each spectrum is transformed into an 8-level CWT domain where 

the biologically relevant peaks are manifested as ridges and detected using a stimulated annealing 

approach similar to that reported in [1], the parameters have already been fine-tuned for MSI data. 

As a result, the raw data matrix is reduced into lists of peaks detected. The remaining peak lists are 

then linearly interpolated to a common axis using the list with the most detected peaks as a reference. 

To facilitate deep learning and a fair comparison between datasets, further refinement of the pre-

processed data was carried out by computing a weighted average of Structural Similarity Index (SSIM) 

and multi-SSIM [2] for images of every spectral feature with a representative reference image (in this 

case the total-ion-current image); those that produced a weighted average below a perceptually 

defined threshold were deemed to be belonging to either background or isotopes and hence removed. 

The remaining images are saved to .png format for training and/or image restoration. 

Training UNET5 for denoising using synthetic noise 

adding[3] 
 

 

 

Figure S2. A flow diagram outlining the implementation of UNET5. 

After removing background & noisy images using the procedure described above, the training datasets 

for UNET5 is formed by paring corresponding Low Resolution (LR) and High Resolution (HR) images. 

For denoising, LR counterparts are synthetically acquired by adding the appropriate type & amount of 

noise to  the  HR  images.  To optimise denoising performance, a realistic noise model of MSI is 

desirable.  In this project, we have empirically optimised the synthetic data by assuming  a  linear  

detection  model:   

Detected Signal = True Signal + Noise 

Which assumes an additive noise, that can be generally categorized as Gaussian noise and Poisson 

noise in distribution.  Gaussian noise, also called  white  noise, is unrelated to pixel intensities of the 

original image, and it can be directly add to any given image.  Poisson noise, or shot noise, however, 

is proportional to the intensity of each pixel. As the accurate noise source of (ambient) MSI systems 

has yet to be characterised, a combined noise model is proposed here, which balances both Gaussian 

noise and Poisson noise. An example of noise adding is presented in Fig. S4.  The effect of Poisson 



noise is by inspection relatively hard to observe visually compared to Gaussian noise, but it generally 

makes the image unsmooth and more resemblant of real MSI data. The noise level of Gaussian noise 

is determined based on a dataset-specific SNR, while the noise level of Poisson noise varies 

automatically with the pixel intensities of each image. As a result, patches from 3757 images (64 x 128 

pixels in size, optimised in consideration of the MSI image sizes) with their noise-added counterparts 

were used to train the UNET5 weights utilised in this study. The hyperparameters were independently 

optimised and reported in the main text. The training time for UNET5 with 3757 images and 30 epochs 

only takes around 92 minutes. 

 
Figure S3. Example images to illustrate the effect of different noise sources on MSI data. 

 

 

 

 
 

 



Training ESRGAN using synthetically generated LR-HR 

patches[3] 
 

 

Figure S4. Architecture of ESRGAN adopted in this study. 

The ground-truth or HR images for upsampling from the raw data went  through  the same 

preselection procedure as described above.  LR counterparts are then acquired  from  downsampling  

the  HR images by a factor of 4 using the bicubic interpolation. The training data for ESRGAN require 

3-channel RGB images, however, each MSI ion image used in our image restoration is considered to 

be a single channel gray image. It was experimentally determined that using different combinations 

of ion channels to compose the RGB training image has little effect on the results. Therefore, we stack 

the same ion image 3 times to produce a fake RGB image for every training image.  The training process 

started with pre-training a  PSNR-oriented  model  with  MAE loss.  The generator was initialized by 

the pre-trained model. The generator and discriminator were then trained with perceptual loss and 

adversarial loss until it converged. The ratio of different losses was tuned during training, and it 

strongly affects the results. 100 epochs were used for pre-training and another 100 epochs for training 

the generator and discriminator network. The training time for ESRGAN for epochs takes around 6 

hours, while 100 epochs of pre-training for initializing the generator also takes approximately 6 hours. 

 

Figure S5. A flow diagram outlining the implementation of ESRGAN. 



Other metadata of datasets used 
The SNR of images in this study is calculated by: 

𝑆𝑁𝑅 = 10 log10 <
𝐼𝑚𝑔𝑖
𝐼𝑚𝑔𝑛

> 

 

where each dataset contains i number of images, each denoted by 𝐼𝑚𝑔𝑖. A noise image 𝐼𝑚𝑔𝑛 is first 

determined for each dataset. This is nominally achieved by the taking the ion image with the lowest 

mean spectral intensity. In cases where strong background is observed, the noise image is selected by 

correlating every image with a reference image (e.g. the TIC image) that contains distinguishable 

spatial features of the sample, the structural similarity (SSIM) is then computed to be used as a metric. 

The image with the lowest SSIM value (i.e. the least similar) is deemed to be 𝐼𝑚𝑔𝑛. Note that this 

measure is skewed in datasets that contain a high number of images with non-negligible background, 

thus the maximum SNR values are also included as well as the mean and standard deviation (st.d) to 

give a more complete picture. 

Dataset Pixel dimension SNR (mean) SNR (st.d) SNR (max) 

1 400 x 649 59.4498 8.647 71.0189 

2 93 x 183 5.4031 5.8236 21.701 

3 35 x 85 6.3565 4.6098 14.9555 

4 94 x 94 32.3996 12.1707 46.231 

5 19 x 30 6.1142 3.5375 26.3488 

6 52 x 58 51.3555 6.6574 67.6074 

7 79 x 214 3.6733 2.9763 15.2144 

8 61 x 177 5.8911 4.4714 22.1777 

9 20 x 32 31.0097 4.1681 53.5166 

10 35 x 70 48.0376 8.1639 75.5312 

11 133 x 129 29.7064 4.8345 49.3889 

12 186 x 186 20.7867 3.3009 42.725 

Table S1 
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