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Abstract: Levels of high-density lipoprotein cholesterol (HDL-C) are inversely associated with the
incidence of coronary artery disease (CAD). However, the underlying mechanism of CAD in the
context of elevated HDL-C levels is unclear. Our study aimed to explore the lipid signatures in
patients with CAD and elevated HDL-C levels and to identify potential diagnostic biomarkers for
these conditions. We measured the plasma lipidomes of forty participants with elevated HDL-C
levels (men with >50 mg/dL and women with >60 mg/dL), with or without CAD, using liquid
chromatography–tandem mass spectrometry. We analyzed four hundred fifty-eight lipid species and
identified an altered lipidomic profile in subjects with CAD and high HDL-C levels. In addition, we
identified eighteen distinct lipid species, including eight sphingolipids and ten glycerophospholipids;
all of these, except sphingosine-1-phosphate (d20:1), were higher in the CAD group. Pathways for
sphingolipid and glycerophospholipid metabolism were the most significantly altered. Moreover, our
data led to a diagnostic model with an area under the curve of 0.935, in which monosialo-dihexosyl
ganglioside (GM3) (d18:1/22:0), GM3 (d18:0/22:0), and phosphatidylserine (38:4) were combined.
We found that a characteristic lipidome signature is associated with CAD in individuals with elevated
HDL-C levels. Additionally, the disorders of sphingolipid as well as glycerophospholipid metabolism
may underlie CAD.

Keywords: lipidomics; coronary artery disease; high-density lipoprotein cholesterol; sphingolipid;
glycerophospholipid; biomarker

1. Introduction

Globally, coronary artery disease (CAD) is the leading cause of death and a major
public health concern [1]. The pathological basis of CAD is atherosclerosis, which could
be due to several risk factors, such as dyslipidemia, hypertension, and smoking [2]. As
a significant component of lipids, high-density lipoprotein cholesterol (HDL-C) has been
proven by epidemiological studies to have an inverse association with CAD [3]. However,
numerous drugs designed to enhance HDL-C levels failed to confer significant benefits
toward the reduction in cardiovascular disease (CVD) events and death risk [4,5]. Moreover,
a significant number of people suffer from coronary events despite having favorable
HDL-C levels, and some patients with CAD have even been reported to have high HDL-
C levels [6]. An analysis of two prospective studies proves a higher HDL-C level is a
significant major cardiac event risk factor [7]. Additionally, elevated plasma levels of
HDL-C caused by several genetic variants are found to be related to an increased risk
of ischemic heart disease [8–11]. The mechanism underlying the occurrence of CAD in
patients with elevated HDL-C levels is not fully elucidated. In addition to the concentration,
the biological dysfunction of HDL itself can influence the effect of this lipid on CAD [12].
However, our previous study, the Peking University Health Science Center and University
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of Michigan Medical School Study of Cardiovascular Diseases (PUHSC-CVD), found
no significant differences in reverse cholesterol transport (RCT), which is the prominent
function of HDL, between patients with CAD and controls with concurrently increased
HDL-C concentrations [13]. This finding has been replicated by another study [14]. Besides
HDL itself, changes in plasma composition accompanied by increased HDL-C, which might
contribute to the onset of CAD, remain to be discovered.

Long-term clinical studies [2–4] show that lipids play a prominent role in CAD patho-
genesis and progression. To study this, recent developments in lipidomics have led to
the design of powerful tools that can deepen our understanding of diseases with lipid
dysfunction, as well as aid in the discovery of putative lipid biomarkers, through appli-
cation of such approaches to study lipidomes using analytical chemistry. Such studies
have revealed the presence of abnormal lipidomes in CAD and atherosclerosis [15–20].
Observational studies identified altered signatures in lipid metabolism of patients with
angina or myocardial infarction [16,17]. Several studies have demonstrated that perturbed
sphingolipid metabolism and glycerophospholipid metabolism are factors contributing to
CAD [18,19]. Furthermore, studies found that the lipid components of HDL in patients with
CAD are different from those in controls [21,22]. Additional investigations have suggested
that altered lipid profiles detected in CAD subjects could be informative as diagnostic and
prognostic biomarkers [23]. Data from large clinical studies demonstrated that a ceramide-
and phospholipid-based risk score was shown to be an efficient predictor of residual CVD
event risk in patients with CAD after validation [24]. A new model combining six lipids
and traditional factors predicts adverse cardiovascular events in patients with coronary
total occlusion after percutaneous coronary intervention effectively [25]. Based on these
findings, we hypothesize that plasma lipidome of individuals with increased HDL-C levels
plays an important role in CAD incidence and has the potential to be diagnostic markers,
which have not been reported to date.

In this study, we performed a plasma lipidomic evaluation in individuals with high
HDL-C levels using the liquid chromatography–tandem mass spectrometry (LC-MS/MS)
method. The lipidome of twenty patients with CAD was compared to that of twenty
controls without CAD to assess the distinction between both groups and to identify CAD-
related lipids. We further subjected selected metabolites to pathway analysis to explore
how lipid dysregulation contributes to CAD pathophysiology. The diagnostic potency of
differential lipids was also calculated to evaluate their utility as lipid biomarkers for CAD.

2. Materials and Methods
2.1. Participants

We recruited 40 participants with high HDL-C levels (men with HDL levels > 50 mg/dL
and women with HDL levels > 60 mg/dL) from the PUHSC-CVD cohort. As previously
reported [13], patients meeting the following criteria were included: subjects between
30–75 years old; in those with CAD, coronary stenosis ≥ 50% confirmed in at least one of
the main branches of the coronary arteries as indicated by coronary angiography (CAG)
and/or cardiac computed tomography (CT) angiography; in those without CAD, normal
coronary arteries or only irregularities or coronary stenosis ≤ 20% in the main branches
of the coronary arteries as confirmed by CAG and/or CT. The exclusion criteria were as
follows: subjects with acute myocardial ischemia, history of previous myocardial infarction,
history of diabetes mellitus, with left ventricular ejection fraction < 30% or end-stage con-
gestive heart failure (New York Heart Association functional class III or IV), renal dialysis
or severe chronic kidney disease, active liver disease or hepatic dysfunction, use of statins
within the past 3 months, and pregnant or lactating women. More details about diagnosis
of complications can be referred to our previous work [13].

Based on CAG or CT, all participants were divided into two groups (20 patients per
group): the high HDL-C with CAD (High HDL CAD [+]) group and the high HDL-C with-
out CAD (High HDL CAD [−]) group. This study was conducted according to procedures
outlined in the Declaration of Helsinki and its later amendments. All enrolled patients
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provided written informed consent before participating, and the study was approved by
the Ethics Committee of Peking University Health Science Center (ID: IRB00001052-11064).

2.2. Sample Preparation, Lipid Extraction, and LC-MS/MS Lipidomic Analysis
2.2.1. Sample Preparation

Peripheral blood samples for laboratory tests were collected from subjects after an
overnight fast, on the second day of admission. Clinical data were obtained by using
standard laboratory methods at Peking University Third Hospital. Blood samples for
lipidomic detection were collected immediately after CAG or CT. Sample processing and
storage methods have been thoroughly described in our previous report [13].

2.2.2. Lipid Extraction

Lipid extraction was performed following the improved Bligh and Dyer’s proto-
col [26,27]. All plasma work-ups were performed at 4 ◦C. Plasma was obtained by cen-
trifugation at 2000 rpm for 10 min; it was then deactivated with a 750 µL mixture of
chloroform/methanol (v/v 1:2). Samples were incubated for 1 h in a vacuum chamber in
a dark room after being vortexed for 15 s. Thereafter, 250 µL of chloroform and 350 µL
of deionized water were added to the mixture, and both were ice-cold. The homogenate
was vortexed for 15 s, put on ice for 1 min, and centrifuged at 12,000 rpm for 5 min. The
bottom organic phase was transferred to a new tube. The remaining aqueous phase was
mixed with 450 µL ice-cold chloroform for the second extraction step. After the mixture,
the aqueous phase was then centrifuged at 12,000 rpm for 5 min to extract the lower organic
phase. After two rounds, the extracts of the organic phase were pooled together and dried
in the SpeedVac under OH mode. The dried extracts were stored at −80 ◦C until further
lipidomic analysis.

2.2.3. LC-MS/MS Lipidomic Analysis

Plasma lipid profiles were measured by a high-coverage targeted lipidomics ap-
proach using liquid chromatography (LC) multiple reaction monitoring, based on an
extensive library tailored for human lipidome by LipidALL Technologies Company Lim-
ited (Changzhou, Jiangsu Province, China) [26,28]. All lipidomic detection procedures
were performed on an Exion UPLC coupled with a QTRAP 6500 PLUS system (Sciex).
MS analyses were performed in the electrospray ionization mode (ESI) mode under the
following conditions: curtain gas = 20 psi, ion spray voltage = 5000 V, temperature = 400 ◦C,
ion source gas 1 = 35 psi, and ion source gas 2 = 35 psi. Before analysis, plasma lipid extracts
of the organic phase were resuspended in 100 µL of chloroform/methanol (v/v 1:1) using
appropriate internal standards. The lipids from different classes were relatively quantified
using their respective internal standards.

Individual lipid classes of polar lipids were separated using a Phenomenex Luna 3
µm-silica column (length × internal diameter: 150 mm × 2.0 mm) under the following
chromatographic conditions: mobile phase A (chloroform: methanol: ammonium hydrox-
ide, 89.5:10:0.5) and mobile phase B (chloroform: methanol: ammonium hydroxide: water,
55:39:0.5:5.5). The gradient of phase A began with 95% and was held for 5 min, which was
then decreased to 60% of A linearly within 7 min. Thereafter, it was maintained at 60% for
4 min. The gradient was further reduced to 30% A and was kept for 15 min before returning
to the initial level. The primary gradient was finally maintained for 5 min. Subsequently, a
comparative analysis of various polar lipids was performed by establishing multiple reac-
tion monitoring transitions. Isolated polar lipid species, including d31-phosphatidylcholine
(PC)-16:0/18:1, d31-phosphatidylethanolamine (PE)-16:0/18:1, d31-phosphatidylserine (PS)-
16:0/18:1, d31-phosphatidylinositol (PI)-16:0/18:1, d31-phosphatidic acid (PA)-16:0/18:1,
PA-17:0/17:0, d31-phosphatidylglycerol (PG)-16:0/18:1, lyso-PC (LPC)-17:0, lyso-PE (LPE)-
17:1, lyso-PS (LPS)-17:1, lyso-PA (LPA)-17:0, lyso-PI (LPI)-17:1, ceramide (Cer)-d18:1/17:0,
glucosylceramide (GlcCer)-d18:1/8:0, d3-lactosylceramide (LacCer)-d18:1/16:0,
d3-monosialo-dihexosyl ganglioside (GM3)-d18:1/18:0, sphingosine-1-phosphate (S1P)-
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d17:1, were quantified according to spiked internal standards. Quantification of glycerol
lipids, such as diacylglycerols (DAGs) and triacylglycerols (TAGs), was performed using a
modified version of reverse phase HPLC/ESI/MS/MS. Briefly, the aforementioned lipids
were separated on a Phenomenex Kinetex-C18 2.6 mm column (length × internal diam-
eter: 100 mm × 4.6 mm) with an isocratic mobile phase of chloroform: methanol: 0.1 M
ammonium acetate (v/v/v 100:100:4) at a flow rate of 160 µL/min for 20 min. Based on
neutral loss-based MS/MS techniques, concentrations of TAGs were determined using
d5-TAG (16:0)3, d5-TAG (14:0)3, and d5-TAG (18:0)3 as internal standards, whereas levels
of DAGs were calculated in reference to spiked d5-DAG (1,3-16:0) and d5-DAG (1,3-18:1).
Using the HPLC/atmospheric pressure chemical ionization (APCI)/MS/MS mode, free
cholesterols, cholesteryl esters (CE), and free fatty acids were separated using d6-cholesterol
and d6-CE18:0 as internal standards. Details of these materials are provided in Table S1.

2.3. Statistical Analysis

We analyzed the clinical data using SPSS (IBM SPSS Statistics for Windows, Version
26.0. Armonk, New York, USA: IBM Corp). A Shapiro–Wilk test was used to test the
goodness of fit of continuous variables. Continuous variables are expressed as means
± standard deviation or median (interquartile range), whereas dichotomous variables
are expressed as percentages. For continuous variables, the Student’s t-test was used to
compare normally distributed variables, while the Mann−Whitney U test was performed
in non-normally distributed variables. Fisher’s exact test was applied to dichotomous
variables.

After log transformation, concentrations of identified lipids were analyzed by mul-
tivariate and univariate statistical methods using MetaboAnalyst 5.0 (http://www.me
taboanalyst.ca/, accessed on 23 May 2023). Multivariate analyses, including principal
component analysis (PCA) and partial least-squares-discriminant analysis (PLS-DA), were
performed to distinguish between patients with CAD and controls. PLS-DA was performed
as a supervised approach to recognize important variables with discriminative power by
calculating variable importance in projection (VIP) scores. For univariate analysis, statistical
significance of features was conducted using the Wilcoxon rank-sum test with a threshold
of p < 0.05 and fold change (FC). FC was calculated based on the mean ratios for lipids of
the High HDL CAD (+) group to lipids of the High HDL CAD (−) group. Adjusted p value
was calculated using logistic regression adjusting age, sex, smoking status, and hs-CRP
(hypersensitive C-reactive protein).

The differential lipid species were determined by the results of multivariate and uni-
variate analyses, shown by a volcano chart generated by GraphPad Prism 8.0.2 (GraphPad
Software Inc., La Jolla, CA, USA) and boxplots by R software version 4.2.2 (R Foundation for
Statistical Computing). Subsequently, we applied hierarchical clustering analysis (HCA) to
selected lipids to observe the overview trend, which was visualized by a heatmap. Pathway
analysis was performed to explore potential underlying lipid pathway perturbations. HCA
and pathway analyses were performed using MetaboAnalyst 5.0. Additionally, the Spear-
man correlation analysis was performed using SPSS 26.0. The correlation network between
significantly altered lipid metabolites was visualized using Cytoscape 3.7.2, according to
Spearman correlation coefficients.

The classical univariate receiver operating characteristic (ROC) analysis was adopted
to evaluate the performance of differentially expressed lipids in CAD diagnosis and cal-
culate the area under the curve (AUC) with 95% confidence intervals, sensitivity, and
specificity, which were the basis for selecting potential biomarkers. Thereafter, we created a
diagnostic model by combining the identified biomarker candidates. The ROC analysis
and model creation were conducted by MetaboAnalyst 5.0.

http://www.metaboanalyst.ca/
http://www.metaboanalyst.ca/
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3. Results
3.1. Characteristics of Study Participants

Clinical and demographic characteristics of the study population are described in
Table 1. The enrolled patients did not significantly differ in age, sex, waist circumference,
body mass index, smoking status, and history of hypertension. Regarding the data on lipid
levels, the High HDL CAD (+) group had higher apolipoprotein B (Apo B) and lipoprotein
(a) levels than the CAD (−) group. However, no significant differences in HDL-C, total
cholesterol, low-density lipoprotein cholesterol, total triglyceride, and apolipoprotein A1
were observed between the two groups. Moreover, hs-CRP levels were higher in samples
collected from the CAD (−) group.

Table 1. Summary of clinical and demographic characteristics of enrolled patients.

Characteristics High HDL CAD (−)
(n = 20)

High HDL CAD (+)
(n = 20) p Value

Age (years) 59 (54, 64) 62 (59, 66) 0.086
Male (%) 50 65 0.523
Waist circumference (cm) 87.10 ± 8.74 89.82 ± 9.97 0.364
BMI (kg/m2) 22.97 ± 2.60 23.95 ± 4.03 0.372
Smokers (%) 40 70 0.055
Hypertension history (%) 50 50 1.000
HDL-C (mmol/L) 1.51 (1.40, 1.69) 1.53 (1.32, 1.58) 0.277
TC (mmol/L) 4.84 ± 0.78 5.18 ± 1.06 0.253
LDL-C (mmol/L) 2.60 ± 0.75 2.99 ± 0.88 0.151
TG (mmol/L) 1.06 (0.79, 1.34) 1.23 (0.82,1.85) 0.253
Apo A1 (mg/L) 1979.80 ± 293.12 1929.35 ± 307.83 0.599
Apo B (mg/L) 765.90 ± 233.79 942.35 ± 271.61 0.034 a

Lp(a) (mg/L) 90.00 (41.00, 247.75) 231.00 (72.25, 422.00) 0.046 a

Fasting glucose (mmol/L) 5.11 ± 0.65 5.13 ± 0.84 0.933
HbA1C (%) 5.49 ± 0.33 5.67 ± 0.41 0.123
hs-CRP (mg/L) 8.73 ± 6.72 5.07 ± 3.61 0.040 a

a p < 0.05. Continuous variables are expressed as the means ± standard deviation or median (interquartile
range). Dichotomous variables are expressed as %. BMI = body mass index; HDL-C = high-density lipoprotein
cholesterol; TC = total cholesterol; LDL-C = low-density lipoprotein cholesterol; TG = total triglyceride; Apo A1
= apolipoprotein A1; Apo B = apolipoprotein B; Lp (a) = lipoprotein (a); HbA1C = hemoglobin A1C; hs-CRP =
hypersensitive C-reactive protein.

3.2. Comparison of Plasma Lipidomic Profiles between the High HDL CAD (+) and High HDL
CAD (−) Groups

We analyzed four hundred fifty-eight lipid species in total in the samples, belonging
to twenty-five lipid classes. Eighteen lipids were considered to be different between the
two groups according to our criteria (Table 2 and Figure S2). Two-dimensional PCA was
applied to develop an overview of the plasma lipidome of patients with CAD and control
patients with high plasma HDL-C levels. Data from the LC-MS/MS analysis were pareto-
scaled and subject to PCA. As the scores plot of the PCA illustrates in Figure S1, data
points for lipids did not show a class separation in an unsupervised manner. Furthermore,
we performed PLS-DA to identify the difference in plasma lipidome between the two
groups. Although some areas overlapped, the scores plot of two-dimensional PLS-DA
demonstrated a dissociation tendency (Figure 1A). In the scores plot of the three-predictive
component PLS-DA (Figure 1B), the High HDL CAD (+) group was separated from the
High HDL CAD (+) group. The parameters for the explained variation of the PLS-DA
model (R2) and predictive values (Q2) were 0.91 and 0.327, respectively. The scores plot
described 32.8% of the total variance, including component 1 (8.9%), component 2 (15.8%),
and component 3 (8.1%).
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Table 2. Statistical analysis of plasma differential lipid species to distinguish the High HDL CAD (+)
group from the High HDL CAD (−) group.

Lipid Species Adjusted
p Value a VIP b FC c AUC (95% CI) d Sensitivity d Specificity d Sens. + Spec.

Sphingolipid
GM3 (d18:1/22:0) 0.010 2.57 1.46 0.917 (0.807–0.990) 0.90 0.85 1.75
GM3 (d18:0/22:0) 0.009 2.30 1.42 0.870 (0.730–0.964) 0.85 0.80 1.65
GlcCer (d18:1/16:0) 0.026 2.78 2.08 0.779 (0.621–0.914) 0.80 0.70 1.50
GlcCer (d18:0/24:1) 0.015 2.22 1.85 0.765 (0.591–0.899 0.80 0.75 1.55
GlcCer (d18:1/22:0) 0.037 2.39 2.08 0.751 (0.586–0.900) 0.85 0.65 1.50
GlcCer (d18:1/18:0) 0.034 2.33 1.81 0.739 (0.571–0.889) 0.90 0.60 1.50
GlcCer (d18:1/20:0) 0.020 2.27 1.97 0.735 (0.555–0.866) 0.95 0.50 1.45
S1P (d20:1) 0.015 2.34 0.60 0.760 (0.615–0.889) 0.75 0.65 1.40
Glycerophospholipid
PS (38:4) 0.008 4.16 3.01 0.823 (0.662–0.941) 0.80 0.80 1.60
PS (38:3) 0.008 3.97 2.85 0.818 (0.666–0.944) 0.85 0.70 1.55
PS (36:1) 0.012 3.04 1.92 0.809 (0.661–0.925) 0.85 0.70 1.55
PS (36:2) 0.014 3.05 2.11 0.796 (0.666–0.909) 0.75 0.80 1.55
PS (40:4) 0.010 3.72 2.60 0.792 (0.636–0.929) 0.80 0.75 1.55
PS (38:5) 0.034 3.42 2.31 0.785 (0.645–0.922) 0.75 0.80 1.55
PS (40:6) 0.010 3.33 2.09 0.758 (0.579–0.887) 0.70 0.85 1.55
PS (40:5) 0.019 3.00 2.17 0.755 (0.560–0.906) 0.70 0.85 1.55
PE (40:4) 0.024 2.82 1.92 0.758 (0.599–0.891) 0.90 0.60 1.50
PG (38:5) 0.037 3.49 1.92 0.769 (0.604–0.899) 0.65 0.90 1.55

a p value was adjusted by age, sex, smoking status, and hs-CRP with a threshold of 0.05. b VIP was obtained
from PLS-DA model with a threshold of >1.8. c FC was calculated based on mean ratios for lipids of patients
with CAD to lipids of controls. d AUC, sensitivity, and specificity were obtained from ROC analysis. VIP =
variable importance in projection; FC = fold change; AUC = area under the curve; CI = confidence interval; Sens.
= sensitivity; Spec. = specificity; GM3 = monosialo-dihexosyl ganglioside; GlcCer = glucosylceramide; S1P =
sphingosine-1-phosphate; PS = phosphatidylserine; PE = phosphatidylethanolamine; PG = phosphatidylglycerol.
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3.3. Identification and Hierarchical Clustering Analysis of Differential Lipid Species

We found that profiles for lipid metabolites held the most significant discriminating
power between groups by VIP scores. Further comparison between the two groups was
performed by univariate analyses. We performed a Wilcoxon test and found thirty-four
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lipid species with statistically significant (p < 0.05) differences in levels between the groups
(Table S2). After adjusting for age, sex, smoking status, and hs-CRP, there were twenty-two
lipids with remarkable p values. The FC indicated that one hundred eighteen lipids were
down-regulated in the CAD (+) group, whereas three hundred twenty-seven lipids were
up-regulated (Figure 2A). The differentially expressed lipid species were identified based on
the following criteria: (1) VIP > 1.8, (2) absolute value of log2 (FC) > 0.4 (FC > 1.32 or < 0.76),
and (3) adjusted p < 0.05. A total of eighteen differentially expressed lipid species were
confirmed, corresponding to ten glycerophospholipids and eight sphingolipids (Table 2).
Except for sphingosine-1-phosphate (S1P) (d20:1), levels for the other seventeen lipids were
significantly higher in samples from the High HDL CAD (+) group.

HCA was performed on all of these differential metabolites. The heatmap with a
two-dimensional hierarchical clustering revealed a difference between the two groups
(Figure 2B). The clustering of species consisted of two principal groups: the first cluster
had a single S1P species, S1P (d20:1), which was the only down-regulated differential
lipid species in the CAD (+) group, whereas the second cluster had seventeen lipids
that were more abundant in the High HDL CAD (+) group than the CAD (−) group.
The seventeen lipids included one phosphatidylglycerol (PG), two monosialo-dihexosyl
gangliosides (GM3), five glucosylceramides (GlcCer), eight phosphatidylserines (PS), and
one phosphatidylethanolamine (PE).
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Figure 2. (A) Volcano plot of the statistically significant lipids, derived from the comparison be-
tween CAD (+) and CAD (−) groups, generated by p value from Wilcoxon test and fold change
(FC). Red plots indicate lipids are up−regulated in High HDL CAD (+) group and blue means
down−regulated. Gray plots represent insignificantly altered lipids. (B) Heatmap visualization of
significantly altered lipid species between the CAD (+) and CAD (−) groups. (C) Pathway analysis of
differential lipids between the CAD (+) and CAD (−) groups. GPI= glycosylphosphatidylinositol;
S1P = sphingosine−1−phosphate; PE = phosphatidylethanolamine; PS = phosphatidylserine; GlcCer
= glucosylceramide; PG = phosphatidylglycerol; GM3 = monosialo−dihexosyl ganglioside.
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3.4. Differential Lipid Metabolite Pathway and Correlation Analysis

To understand how changes in lipid species might influence body metabolism, we
carried out a pathway analysis to identify specific metabolic pathways, using enrichment
and topology analyses [29]. As shown, we find that sphingolipid and glycerophospholipid
metabolism pathways were significantly disrupted, with raw p < 0.05 and higher impact
(Figure 2C), which may be associated with CAD occurrence in populations with high
HDL-C levels. In addition, we performed Spearman’s analysis to assess the correlation
between the differential lipid species and calculated coefficients. The correlation network
was based on selected pairs with absolute coefficients ≥ 0.4 (Figure 3). As shown, we
found that glycerophospholipids were positively correlated with their lipid class and
sphingolipids. There, we found that GM3s and GlcCers had a positive relationship, whereas
only S1P (d20:1) had a negative correlation with GlcCer (d18:1/18:0). These findings
are in accordance with our results with HCA results, implying that S1P (d20:1) may
play a complementary role to other lipid species whose levels are significantly different.
Additionally, our analysis revealed that several differential lipid species were weakly
correlated to lipid data (Table S3). All PSs and several GlcCers were positively related to
ApoB, whereas S1P was negatively associated with ApoB (p < 0.05). Moreover, several
GlcCers had an inverse correlation with HDL.
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Figure 3. Differential lipid correlation network using the Spearman correlation coeffi-
cients. PE = phosphatidylethanolamine; PS = phosphatidylserine; PG = phosphatidylglycerol;
S1P = sphingosine−1−phosphate; GlcCer = glucosylceramide; GM3 = monosialo−dihexosyl gan-
glioside.

3.5. ROC Analysis and Lipid Biomarker Selection

We next performed a ROC curve analysis to estimate the diagnostic value of differential
lipid metabolites independently, as well as to screen for biomarkers. As shown in Table 2,
we found that five of the eighteen differentially expressed lipids had AUC > 0.8 in the
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univariate ROC analysis (Table 2). In addition to AUC, we considered the sum of sensitivity
and specificity. When we analyzed this, we detected three potential lipid biomarkers that
could be informative as a diagnostic for CAD in a population with elevated HDL-C levels
(Figure 4A). The AUCs of GM3 (d18:1/22:0), GM3 (d18:0/22:0), and PS (38:4) were 0.917,
0.870, and 0.823, respectively (Figure 4B–D). Furthermore, we established a biomarker
model with an AUC of 0.935 by combining the three identified biomarker candidates
(Figure 4E,F). Next, we used a linear support vector machine (SVM) as a classification
method with one hundred cross-validations, and we showed a greater diagnostic potency
than with individual lipid candidates (Figure 4F). Additionally, the average of the predicted
class probabilities of the model could accurately distinguish nineteen samples from the
twenty patients with CAD, and could discriminate sixteen individuals from the twenty
controls (Table S4).
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Figure 4. Selection and evaluation of lipid biomarker candidates of CAD with elevated HDL−C
levels. (A) Screening potential lipid biomarkers using the AUC (x−axis) and value of specificity
+ sensitivity (y−axis) calculated by the ROC analysis. Three colored circles represent that AUC of
differential lipids are greater than 0.8, and the sum of specificity and sensitivity are greater than
1.6 meanwhile. The white circles represent lipids with the sum of specificity and sensitivity less
than 1.6. (B−D) ROC curves and histograms of GM3 (d18:1/22:0), GM3 (d18:0/22:0), and PS (38:4).
(E) The ROC curve of the biomarker model generated by combining the three lipid biomarkers
based on linear SVM. (F) The mean predicted class probabilities for individual samples across the
one hundred cross−validations of the diagnostic model. GM3 = monosialo−dihexosyl ganglioside;
PS = phosphatidylserine; AUC = area under the curve; Sens. = sensitivity; Spec. = specificity.
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4. Discussion

High HDL-C levels have been documented to have an inverse association with CAD.
However, patients with CAD can have high HDL-C levels, which presents as a potential
confound. As such, the underlying mechanism of CAD incidence in individuals with
elevated HDL-C remains to be better understood. Here, we have explored the changes
in lipid composition in the context of high HDL-C in CAD using lipidomic methods to
address this issue. We compared four hundred fifty-eight lipid species obtained from a
study cohort comprising patients with CAD and a control group without CAD; however,
all of these patients had elevated HDL levels, because we reasoned that this model would
help us understand how changes to the lipidome might be relevant to CAD in patients
with elevated HDL-C levels. To our knowledge, this is the first study to explore the plasma
lipidome of individuals with high HDL-C levels.

Our study has led to the finding that levels of eighteen plasma lipid species are
significantly different between patients with CAD, and those without CAD. To reduce the
impact of drugs and comorbidities on lipidome, patients using statins within the past three
months before enrollment and those complicated with specific diseases were excluded,
since other medications affecting lipids are not commonly prescribed in clinical practice. In
addition, age and smoking status influence the concentrations and compositions of HDL.
Thus, we identified the differential lipids according to p values adjusted by age, smoking
status, and other potential confounding variables. Among differential lipid species, levels
of seven sphingolipids and ten glycerophospholipids were detected to be higher in patients
with CAD, while the level of one sphingolipid was lower in the CAD group. These CAD-
related sphingolipids corresponded to three subclasses of lipids: GlcCer, S1P, and GM3. In
contrast, the altered glycerophospholipids in the CAD group belonged to three categories of
lipids: PS, PG, and PE. Further clustering analysis drew the same conclusion. Considering
our findings more broadly, our results on the differential lipids detected in patients with
CAD and high HDL levels stand in contrast with findings from earlier studies. For example,
previous studies of the plasma lipidome between CAD patients and healthy controls
showed alterations in levels of Cers, Pes, phosphatidylinositols, phosphatidylcholines (PC),
lyso-PCs, and lyso-PEs [16,30]. Specific to those previous reports, changes in the levels of
Cer (d18:1/16:0), Cer (d18:1/18:0), and Cer (d18:1/24:1) were documented in patients with
CAD [30,31]; however, we did not find significant differences in these lipid species in our
study. Altogether, these findings could suggest that lipid species associated with CAD may
be particular to individuals with high HDL-C levels.

Among the glycerophospholipids related to CAD, levels of eight PSs were found to
be increased in CAD patients with high HDL levels. As a member of the cell membrane
phospholipids, PS plays an important role in cell apoptosis and blood clotting [32]. PS
is ordinarily asymmetrically localized to the internal layer of the plasma membrane. If
activated or injured, cells expose PS to the external leaflet of their plasmalemma and
form a pattern that is subsequently recognized by macrophages and antibodies [33]. PS
externalization of cardiomyocytes occurs after a short ischemic insult in a rabbit model and
is associated with apoptosis [34]. Accumulation of PS has been detected in atherosclerotic
plaques [35], and some PSs increase in patients with atherosclerosis [36]. The elevated PSs
in patients with CAD in our study may indicate that increased cell damage and apoptosis
occur in patients with CAD.

Another major dysregulated glycerophospholipid subclass identified between the
two groups is GlcCers. Our results showed that the levels of five GlcCers were higher in
patients with CAD and high HDL-C levels compared to controls. Currently, studies on the
role of GlcCer have reported different conclusions. Some studies showed that GlcCer has an
anticoagulant effect and may protect the cardiovascular system [37], and inhibiting mouse
GlcCer synthase can reduce atherosclerosis [38]. Additionally, GlcCers have been observed
to accumulate in atherosclerotic plaques [39], and GlcCers promote plaque inflammation
and vascular smooth muscle cell apoptosis in the formation of atherosclerosis [40]. Com-
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bined with previous findings, we conclude that GlcCer may have proatherogenic effects on
individuals with elevated HDL-C levels.

Of the sphingolipids identified, we found that S1P (d20:1) was the only lipid downreg-
ulated in the CAD group and negatively correlated with other altered lipid metabolites. It is
known that S1P is mainly carried by HDL in plasma and has a double effect on the pathogen-
esis of CAD [41]. Although some studies suggest that HDL-bound S1P has atherosclerotic
protective properties by promoting certain functions of HDL, such as anti-inflammation
and vasodilation [42], free S1P has been shown to have a pro-inflammatory effect and to be
harmful to cells of the vascular system [43]. In this study, plasma S1P species were mea-
sured without separately studying HDL-bound S1P and free S1P. Consistent with previous
results [43], our findings revealed a decrease in plasma S1P (d20:1) levels in patients with
CAD and high HDL-C levels. More importantly, we found no significant difference in high
HDL-C levels existed between the CAD and non-CAD groups, which suggests that the
decrease in S1P (d20:1) may be an independent protective factor for patients with CAD and
elevated HDL-C levels.

We determined that sphingolipid and glycerophospholipid metabolic pathways are
the most closely related to the pathogenesis of CAD, and these findings are consistent
with previous studies [44,45]. Aberrant sphingolipid metabolism is implicated in the
progression of atherosclerosis [45] and plaque inflammation [40]. Reduced sphingolipid
metabolism has been found to attenuate cell death and inflammation after myocardial
infarction [18]. Previous studies have suggested that the total plasma phospholipids of
patients with CAD and high HDL-C levels are lower than those of the control group, and
different phospholipids have not been analyzed [22]. Our study is consistent with these
previous studies, and we propose that the increase in glycerophospholipid levels may
be related to CAD. Additionally, glycerophospholipids have been reported as potential
immune-inflammatory mediators in CAD [18,19]. Indeed, glycerophospholipid metabolism
is one of the most severely disturbed pathways in the progression of atherosclerosis [45],
and our results are consistent with this. Hence, we hypothesize that even if the HDL-C level
is favorable, dysregulation of sphingolipid metabolism as well as glycerophospholipid
metabolism may serve to aggravate plaque progression through inflammation and other
mechanisms, leading to the onset of CAD.

The potential of plasma differential lipids as a prospective diagnostic biomarker for
CAD in a population with elevated HDL-C levels was examined in this study. Three
lipid species, GM3 (d18:1/22:0), GM3 (d18:0/22:0), and PS (38:4) were informative as
discriminatory markers compared with other lipid species, all of which were higher in
patients with CAD. Moreover, the model amalgamating the three selected lipids had greater
statistical power to differentiate between the two groups. Emerging studies have explored
the value of lipid biomarkers in CAD diagnosis and prognosis prediction [46,47]. Machine
learning revealed that alterations to serum sphingolipids are informative as biomarkers
of CAD and can be used to improve risk stratification [47]. Nevertheless, biomarkers of
prognostic value for CAD with high HDL-C concentrations remain to be validated. Our
study suggests that alterations to the HDL lipidome may be informative as a biomarker to
distinguish individuals with residual risk of CAD, even when HDL-C is elevated in these
patients [21]. Our findings remain to be validated through larger population studies.

We find that our study had several limitations. First, our study was exploratory work
in a single hospital with a limited sample size due to strict inclusion criteria (we enrolled
patients with high HDL-C levels without a history of diabetes mellitus and statin use).
The small sample size of the study reduced the likelihood of observing statistically sig-
nificant results in analysis, thus covering the true discrimination of lipidomics between
the two groups. Our findings should be validated independently in a multi-center study
with a larger sample size of patients with comorbidities. This study should also include
participants recruited from communities. Second, since the study was an observational
cross-sectional study, a causal relationship between the dysregulated plasma lipidome and
CAD could not be established. To establish causality, independent follow-up, and interven-
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tional studies should be conducted on the candidate lipids identified. Third, lipoprotein
lipidomics studies were carried out, which could have been more comprehensive. As
such, while our studies have led to the identification of putative markers for validation
in large-scale replication studies, our understanding of the precise mechanisms for lipid
dysregulation in CAD remains to be better explored since the subclasses, sizes and lipidome
of HDL were not evaluated. Further research to explore plasma and lipoprotein lipidomics,
and other biological and immunological characteristics in CAD patients with high HDL-C
levels will be needed to elucidate the exact mechanism of lipid dysregulation for this
condition. The subclasses and sizes of HDL should also be detected in future studies.
Fourth, lifestyle factors and nutritional habits, which might influence concentrations of
HDL-C, were not available in our data. Studies including this information are essential to
comprehensively understand the role of lipidome in CAD occurrence in the context of high
HDL-C levels. Finally, the cost of lipidome detection restricts its clinical use. Compared
with lipidome, lipid biomarkers could be helpful to clinical practice after being confirmed
by extensive studies. Similar studies with a selection of crucial lipids are essential to reduce
costs and wide usage.

5. Conclusions

Our study is the first to investigate the plasma lipidome of CAD in individuals with
favorable HDL-C levels. We found that lipidomic profiles were significantly different be-
tween patients with CAD and controls with elevated HDL-C levels. Differentially expressed
lipids were identified by multivariate and univariate analyses, which corresponded largely
to PS and GlcCer species. Such differences may be relevant to CAD through a mechanism
involving disruptions to sphingolipid and glycerophospholipid metabolism. Furthermore,
we have identified several putative lipid biomarkers as diagnostic indicators for CAD,
and these have the potential for validation as prognostic markers for this condition. Our
findings indicate that pathological lipid metabolism underlies CAD.
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//www.mdpi.com/article/10.3390/metabo13060695/s1, Figure S1: (A) Principal component analysis
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with statistical significance by Wilcoxon test; Table S3: Differential lipid species to distinguish the
High HDL CAD (+) group from the High HDL CAD (−) group based on normalized data. Table
S4: Spearman correlation coefficients between differential lipid species and lipid data; Table S5:
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