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Abstract: Astragalus glycyphyllos (Fabaceae) is used in the traditional medicine of many coun-
tries against hepatic and cardiac disorders. The plant contains mainly flavonoids and saponins.
From a defatted methanol extract from its overground parts, a new triterpenoid saponin, 3-O-[α-L-
rhamnopyranosyl-(1→2)]-β-D-xylopyranosyl]-24-O-α-L-arabinopyranosyl-3β,6α,16β,24(R),25-penta
hydroxy-20R-cycloartane, together with the rare saponin astrachrysoside A, were isolated using
various chromatography methods. The compounds were identified via extensive high resolution
electrospray ionisation mass spectrometry (HRESIMS) and NMR analyses. Both saponins were exam-
ined for their possible antioxidant and neuroprotective activity in three different in vitro models. Rat
brain synaptosomes, mitochondria, and microsomes were isolated via centrifugation using Percoll
gradient. They were treated with the compounds in three different concentrations alone, and in
combination with 6-hydroxydopamine or tert-butyl hydroperoxide as toxic agents. It was found
that the compounds had statistically significant dose-dependent in vitro protective activity on the
sub-cellular fractions. The compounds exhibited a weak inhibitory effect on the enzyme activity of
human recombinant monoamine oxidase type B (hMAO-B), compared to selegiline.

Keywords: cycloartane saponins; isolation; structural elucidation; neuroprotection; antioxidant
activity; hMAO-B-inhibition; brain synaptosomes; brain mitochondria; brain microsomes

1. Introduction

Astragalus glycyphyllos L., Fabaceae (Liquorice Milk-Vetch) is a perennial herbaceous
plant with deep roots, distributed in the mountainous regions of Bulgaria on stony places
in forest glades, forests, and scrub, up to 1750 m above sea level [1,2]. The species has been
widely used in the folk medicine of the country as an anti-inflammatory, antihypertensive,
and diuretic, etc. Its aerial parts can be used as an infusion for heart failure, kidney inflam-
mation, and calculus, and as an adjuvant treatment for cancer diseases, tachycardia, and
increased blood pressure, etc. [3]. Research on A. glycyphyllos has focused on its biologically
active secondary metabolites such as saponins and flavonoids [4]. A phytochemical investi-
gation of the overground parts of the species was initiated in Bulgaria 35 years ago and
led to the isolation of some sapogenins (soyasapogenol B and 3β,22β,24-trihydroxyolean-
12-en-19-one) after acid hydrolysis [5,6]. In later research, the saponins askendoside C
and F were isolated from the roots of the plant [7]. Recently, from its aerial parts, an
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epoxycycloartane saponin 17(R),20(R)-3β,6α,16β-trihydroxycycloartanyl-23-carboxilic acid
16-lactone 3-O-β-D-glucopyranoside [8] was isolated.

A defatted extract obtained from the aerial parts of the species had in vivo antioxidant
and hepatoprotective effects on Wistar rats with carbon tetrachloride-induced hepatotoxic-
ity. The effects of the extract, containing mainly flavonoids and saponins, were commensu-
rable to those of the classical hepatoprotector silymarin [9]. A purified saponin mixture
(PSM) resulting from the same extract displayed antiproliferative and cytotoxic effects
in vitro/in vivo on Graffi myeloid tumour cells and Graffi-tumour-bearing hamsters. Per
oral treatment with PSM extended survival and reduced tumour growth. A statistically
significant decrease in the proliferation and viability of the tumour cells was observed
after this administration. Concentration- and time-dependent effects were proved. The
antiproliferative effects were related to the induction of apoptosis by the saponins, which
was demonstrated using fluorescence microscopy [10]. Several compounds obtained from
the aerial parts, including the epoxycycloartane saponin, exhibited neuroprotective activity
on 6-hydroxydopamine-induced neurotoxicity in isolated rat brain synaptosomes. The
same saponin also displayed statistically significant hMAO-B-enzyme-inhibiting activity
compared to selegiline [8]. Based on these data, the saponins from this species could be
considered as perspective, possessing valuable pharmacological activities.

Neurodegenerative diseases, especially Parkinson’s disease, are a major health concern.
For the last two decades, they have established a new group of socially important ailments,
which have a major impact on our modern life [11]. In pharmacological research, in vitro
systems play an important role as the initial data collection tool. Their role in evaluating
the ability of a compound to influence the mechanism of some disorders is invaluable.
In vitro methods are fast and more acceptable than in vivo ones, especially in ethical terms.
Unfortunately, the extrapolation of these results to a living organism is not always possible
or adequate. For some pathogenetic mechanisms, their underlying factors are known. This
could be reproduced in an in vitro model to accumulate results commensurable to those
processes that are responsible for this effect in vivo [12,13]. Oxidative stress is considered
to be the leading risk factor resulting in neurodegeneration. Thus, neuroprotection is
in direct connection with antioxidant activity [11]. Sub-cellular fractions (synaptosomes,
mitochondria, and microsomes) are a convenient object for the investigation of neuronal
damage and its mechanisms, as included in [14]. The availability of specific enzymes
(incl. human recombinant ones) capable of metabolizing neurotransmitters is another
advantage of today’s in vitro methods. It is known that human monoamine oxidase type
B is responsible for metabolizing dopamine, so inhibiting it is a way of increasing the
depleted dopamine in conditions such as Parkinson’s [15].

In this continuation of our research, the aim was to isolate more polar and previously
unidentified saponins from Astragalus glycyphyllos and to evaluate their possible antioxidant,
neuroprotective, and hMAO-B-inhibiting effects in in vitro models.

2. Materials and Methods
2.1. General

AUTOPOL VI (Rudolph Research Analytical) was used to measure optical rotation.
NMR spectra were recorded with a 700 MHz Bruker Avance II NMR spectrometer (Bruker,
Rheinstetten, Germany; software MNova, Mestrelab Research, Santiago de Compostela,
Spain) equipped with a cryo-probe. For both compounds, S1 and S2, a data set consisting of
1D proton and carbon experiments and 2D COSY, HSQC, HMBC, and ROESY experiments
was acquired at 298 K in methanol-d4; in addition, a second data set for S2 was recorded at
the same temperature in pyridine-d5.

A UHPLC system (Dionex UltiMate 3000 RSLC, ThermoFisher Scientific, Bremen,
Germany) connected to a Q Exactive Plus Orbitrap mass spectrometer with a heated
electrospray ionisation (HESI) ion source (ThermoFisher Scientific, Bremen, Germany) was
used. The parameters of the full scan MS were in the resolution of 70,000 (@200 m/z),
3e6AGC target, 100 ms max IT, and 250 to 1700 m/z scan range. The ion source operated
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at −2.5 or +3.5 kV and 320 ◦C (capillary and probe), 38 arbitrary units (a.u., as by the
software Extactive Tune, ThermoFisher Scientific, Bremen, Germany) of sheath gas, and
12 a.u. of auxiliary gas (both N2); an S-Lens RF level 50.0. A Kromasil C18 column (1.9 µm,
2.1 × 50 mm, Akzo Nobel, Bohus, Sweden) was used, maintained at 40 ◦C, and eluted with
H2O + 0.1% HCOOH (A) and MeCN + 0.1% HCOOH (B) (0.3 mL/min). The gradient
program was for 0.5 min 10% B, for 7 min increasing to 30% B, for 1.5 min 30% B (isocratic),
for 3.5 min increasing to 95% B, for 2 min with 95% B (isocratic), and for 0.1 min decreasing
to 10% B. Diaion HP-20 resin was purchased from Supelco (Bellefonte, PA, USA). Silica
gel cartridges (FlashPure® 40 µm, irregular, Buchi, Flawil, Switzerland) were used on
a Reveleris X2 flash chromatograph (Buchi, Flawil, Switzerland). Sephadex LH-20 was
obtained from Supelco (Bellefonte, PA, USA). TLC was performed on Kieselgel F254 sheets
(Merck, Darmstadt, Germany), eluted with EtOAc/HCOOH/AcOH/H2O (32/3/2/6). The
saponins were visualised using p-anisaldehyde/conc. H2SO4 spraying and heating for
10 min at 104 ◦C were performed.

The determination of the absolute configuration of the monosaccharides forming
the sugar chains was performed using a known GC-MS method [16]. Briefly, after acid
hydrolysis, (2R)-2-butyl glycosides were prepared. Each compound (2 mg) was heated
with 5.5 mL of H2O, 3.5 mL of conc. AcOH, and 1 mL of conc. HCl on a water bath at
100 ◦C under a reflux condenser for 2 h. The hydrolysate was extracted with EtOAc and the
aqueous residue was evaporated to dryness. To the residue, 0.45 mL of (2R)-2-BuOH and
0.1 mL of conc. HCl were added and heated at 100 ◦C for 15 h. The mixture was evaporated
under N2, and then 100 µL of Sigma-Sil-A (Sigma-Aldrich, Schnelldorf, Germany) was
added to prepare TMS derivatives. The standard compounds (L-rhamnose, D-xylose, and
L-arabinose, Sigma Aldrich, Schnelldorf, Germany) were treated in the same manner. The
silated derivatives of the (2R)-2-butyl glycosides formed were analysed using GC-MS. For
the GC-MS analysis, an Exactive Orbitrap GC-MS system (ThermoFisher Scientific, Bremen,
Germany) was used. It was operated at 70 eV, with a 230 ◦C ion source, 280 ◦C interface,
270 ◦C injector temperature, and 1 µL injection volume (split, 20:1 ratio). A capillary column
(fused silica, 5% phenyl/95% methyl polysiloxane, HP-5MS 30 m × 250 µm × 0.25 µm,
Agilent, Santa Clara, CA, USA) was used. The temperature program was initially 100 ◦C
at 3 ◦C/min to 270 ◦C. Helium 5.0 (1.5 mL/min) was the carrier gas. The data (50–450 u)
were collected with Xcalibur v. 4 (ThermoFisher Scientific, Bremen, Germany).

All other chemicals and solvents were obtained from Sigma-Aldrich (Schnelldorf, Germany).

2.2. Extraction and Isolation of Compounds from Plant Material

The A. glycyphyllos overground parts were harvested in July 2020 from Vitosha Mt.,
Bulgaria. Prof. D. Pavlova identified the plant, and a specimen is kept in the Herbarium of
the Faculty of Biology, Sofia University (S0 107 613). The air-dried plant material (200 g)
was powdered (3 mm) and then extracted with dichloromethane (6× 2 L) using percolation
to remove the lipophilic constituents. The defatted plant substance was then aired and
exhaustively extracted with 80% MeOH (24 × 3 L) using percolation. The obtained extract
was filtered, concentrated under vacuum, and then lyophilized to produce a dry extract
(42 g). The extract was separated over a Diaion HP-20 (4.7 × 45) column, eluting with
H2O: MeOH (0→100%). Seven main fractions were collected (I-VII). After the TLC analysis,
fractions VI and VII were found to be rich in saponins. Fraction VI was chromatographed
with CH2Cl2:MeOH:H2O (step gradient 8:2:0.2→7:3:0.3) on a silica gel cartridge using flash
chromatography to obtain 21 subfractions. Subfraction 13, which contained a main com-
pound (TLC), was further separated with CH2Cl2:MeOH:H2O (step gradient 9:1:0→5:6:1)
on a silica gel cartridge using flash chromatography, affording compound S1. The saponin
was further purified over Sephadex LH-20 (eluent MeOH) to obtain 33 mg of it. Frac-
tion VII, containing another saponin (TLC analysis), was separated two subsequent times
using flash chromatography on a silica gel cartridge with CH2Cl2:MeOH:H2O (step gra-
dient 8:2:0.1→5:5:0.5), to obtain compound S2. The final purification of the saponin over
Sephadex LH-20 (eluent MeOH) provided 20 mg of S2.
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3-O-[α-L-rhamnopyranosyl-(1→2)]-β-D-xylopyranosyl]-24-O-α-L-arabinopyranosyl-3β,6α,
16β,24(R),25-pentahydroxy-20R-cycloartane (S1): a white amorphous powder (MeOH); C46H78O17;
1H NMR (methanol-d4, 700 MHz), see Table 1, Figures S1–S3; 13C NMR (methanol-d4,
175 MHz), see Table 1, Figure S4; HREIMS, m/z 901.5186 [M − H]− (calcd. for C46H77O17,
901.5160), m/z 947.5242 [M + HCOO]− (calcd. for C47H79O19, 947.5215), Figure S28; m/z
903.5323 [M + H]+ (calcd. for C46H79O17, 903.5317), m/z 925.5142 [M + Na]+ (calcd. for
C46H78O17Na, 925.5136), Figure S29; [α]D

20 = −1.0546 (c 0.1, MeOH).

Table 1. 1H NMR spectroscopic data (700 MHz, J in Hz) and 13C NMR spectroscopic data (175 MHz)
of S1 in methanol-d4.

Position δC [ppm], Type δH [ppm], (J in Hz)

1 33.5, CH2
1.54, t (13.0)

1.21
2 30.7, CH2

1.91, m
1.66

3 89.3, CH 3.18, d (~13)
4 43.2, C -
5 54.8, CH 1.35, d (9.9)
6 69.6, CH 3.44, m
7 38.8, CH2

1.33
1.45

8 48.8, CH 1.79, dd (12.0, 4.2)
9 22.1, C -
10 30.4, C -
11 27.0, CH2 1.191.97
12 33.9, CH2

1.66
1.60, td (12.0, 3.2)

13 46.4, C -
14 47.4, C -
15 48.8, CH2

1.99
1.38

16 73.1, CH 4.40, m
17 58.1, CH 1.66
18 19.2, CH3 1.13 s
19 31.9, CH2

0.37, d (4.0)
0.52, d (4.0)

20 32.5, CH 1.75
21 18.7, CH3 0.93, d (6.5)
22 34.6, CH2

2.08, brt (12.5)
0.96

23 30.4, CH2 1.701.25
24 92.5, CH 3.30
25 74.9, C -
26 26.4, CH3 1.15, s
27 24.0, CH3 1.18, s
28 16.8, CH3 1.02, s
29 28.6, CH3 1.28, s
30 20.4, CH3

1.54, t (13.0)
1.21

Xyl-I
1 106.2, CH 4.37, d (~6.9)
2 78.9, CH 3.42
3 78.8, CH 3.42
4 71.6, CH 3.47
5 66.5, CH2

3.17, t (10.6)
3.84, dd (11.0, 5.3)

Rha-II
1 102.1, CH 5.33, brs
2 72.2, CH 3.94, brs
3 72.2, CH 3.74, dd (9.3, 2.8)
4 74.0, CH 3.38, t (9.6)
5 70.1, CH 3.98, dq (9.4, 6.1)
6 18.1, CH3 1.23, d (6.3)

Ara-III
1 107.4, CH 4.38, d (7.5)
2 73.7, CH 3.58
3 75.0, CH 3.49
4 70.2, CH 3.78, brs
5 68.0, CH2

3.56
3.87, dd (12.5, 1.8)
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2.3. In Vitro Pharmacological Evaluation

Twenty Wistar rats (male, 200–250 g) were purchased from the National Breeding
Centre of the Bulgarian Academy of Sciences in Slivnitsa, Bulgaria. They were kept in
Plexiglas cells (3 in each) and a seven-day acclimatization period was allowed before the
commencement of the experiment. A veterinary physician monitored the animals’ health
daily. The rats were given standardized pellets chew and drinking water ad libitum. The
husbandry conditions in the Vivarium of the Faculty of Pharmacy at the Medical University
of Sofia were checked by the Bulgarian Food Safety Agency at the Bulgarian Ministry of
Foods and Agriculture. The experiment was allowed by permission № 200/2021 from the
same agency. The University Ethical Commission (KENIMUS) gave ethical clearance for
the experiment with the protocol 7338/11.2021.

For the isolation of the sub-cellular structures, the rats were decapitated, the cranial
cavities were opened, and the brains were removed and stored over ice. The organs were
pooled and homogenised using a Teflon pestle with the appropriate buffers, as described
in the procedures below.

The synaptosomes and brain mitochondria were isolated using multiple differential
centrifugations with the methods of [17,18]. Two buffers—A (HEPES 5 mM and Sucrose
0.32 M) and B (NaCl 290 mM, MgCl2.2H2O 0.95 mM, KCl 10 mM, CaCl2.2H2O 2.4 mM,
NaH2PO4 2.1 mM, HEPES 44 mM, and D-Glucose 13 mM)—were prepared. Buffer A
was used to prepare the brain homogenate. First, the homogenate was centrifuged twice
at 1000× g for 10 min at 4 ◦C, after which, the supernatants of the two centrifuges were
combined and centrifuged three times at 10,000× g for 20 min at 4 ◦C. The isolation of
the synaptosomes and mitochondria was accomplished using Percoll. First, a 90% Per-
coll stock solution was prepared and, after that, 16% and 10% solutions were prepared.
Amounts of 4 mL of 16% and 10% Percoll were carefully applied in layers. At the end,
4 mL of 7.5% Percoll was added to the precipitate from the last centrifugation. The tubes
were centrifuged at 15,000× g for 20 min at 4 ◦C. After this centrifugation, three layers
were formed: the lower, which contained mitochondria; the medium (between 16% and
10% Percoll), containing synaptosomes; and the top, lipids. Using a Pasteur pipette, we
removed the middle and bottom layers. Each was centrifuged at 10,000× g for 20 min at
4 ◦C with buffer B. The resulting synaptosomes and mitochondria were diluted with buffer
B to a protein content of 0.1 mg/mL. After incubation with the test substances (saponins)
and 6-OHDA, the synaptosomes were centrifuged three times at 15,000× g for 1 min. The
synaptosomal viability was determined using an MTT test with the method of [19]. After
incubation with the substances (saponins), the synaptosomes were centrifuged at 400× g
for 3 min. The precipitate was treated with 5% trichloroacetic acid, vortexed, and left on ice
for 10 min, then centrifuged at 8000× g for 10 min. The supernatant was frozen at −20 ◦C.
Immediately prior to their determination, each sample was neutralized with 5 M NaOH.
The GSH levels were determined using Elmman’s reagent (DTNB) spectrophotometrically
at 412 nm with methods of [20,21]. For the isolation of the brain microsomes, the brain was
homogenized in 9 volumes of 0.1 M Tris buffer containing 0.1 mM Dithiothreitol, 0.1 mM
Phenylmethylsulfonyl fluoride, 0.2 mM EDTA, 1.15% KCl, and 20% (v/v) glycerol (pH 7.4).
The resulting homogenate was centrifuged twice at 17,000× g for 30 min. The supernatants
from the two centrifuges were combined and centrifuged twice at 100,000× g for 1 h. The
pellet was frozen in 0.1 M Tris buffer at −20 ◦C [22]. The determination of MDA was
performed spectrophotometrically at a wavelength of 535 nm using methods of [21,23]. A
molar extinction coefficient of 1.56 × 105 M−1 cm−1 was used for the calculation [24].

The examined compounds were tested for their possible inhibitory activity on the
hMAO-B enzyme (commercially available) using the Amplex UltraRed reagent fluorometric
method [25] with small modifications [15].
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Salts to prepare the buffer, 2,2′-dinitro-5,5′-dithiodibenzoic acid, reduced glutathione
(GSH), oxidized glutathione (GSSG), human recombinant MAO type B enzyme, tyramine
HCl, and horseradish peroxidase, as well as other reagents, were used for the pharma-
cological study and obtained from Sigma-Aldrich (Schnelldorf, Germany). The Amplex
UltraRed kit was from Invitrogen (Thermo Scientific, Karlsruhe, Germany)

The statistical analysis of the results was performed using the statistical programme
“Medcalc” v. 18 (MedCalc Software Ltd., Ostend, Belgium). Each experiment was per-
formed in triplicate, and the values are represented as the mean of three (n = 3). A
Mann–Whitney non-parametric test was used to examine the statistical significance of the
results. When p < 0.05; p < 0.01; or p < 0.001, the differences were accepted as significant.

3. Results
3.1. Identification of the Compounds

Compound S1 was isolated as a white amorphous powder (33 mg). In the negative
HRESIMS spectrum (Figures S28 and S29) of the compound, an ion [M − H]− at m/z
901.5187 was observed, corresponding to the molecular formula C46H78O17. The 1H and
13C NMR (Table 1, Table S1, Figures S1–S10) and HSQC spectrum pointed to a triterpene
of the cycloartane-type with three sugars. The number of methine groups attached to the
oxygen atoms (from –OH) was higher than expected for the three sugars, indicating the
presence of at least five oxygenated positions in the aglycone. The complete resonance
assignments (Table 1) led to 3,6,16,20,24,25-hexahydroxycycloartane as the aglycone. A
list of all the essential HMBC correlations and ROESY cross-peaks are provided in the
supporting information (Table S1). From the ROESY cross-peaks, it was deduced that
H-3, H-5, H-30, H-16, and H-17 were on one face of the molecule, while H-6, H-8, H-
18, H-19, and H-18 were on the opposite. The positions C-3, C-6, C-16, C-24, and C-25
were oxidized. Hence, the aglycone of compound S1 was assigned as 3β,6α,16β,24,25-
hexahydroxycycloartane. The aglycone was bound to three sugar moieties. After the
complete resonance assignments, an analysis of the coupling patterns, and a comparison
of their carbon resonances with the literature values, the three sugars were identified
as β-xylose, α-rhamnose, and α-arabinose. Two of those, the xylose and the rhamnose,
had identical resonance values and HMBC correlations as observed for astrachrysoside A
(S2) in methanol-d4 (Tables 1 and S2); therefore, both S1 and S2 had the same saccharide
structure attached to C-3. A more detailed discussion was conducted for compound S2 (see
below). The remaining sugar moiety, an α-arabinose, was attached to the C-24 position of
the aglycone according to the observed HMBC correlation for its anomeric proton.

NMR data from various Astragalus species were available for the same type of gly-
cosylated side chain with a different configuration at the chiral carbon C-24, e.g., with
a 24S-configuration from A. brachypterus [25] and a 24R-configuration from A. stereoca-
lyx [26]. A comparison of the 13C-NMR shift values (Table 2) clearly indicated that, in
compound S1, the position C-24 had an R-configuration. Additionally, a GC-MS anal-
ysis of the sugars after the preparation of the (2R)-butyl glycosides was performed to
elucidate their absolute configuration. After the GC-MS analysis of the sililated (2R)-
butylglycosides, it was found that S1 gave peaks at tR = 24.97, 26.68 (L-Rha); 29.81, 31.42
(D-Xyl); and 24.62, 26.68 min (L-Ara), respectively (Figure S32) [16]. On basis of these
spectroscopic data and the result of the sugar hydrolysis, the structure of S1 was es-
tablished as 3-O-[α-L-rhamnopyranosyl-(1→2)]-β-D-xylopyranosyl]-24-O-α-L-arabinosyl-
3β,6α,16β,24,25-pentahydroxy-20R,24R-cycloartane (Figure 1). To our knowledge, this is
the first report on this compound.
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Table 2. Comparison of 13C chemical shifts of S1 with data of glycosylated sidechains which have
different configuration at C-24. All data were recorded in methanol-d4.

Atom
S1 24 S

A. brachypterus [25]
24 R

A. stereocalyx [26]

δC [ppm] δC [ppm] δC [ppm]

C-21 18.7 17.5 18.2
C-20 32.5 30.9 32.4
C-22 34.6 33.0 34.2
C-23 30.4 29.4 30.1
C-24 92.5 89.7 91.8
C-25 74.9 73.5 75.0
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Figure 1. Structure of S1.

Compound S2 was isolated as a white amorphous powder (20 mg) and had [α]D
20

−2.0698 (c 0.1, MeOH). It was identified via HRESIMS (Figures S30 and S31), 1D, 2D NMR
experiments (Figures S11–S27), a GC-MS analysis of the absolute configuration of its sugar
moieties (Figure S33) [16], and a comparison to the literature as 3-O-[α-L-rhamnopyranosyl-
(1→2)]-β-D-xylopyranosyl]-cycloastragenol (astrachrysoside A) [27] (Figure 2). A major
issue of NMR data recorded in methanol-d4 is that the methine groups C-2 and C-3 of
the xylose in compound S2 have the same values for their carbon and proton resonances,
meaning that the point of attachment of the rhamnose cannot be determined via HMBC or
NOESY experiments. To circumvent this issue, a second NMR data set of S2 was recorded in
pyridine-d5 and all the resonances were assigned (Table S2). In pyridine, the resonances at
C-2 and C-3 in the xylose were no longer identical, and the anomeric proton of the rhamnose
gave an unambiguous HMBC correlation to C-2 of the xylose (Figure S18), allowing for a
confirmation of the sugar substructure via NMR.
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3.2. Pharmacological Investigation

Both compounds were tested in vitro for their possible antioxidant and neuroprotec-
tive activity in rat brain synaptosomes, mitochondria, and microsomes.

6-Hydroxydopamine (6-OHDA, 150 µM, administered alone) showed statistically sig-
nificant neurotoxic effects. It reduced the synaptosomal viability and GSH levels by 55% and
50%, respectively, compared to the non-treated synaptosomes (control) (Figures 3 and 4).
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In the conditions of 6-OHDA-induced oxidative stress, S1 and S2 exhibited well-
pronounced, concentration-dependent neuroprotective and antioxidant effects, preserving



Metabolites 2023, 13, 857 9 of 14

the synaptosomal viability and GSH levels in all the tested concentrations. At the highest
tested concentration (50 µM), both S1 and S2 had the strongest effects on this model
(Figures 3 and 4).

Administered alone, both saponins did not exhibit a statistically significant neurotoxic
effect on the mitochondria. Tert-butyl hydroperoxide (t-BuOOH), applied alone, reduced
the GSH levels by 50% and increased the MDA production by 152% compared to the
untreated mitochondria (control), thus exhibiting a neurotoxic effect (Figures 5 and 6).
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Both saponins exhibited a pronounced, concentration-dependent neuroprotective
and antioxidant effect on the isolated brain mitochondria in the tert-butyl hydroperoxide-
induced oxidative stress model (Figures 5 and 6). The highest tested concentration (50 µM)
was again the most effective. Also noteworthy was that the effect in this model on the level
of GSH was more pronounced for S2 than S1. For the MDA levels, this was the opposite.

Administered alone, the saponins did not exhibit a statistically significant pro-oxidant
effect on the isolated rat brain microsomes. In the conditions of non-enzymatic lipid
peroxidation and at the same concentrations (1 µM, 10 µM, and 50 µM), a significant
decrease in the MDA production (by 124%) was observed compared to the non-treated
microsomes (control) (Figure 7).
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Figure 7. Effects of S1 and S2 on MDA production in isolated brain microsomes, administered
alone and in a model of non-enzyme-induced lipid peroxidation; *** p < 0.001 vs. control (untreated
microsomes); +++ p < 0.01 vs. Fe/AA.

On the activity of the human recombinant MAO-B enzyme (hMAO-B), the two
saponins revealed a weak inhibition. S1 inhibited the enzyme activity by 20%, and S2
by 22%, while selegiline, a classical MAO-B inhibitor, decreased the enzyme activity by
55% compared to the control (pure enzyme) (Figure 8).

Metabolites 2023, 13, x FOR PEER REVIEW 14 of 18 
 

 

 

 
Figure 8. Effects of S1 and S2 on the hMAO-B enzyme activity, administered alone; * p < 0.05; *** p 
< 0.001 vs. control (untreated hMAO-B) 

4. Discussion 
Cycloartanes are considered to be the predominant type of saponins for Astragalus 

species, found in the Russian flora. In Bulgaria, these taxa produce mainly oleanane-type 
saponins [4]. Our studies on the phytochemistry of A. glycyphyllos grown in Bulgaria 
showed that this plant also contains cycloartane saponins. Two of them, isolated from the 
aerial parts of this species, are new natural compounds—17(R),20(R)-3β,6α,16β-
trihydroxycycloartanyl-23-carboxilic acid 16-lactone 3-O-β-D-glucopyranoside [8] and the 
present 3-O-[α-rhamnopyranosyl-(1→2)]-β-xylopyranosyl]-24-O-α-arabinopyranosyl-
3β,6α,16β,24(R),25-pentahydroxy-20R-cycloartane (S1), alongside the rare 
astrachrysoside A (S2). Saponin S2 had previously been identified in A. wiedemmanianus 
[26], A. trigonus [27], and A. chrysopterus [28]. Nevertheless, this is the first instance of its 
isolation from a representative of the Bulgarian flora. Considering that the genus is 
represented by more than 3500 species worldwide [29], this saponin is rarely occurring. 
The significant structural difference between the novel saponin S1 and astrachrysoside A 
is the sapogenin—cycloasgenin C of S1 and cycloastragenol of S2. Compound S1 has an 
aliphphatic side chain attached to C-20, unlike the substituent at C-20 of astrachrysoside 
A, which is a furan ring. In addition, the available –OH group at C-24 is glycosylated (L-
Ara) in compound S1. The saponin S1 has a structural similarity with the triperpenoids 
previously isolated from the roots of the species, i.e., askendosides C and F—the aglycone 
is the same and, like askendoside F, is a bisdesmoside [7]. The differences are the type of 
sugars and the attachment position.  

In vitro systems have an important role in experimental toxicology for studying the 
biotransformation of substances and establishing the mechanisms by which oxidative 
stress develops. In addition, they are widely used to study the protective properties of 
natural compounds. The 6-hydroxydopamine model in isolated brain synaptosomes is a 
suitable in vitro subcellular system for studying the processes underlying the 
pathogenesis of degenerative diseases of the nervous system (including Parkinson’s 
disease). The mechanism by which 6-OHDA neurotoxicity develops is a direct result of its 
metabolism in neuronal mitochondria. It consists of the production of reactive oxygen 
species, among other free radicals, and the destruction of nerve endings is thought to be 
primarily due to the oxidation of 6-OHDA to p-quinone, or free radical or superoxide 
anion production. It is these reactive intermediates that covalently interact with the nerve 
terminal, permanently inactivating it [30]. In the synaptosomes, prepared from rat brains 
with Percoll gradient, both saponins had statistically significant neuroprotective and 
antioxidant effects in a model of 6-OHDA-induced oxidative stress. This could be 

Figure 8. Effects of S1 and S2 on the hMAO-B enzyme activity, administered alone; * p < 0.05;
*** p < 0.001 vs. control (untreated hMAO-B).



Metabolites 2023, 13, 857 11 of 14

4. Discussion

Cycloartanes are considered to be the predominant type of saponins for Astragalus
species, found in the Russian flora. In Bulgaria, these taxa produce mainly oleanane-
type saponins [4]. Our studies on the phytochemistry of A. glycyphyllos grown in Bul-
garia showed that this plant also contains cycloartane saponins. Two of them, isolated
from the aerial parts of this species, are new natural compounds—17(R),20(R)-3β,6α,16β-
trihydroxycycloartanyl-23-carboxilic acid 16-lactone 3-O-β-D-glucopyranoside [8] and
the present 3-O-[α-rhamnopyranosyl-(1→2)]-β-xylopyranosyl]-24-O-α-arabinopyranosyl-
3β,6α,16β,24(R),25-pentahydroxy-20R-cycloartane (S1), alongside the rare astrachryso-
side A (S2). Saponin S2 had previously been identified in A. wiedemmanianus [26], A.
trigonus [27], and A. chrysopterus [28]. Nevertheless, this is the first instance of its isolation
from a representative of the Bulgarian flora. Considering that the genus is represented by
more than 3500 species worldwide [29], this saponin is rarely occurring. The significant
structural difference between the novel saponin S1 and astrachrysoside A is the sapogenin—
cycloasgenin C of S1 and cycloastragenol of S2. Compound S1 has an aliphphatic side
chain attached to C-20, unlike the substituent at C-20 of astrachrysoside A, which is a furan
ring. In addition, the available –OH group at C-24 is glycosylated (L-Ara) in compound
S1. The saponin S1 has a structural similarity with the triperpenoids previously isolated
from the roots of the species, i.e., askendosides C and F—the aglycone is the same and,
like askendoside F, is a bisdesmoside [7]. The differences are the type of sugars and the
attachment position.

In vitro systems have an important role in experimental toxicology for studying the
biotransformation of substances and establishing the mechanisms by which oxidative
stress develops. In addition, they are widely used to study the protective properties of
natural compounds. The 6-hydroxydopamine model in isolated brain synaptosomes is a
suitable in vitro subcellular system for studying the processes underlying the pathogenesis
of degenerative diseases of the nervous system (including Parkinson’s disease). The
mechanism by which 6-OHDA neurotoxicity develops is a direct result of its metabolism
in neuronal mitochondria. It consists of the production of reactive oxygen species, among
other free radicals, and the destruction of nerve endings is thought to be primarily due to
the oxidation of 6-OHDA to p-quinone, or free radical or superoxide anion production. It is
these reactive intermediates that covalently interact with the nerve terminal, permanently
inactivating it [30]. In the synaptosomes, prepared from rat brains with Percoll gradient,
both saponins had statistically significant neuroprotective and antioxidant effects in a
model of 6-OHDA-induced oxidative stress. This could be connected with their free-
radical-scavenging potential, resulting in an elimination of the superoxide anion produced
by the p-quinone [30].

There are other reports on the neuroprotective effects of triterpene saponins. Platy-
codin A, isolated from Platycodi radix, showed neuroprotective activities, increasing the
cell viability by about 50% in a model of glutamate-induced toxicity [31]. Several tetracyclic
triterpenoid saponins (at a concentration of 10 µM), isolated from Ginseng roots, showed
neuroprotective effects on human neuroblastoma SH-SY5Y cells with H2O2-induced ox-
idative stress [32]. In vitro and in vivo studies have indicated that NgR1/RhoA/ROCK2
pathway expression regulation is the leading mechanism of action of these saponins [33].
The results obtained correlate with what is known in the literature about the protective
effects of other saponins obtained from the species from the genus Astragalus. Other
cycloartanes, such as cycloastragenol and astragaloside IV, have been proven as neuropro-
tectors [34,35]. It was found that astragaloside IV (100 µM) revealed neuroprotective effects
in neuronal cell cultures treated with 6-OHDA [36], the same in vitro model of Parkinson’s
disease as that used in the present study. In a previous report, a cycloartane saponin,
isolated from the aerial parts of A. glycyphyllos, displayed a strong neuroprotective effect on
the same model at 100 µM [8]. A similar effect was proven for yet another oleanane-type
saponin (100 µM) from A. glycyphylloides [37].
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A suitable model of neuronal oxidative stress is t-BuOOH, which has a mitochondrial
and microsomal metabolism, leading to free radicals formed through several steps. In
microsomes, when NADPH is absent, the single-electron oxidation of peroxyl radicals
occurs. Single-electron reduction to alkoxyl radicals happens in the presence of NADPH.
In cells and isolated mitochondria, t-BuOOH forms, via β-cleavage, a methyl radical. All
these radicals unlock the process of lipid peroxidation and reduce the level of reduced glu-
tathione [38,39]. In the conditions of oxidative stress induced by t-BuOOH, both saponins
tested exhibited statistically significant, concentration-dependent neuroprotective and an-
tioxidant effects. These effects are most likely associated with the metabolism of t-BuOOH
at the microsomal and mitochondrial levels, by preserving the reduced glutathione (cell
protector) and possible free radical scavenging [38].

The human recombinant MAO-B enzyme is a convenient way of detecting possible
inhibitors. The results observed for the isolated saponins were correlated with the data of a
previous study on the inhibitory effect of an oleanane saponin from A. glycyphylloides [37]
and a cycloartane saponin from A. glycyphyllos [8], showing again weak inhibitory effects
on the hMAO-B enzyme activity.

These findings suggest that the protective effects on synaptosomes, brain mitochondria,
and microsomes are not directly linked to direct hMAO-B inhibition. More likely, they are
an indirect result of the weak radical-scavenging effects of the saponins.

5. Conclusions

From the aerial parts of A. glycyphyllos, two cycloartane-type triterpenpoid saponins, 3-
O-[α-L-rhamnopyranosyl-(1→2)]-β-D-xylopyranosyl]-24-O-α-L-arabinopyranosyl-3β,6α,
16β,24(R),25-pentahydroxycycloartane and astrachrysoside A, were isolated via various
chromatographic techniques. They were structurally elucidated using extensive HRESIMS,
NMR, and GC-MS experiments. Both compounds displayed significant in vitro neuro-
protective and antioxidant effects in a 6-OHDA-induced neurotoxicity model on isolated
brain synaptosomes, t-BuOOH-induced oxidative stress in brain mitochondria, and on
isolated rat brain microsomes, in a model of lipid peroxidation (non-enzyme-induced). The
observed effects were concentration-dependant. Both saponins revealed a weak inhibitory
effect on the activity of hMAO-B in comparison with selegiline. These results suggest that
A. glycyphyllos saponins could be considered as perspective for future research.
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S2; Figure S23: 13C-NMR spectrum (175 MHz, methanol-d4) of compound S2; Figure S24: COSY
spectrum (700 MHz, methanol-d4) of compound S2; Figure S25: HSQC spectrum (700/175 MHz,
methanol-d4) of compound S2; Figure S26: HMBC spectrum (700/175 MHz, methanol-d4) of com-
pound S2; Figure S27: ROESY spectrum (700 MHz, pyridine-d5) of compound S2; Figure S28: HRES-
IMS of S1 in negative mode; Figure S29: HRESIMS of S1 in positive mode; Figure S30: HRESIMS of
S2 in negative mode; Figure S31: HRESIMS of S2 in positive mode. Figure S32: GC chromatogram of
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