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Abstract: This study aimed to investigate metabolic changes following the acquisition of resistance
to doxorubicin in the triple-negative breast cancer (TNBC) cell line MDA-MB-231. Two drug-resistant
cell lines, DOX-RES-50 and DOX-RES-100, were generated by treating MDA-MB-231 cells with
doxorubicin for 24 h and allowing them to recover for six weeks. Both drug-resistant cell lines demon-
strated an increase in doxorubicin IC50 values, indicating acquired drug resistance. Metabolomics
analysis showed clear separation between the parental MDA-MB-231 cell line and the drug-resistant
cell lines. Pathway analysis revealed that arginine and proline metabolism, glutathione metabolism,
and beta-alanine metabolism were significantly perturbed in the drug-resistant cell lines compared
to the parental cell line. After matching signals to an in-house library of reference standards, signif-
icant decreases in short- and medium-chain acylcarnitines and significant increases in long-chain
acylcarnitines, 5-oxoproline, and 7-ketodeoxycholic acid were observed in the resistant cell lines as
compared to the parental MDA-MB-231 cell line. In addition to baseline metabolic differences, we
also investigated differences in metabolic responses in resistant cell lines upon a second exposure
at multiple concentrations. Results indicate that whereas the parental MDA-MB-231 cell line had
many metabolites that responded to doxorubicin in a dose-dependent manner, the two resistant
cell lines lost a dose-dependent response for the majority of these metabolites. The study’s findings
provide insight into how metabolism is altered during the acquisition of resistance in TNBC cells
and how the metabolic response to doxorubicin changes upon repeated treatment. This information
can potentially identify novel targets to prevent or reverse multi-drug resistance in TNBC, and also
demonstrate the usefulness of metabolomics technology in identifying new mechanisms of drug
resistance in cancer and potential drug targets.
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1. Introduction

In the United States, breast cancer is the most diagnosed cancer for women (excluding
skin cancers) and is the second leading cause of cancer deaths in women [1]. One subtype of
breast cancers—triple-negative breast cancer (TNBC)—accounts for approximately 10–15%
of all breast cancer cases and carries the worst prognosis of hormone-receptor-positive
breast cancers [2]. While there are several treatment options available for TNBC, drug
resistance remains a significant challenge in managing this disease. Chemotherapy remains
the cornerstone of TNBC treatment and TNBCs can be inherently resistant to drug therapy
(intrinsic resistance), or they can become resistant following an initial exposure to the drug
(acquired resistance) [3]. In general, the initial response of TNBCs to chemotherapy is
favorable; however, the majority of patients will relapse with disease that is drug-resistant
and prone to metastasis, which eventually becomes fatal [4]. One of the major causes of drug
resistance in breast cancer is the genetic diversity of cancer cells. Cancer cells can mutate
and adapt to their environment, which can make them resistant to chemotherapies [5].
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Additionally, cancer cells can develop mechanisms to bypass the drugs used to treat them,
such as developing alternative signaling pathways that allow them to grow and survive.
Cancer stem cells, a cellular subpopulation in tumors with self-renewing capabilities, are
also generally more drug-resistant as compared to more differentiated cancer cells, and
allow for the reestablishment of tumors after drug treatment [6]. More research is needed
to better understand the mechanisms underlying drug resistance in TNBC and develop
more effective therapies to overcome it.

Doxorubicin is a commonly used chemotherapeutic drug for the treatment of TNBC [7].
The mechanisms of doxorubicin resistance in breast cancer are complex and multifactorial,
and developing strategies to overcome them is essential for improving the effectiveness of
doxorubicin in breast cancer treatment. One of the primary mechanisms of doxorubicin re-
sistance in breast cancer is decreased drug uptake. Doxorubicin enters cancer cells through
specific transporters, and decreased expression or activity of these transporters can lead to
reduced drug uptake and lower drug efficacy [7]. Another important mechanism of dox-
orubicin resistance is increased drug efflux. Cancer cells can actively pump doxorubicin out
of the cell through efflux pumps, such as P-glycoprotein (P-gp) and ATP-binding cassette
(ABC) transporters, leading to lower intracellular drug concentrations and reduced effi-
cacy [8,9]. Altered drug metabolism is also a potential mechanism of doxorubicin resistance
in breast cancer. Doxorubicin is metabolized in the liver by enzymes such as cytochrome
P450 (CYP) 3A4, and genetic variations in these enzymes can affect the metabolism and
clearance of doxorubicin, leading to variable drug responses [10]. Additionally, increased
DNA repair capacity can make cancer cells more resistant to doxorubicin. Doxorubicin
acts by damaging the DNA of cancer cells, but cancer cells with increased DNA repair
capacity can more effectively repair this damage, reducing the effectiveness of the drug [11].
Changes in apoptotic pathways can also contribute to doxorubicin resistance in breast
cancer, with changes in apoptotic pathways, such as increased expression of anti-apoptotic
proteins, increasing cancer cell resistance to the drug [11]. Finally, changes in the tumor
microenvironment can also affect the drug response. Factors such as hypoxia, acidosis, and
inflammation can lead to doxorubicin resistance in breast cancer [12].

An understudied factor in the development of doxorubicin resistance is cancer cell
metabolism. Metabolic reprogramming is a hallmark of cancer and has been shown to play
a critical role in drug resistance [13]. Cancer cells undergo significant metabolic changes
to support their rapid proliferation, survival, and adaptation to different environments,
and these metabolic changes can lead to altered drug responses and drug resistance [14,15].
In addition to modification of the metabolic pathway of drugs themselves, modifica-
tion of signaling pathways that regulate endogenous cancer cell metabolism, such as the
PI3K/Akt/mTOR pathway, have been shown to play a role in drug resistance. Activation of
these pathways can promote cell survival, reduce apoptosis, and enhance DNA repair, all of
which contribute to drug resistance [11]. Much still remains unknown about the metabolic
adaptations that TNBC cells undergo to acquire resistance to doxorubicin treatment. A
better understanding of these processes can lead to the identification of biomarkers for the
prediction of treatment response, or the identification of sensitization targets to improve
TNBC therapy response.

Metabolomics technologies can be used to identify new mechanisms of drug resistance
in cancer by analyzing the metabolic profile of cancer cells before and after treatment with
drugs [16]. By analyzing the metabolite profiles of cancer cells before and after drug treat-
ment, metabolomics can identify altered metabolic pathways and metabolic biomarkers
of drug resistance or response, and reveal new drug targets and drug combinations to
overcome resistance. In the current investigation, we present the intracellular and extra-
cellular metabolic changes that occur following acquired resistance in the TNBC cell line
MDA-MB-231. We also present the differences in the metabolic response to doxorubicin
treatment in the parental MDA-MB-231 cell line and our drug-resistant cells (Figure 1). We
present first the changes in the intracellular (cell) samples and then the extracellular (media)
samples. This information provides insight into how metabolism is altered during the
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acquisition of resistance in TNBC cells as well as how the metabolic response to doxorubicin
changes upon repeated treatment, potentially identifying novel targets to prevent or reverse
multi-drug resistance (MDR) in TNBC.
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Figure 1. Schematic of experimental design. Parental MDA-MB-231 cells were treated with 0, 50, or
100 µM doxorubicin for 24 h and then allowed to recover over a six-week period. Each cell line was
then treated with a dose range of doxorubicin for 24 h. Cells and media samples were collected and
extracted for untargeted metabolomics analysis. Analysis of intracellular (cells) and extracellular
(media) metabolites was performed separately, as described below.

2. Results

Two drug-resistant cell lines were generated by treating MDA-MB-231 cells with
doxorubicin for 24 h and then allowing the cells to recover over the course of six weeks.
One drug-resistant cell line, DOX-RES-50, was produced by treating MDA-MB-231 cells
with 50 µM doxorubicin for 24 h, while another drug-resistant cell line, DOX-RES-100,
was produced by treating MDA-MB-231 cells with 100 µM doxorubicin for 24 h. After
the six-week recovery period, both cell lines along with the parental MDA-MB-231 were
assessed for doxorubicin sensitivity using a viability assay. Both the DOX-RES-50 and the
DOX-RES-100 cell lines showed an increase in doxorubicin IC50 values, demonstrating the
acquisition of drug resistance (Figure 2A). In order to understand the metabolic differences
between the drug-resistant and parental cells, metabolomics analysis was performed on
each cell line.

After the preprocessing of metabolomics data, 4063 features remained for analysis.
Principal component analysis (PCA) showed clear separation between the parental MDA-
MB-231 cell line and the drug-resistant cell lines. Additionally, the DOX-RES-50 and
DOX-RES-100 cell lines showed noticeable overlap in the PCA plot, indicating similarities
in metabolic profiles (Figure 2B). Pairwise orthogonal partial least squares discriminant
analysis (OPLS-DA) was performed to further verify differences between the MDA-MB-231
cells and each drug-resistant cell line (R2Y, Q2 > 0.5) and to assign variable importance to
projection (VIP) values to each peak to identify signals with high discrimination potential
(Figure 2C,D). Fold changes and p-values were also calculated for each peak to further
understand signals differentiating each pairwise comparison (Supplemental Table S1).
Significant differences were found in 373 and 572 peaks (p < 0.05) in DOX-RES-50 and
DOX-RES-100 cells, respectively, compared to the parental MDA-MB-231 cell line.

Pathway analysis was performed using the mummichog algorithm of MetaboAnalyst
5.0 using all metabolomics peaks and their corresponding p-values for the MDA-MB-231
versus DOX-RES-50 and the MDA-MB-231 versus DOX-RES-100 comparisons. Results
revealed that arginine and proline metabolism, glutathione metabolism, and beta-alanine
metabolism were significantly perturbed between the MDA-MB-231 and DOX-RES-50 cells



Metabolites 2023, 13, 865 4 of 22

(Figure 3A). These three pathways were also significantly perturbed in the DOX-RES-100
cells, along with several additional pathways (Figure 3B). Notably, arginine and proline
metabolism were the top pathway by p-value for both drug-resistant cell lines.

Metabolites 2023, 13, x FOR PEER REVIEW 4 of 21 
 

 

 
Figure 2. (A) Viability dose–response curves of each cell line following doxorubicin treatment and 
their calculated IC50 values. (B) PCA of intracellular metabolomics data of MDA-MB-231, DOX-RES-
50, and DOX-RES-100 treated with 0 μM doxorubicin. (C) OPLS-DA of intracellular metabolomics 
data of MDA-MB-231 and DOX-RES-50. (D) OPLS-DA of intracellular metabolomics data of MDA-
MB-231 and DOX-RES-100. 

After the preprocessing of metabolomics data, 4063 features remained for analysis. 
Principal component analysis (PCA) showed clear separation between the parental MDA-
MB-231 cell line and the drug-resistant cell lines. Additionally, the DOX-RES-50 and DOX-
RES-100 cell lines showed noticeable overlap in the PCA plot, indicating similarities in 
metabolic profiles (Figure 2B). Pairwise orthogonal partial least squares discriminant anal-
ysis (OPLS-DA) was performed to further verify differences between the MDA-MB-231 
cells and each drug-resistant cell line (R2Y, Q2 > 0.5) and to assign variable importance to 
projection (VIP) values to each peak to identify signals with high discrimination potential 
(Figure 2C,D). Fold changes and p-values were also calculated for each peak to further 
understand signals differentiating each pairwise comparison (Supplemental Table S1). 
Significant differences were found in 373 and 572 peaks (p < 0.05) in DOX-RES-50 and 
DOX-RES-100 cells, respectively, compared to the parental MDA-MB-231 cell line. 

Pathway analysis was performed using the mummichog algorithm of MetaboAna-
lyst 5.0 using all metabolomics peaks and their corresponding p-values for the MDA-MB-
231 versus DOX-RES-50 and the MDA-MB-231 versus DOX-RES-100 comparisons. Results 
revealed that arginine and proline metabolism, glutathione metabolism, and beta-alanine 
metabolism were significantly perturbed between the MDA-MB-231 and DOX-RES-50 
cells (Figure 3A). These three pathways were also significantly perturbed in the DOX-RES-
100 cells, along with several additional pathways (Figure 3B). Notably, arginine and pro-
line metabolism were the top pathway by p-value for both drug-resistant cell lines. 

To further understand metabolites that differentiate drug-resistant cells from the pa-
rental MDA-MB-231 cell line, we matched metabolomics signals to in-house libraries and 
public databases. This resulted in 235 in-house library matches and 2786 public database 
matches. Each match, along with an ontology level to signify the evidence basis underly-
ing each match, is given in Supplemental Table S1. To aid in confirming the significant 

Figure 2. (A) Viability dose–response curves of each cell line following doxorubicin treatment and
their calculated IC50 values. (B) PCA of intracellular metabolomics data of MDA-MB-231, DOX-RES-
50, and DOX-RES-100 treated with 0 µM doxorubicin. (C) OPLS-DA of intracellular metabolomics
data of MDA-MB-231 and DOX-RES-50. (D) OPLS-DA of intracellular metabolomics data of MDA-
MB-231 and DOX-RES-100.

Metabolites 2023, 13, x FOR PEER REVIEW 5 of 21 
 

 

pathways listed in Figure 3, we identified creatine, spermidine, spermine, and 4-acetam-
idobutanoic acid as decreased, and 5-oxoproline and reduced glutathione as significantly 
increased, in one or both drug-resistant cell lines using our in-house library. Additionally, 
volcano plot analysis was performed to reveal the in-house matched metabolites that were 
most significantly increased or decreased in each drug-resistant cell line. Analysis re-
vealed significant decreases in short- and medium-chain acylcarnitines (2-methyl-
butyroylcarnitine, propionylcarnitine, butyroylcarnitine, butenylcarnitine) and increases 
in long-chain acylcarnitines (oleoylcarnitine, hexadecanoylcarnitine, octadeca-
noylcarnitine). Notably, 5-oxoproline and 7-ketodeoxycholic acids were strongly in-
creased in both drug-resistant cell lines (Figure 4A,B, Supplemental Table S1). 

 
Figure 3. Pathway analysis of intracellular metabolomics data showing differentiating metabolic 
pathways between (A) MDA-MB-231 and DOX-RES-50 and (B) MDA-MB-231 and DOX-RES-100. 
Pathways with a p < 0.05 are annotated. Darker red colors signify a higher value on the y-axis. 

Figure 3. Cont.



Metabolites 2023, 13, 865 5 of 22

Metabolites 2023, 13, x FOR PEER REVIEW 5 of 21 
 

 

pathways listed in Figure 3, we identified creatine, spermidine, spermine, and 4-acetam-
idobutanoic acid as decreased, and 5-oxoproline and reduced glutathione as significantly 
increased, in one or both drug-resistant cell lines using our in-house library. Additionally, 
volcano plot analysis was performed to reveal the in-house matched metabolites that were 
most significantly increased or decreased in each drug-resistant cell line. Analysis re-
vealed significant decreases in short- and medium-chain acylcarnitines (2-methyl-
butyroylcarnitine, propionylcarnitine, butyroylcarnitine, butenylcarnitine) and increases 
in long-chain acylcarnitines (oleoylcarnitine, hexadecanoylcarnitine, octadeca-
noylcarnitine). Notably, 5-oxoproline and 7-ketodeoxycholic acids were strongly in-
creased in both drug-resistant cell lines (Figure 4A,B, Supplemental Table S1). 

 
Figure 3. Pathway analysis of intracellular metabolomics data showing differentiating metabolic 
pathways between (A) MDA-MB-231 and DOX-RES-50 and (B) MDA-MB-231 and DOX-RES-100. 
Pathways with a p < 0.05 are annotated. Darker red colors signify a higher value on the y-axis. 

Figure 3. Pathway analysis of intracellular metabolomics data showing differentiating metabolic
pathways between (A) MDA-MB-231 and DOX-RES-50 and (B) MDA-MB-231 and DOX-RES-100.
Pathways with a p < 0.05 are annotated. Darker red colors signify a higher value on the y-axis.

To further understand metabolites that differentiate drug-resistant cells from the
parental MDA-MB-231 cell line, we matched metabolomics signals to in-house libraries and
public databases. This resulted in 235 in-house library matches and 2786 public database
matches. Each match, along with an ontology level to signify the evidence basis underlying
each match, is given in Supplemental Table S1. To aid in confirming the significant pathways
listed in Figure 3, we identified creatine, spermidine, spermine, and 4-acetamidobutanoic
acid as decreased, and 5-oxoproline and reduced glutathione as significantly increased, in
one or both drug-resistant cell lines using our in-house library. Additionally, volcano plot
analysis was performed to reveal the in-house matched metabolites that were most signifi-
cantly increased or decreased in each drug-resistant cell line. Analysis revealed significant
decreases in short- and medium-chain acylcarnitines (2-methylbutyroylcarnitine, propionyl-
carnitine, butyroylcarnitine, butenylcarnitine) and increases in long-chain acylcarnitines
(oleoylcarnitine, hexadecanoylcarnitine, octadecanoylcarnitine). Notably, 5-oxoproline
and 7-ketodeoxycholic acids were strongly increased in both drug-resistant cell lines
(Figure 4A,B, Supplemental Table S1).

To better understand how drug-resistant cells respond metabolically to a repeat expo-
sure, MDA-MB-231, DOX-RES-50, and DOX-RES-100 cells were treated with 0, 50, 100, 200,
and 500 µM doxorubicin for 24 h and cells were then analyzed by untargeted metabolomics.
Multivariate analysis revealed clear separation between treatment levels, particularly in
the lower doses, in MDA-MB-231 cells (Figure 5A). In contrast, DOX-RES-50 and DOX-
RES-100 cells showed low separation between lower doxorubicin treatment concentrations,
indicating a loss of dose response at lower doxorubicin levels (Figure 5B,C). Correla-
tion analysis was performed using MetaboAnalyst for each cell line to determine in-house
matched metabolites that changed in a dose-dependent manner with doxorubicin treatment
(Table 1). This analysis revealed 54 metabolites that significantly correlated with doxoru-
bicin in the parental MDA-MB-231 cell line. This number dropped to 17 and 26 for the
DOX-RES-50 and DOX-RES-100 cell lines, respectively. Methylthioadenosine, phenylala-
nine, and N-acetylaspartate were significantly correlated with doxorubicin concentration
in all three cell lines. Additionally, glutarate and cytosine were both significantly positively
correlated with doxorubicin treatment in the two resistant cell lines, but the correlation was
nonsignificant in the parental MDA-MB-231 cell line. Analysis of intracellular doxorubicin
signaling in each cell line following each treatment did not show reduced intracellular
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accumulation of doxorubicin in the resistant cell lines, indicating that the loss of dose re-
sponse for metabolites was not due to decreased import or increased export of doxorubicin
(Supplemental Table S1).
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Figure 5. Multivariate analysis of intracellular metabolomics data for each cell line treated across a
range of doxorubicin doses. (A) OPLS-DA of MDA-MB-231 cells. (B) OPLS-DA of DOX-RES-50 cells.
(C) OPLS-DA of DOX-RES-100 cells. Plots are colored based on doxorubicin treatment concentrations
in µM.

Media samples from each cell line were also analyzed by metabolomics to investigate
changes in secreted metabolites following resistance acquisition. OPLS-DA, but not PCA,
showed differences (R2Y, Q2 > 0.5) in baseline secreted metabolite profiles of doxorubicin-
resistant cell lines compared to the parental MDA-MB-231 cell line (Figure 6). Statistical
analysis revealed 107 and 133 peaks that were significantly different (p < 0.05) in DOX-
RES-50 and DOX-RES-100, respectively, compared to the parental MDA-MB-231 cell line
(Supplemental Table S2). Volcano plot analysis of in-house matched metabolites revealed
that mannose and butanoylcarnitine were the top two (by p-value) significantly increased
metabolites in both resistant cell lines (Figure 7A,B). Metabolomics analysis was also
performed on media samples following repeated exposure to doxorubicin. Multivariate
analysis of each cell line at different doxorubicin concentrations showed clearer separation
of doses in media samples as compared to intracellular samples (Figure 8). Also, in contrast
to intracellular samples, a loss of dose response was not as clearly observed for the media
samples. Correlation analysis of media samples following repeated exposure to doxorubicin
revealed 20, 11, and 7 in-house matched peaks in MDA-MB-231, DOX-RES-50, and DOX-
RES100, respectively, that significantly correlated with doxorubicin treatment concentration
(Table 2). Methylthioadenosine, cytosine, and 7-ketodeoxycholic acid were significantly
correlated with doxorubicin treatment in all three cell lines.
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Table 1. Intracellular metabolites significantly correlated with doxorubicin treatment across drug-sensitive and drug-resistant cell lines.

Metabolite (Name_Ontology Level_Retention Time_Mass)
MDA-MB-231 DOX-RES-50 DOX-RES-100

Correlation p-Value Correlation p-Value Correlation p-Value

Methylthioadenosine_OL1_4.92_297.0893 n −0.81 0.00001554 −0.72 0.0003888 −0.68 0.0010676

N-Acetylmethionine_OL1_4.71_191.0610 n −0.77 0.00007602 −0.50 0.023791 −0.33 0.15296

Anthranilate_OL1_5.84_137.0474 n −0.76 0.00009184 0.15 0.53421 −0.27 0.24814

12-Hydroxydodecanoic Acid_OL2b_5.12_261.1439 m/z −0.76 0.00011148 −0.30 0.19307 0.29 0.21246

2-Octenedioic Acid_OL2b_1.44_137.0594 m/z −0.74 0.00019629 −0.31 0.17985 −0.37 0.11085

Indoleacrylic Acid_OL2b_4.34_187.0632 n −0.74 0.00020622 −0.35 0.13308 −0.50 0.023743

2-Aminocaprylic Acid_OL1_6.37_160.1329 m/z −0.72 0.00037329 −0.39 0.088065 −0.49 0.029253

Adenosine 2′,3′-Cyclic Phosphate_OL2b_2.91_330.0592 m/z 0.71 0.00047735 0.21 0.37223 0.83 0.00000680

Trans-3-Hydroxycinnamate_OL2b_1.56_164.0473 n −0.70 0.00053789 −0.42 0.062772 −0.44 0.051265

Pyridoxine_OL1_1.27_169.0735 n −0.70 0.00054082 0.09 0.70269 0.06 0.79124

Spermidine_OL2b_3.42_146.1649 m/z −0.68 0.00099902 −0.14 0.54993 0.16 0.5026

Cytidine_OL1_0.69_243.0848 n 0.67 0.0013015 0.18 0.44717 0.16 0.50397

Threonine_OL2a_0.67_158.0211 m/z −0.66 0.0015141 −0.47 0.037284 −0.37 0.10919

2-Octenedioic Acid_OL2b_3.72_172.0730 n −0.66 0.0016946 −0.34 0.13976 0.30 0.19228

5-Hydroxyindoleacetate_OL2b_2.91_191.0575 n −0.66 0.001717 −0.28 0.23609 −0.20 0.38949

Indoleacetaldehyde_OL1_4.34_160.0754 m/z −0.65 0.0017981 −0.15 0.5315 −0.26 0.27521

N-Acetylaspartate_OL2a_0.83_198.0368 m/z 0.65 0.0018161 0.27 0.2445 0.43 0.059134

Leucine_OL1_1.70_131.0944 n −0.65 0.0019876 −0.38 0.097942 −0.41 0.071259

Hydroxyphenyllactate_OL1_4.59_205.0468 m/z −0.65 0.0020371 −0.23 0.33412 −0.44 0.05153

Indoleacetaldehyde_OL2b_2.46_159.0682 n −0.63 0.0030782 0.06 0.78868 0.06 0.78725

Octanoyl-L-Carnitine_OL1_9.20_288.2162 m/z −0.63 0.0031425 −0.42 0.067438 −0.25 0.29713

Isoleucyl-Leucine_OL2b_5.43_245.1852 m/z −0.62 0.0035538 −0.66 0.0016847 −0.08 0.73277

L-Tryptophan_OL1_4.34_204.0897 n −0.62 0.0036778 −0.24 0.30013 −0.38 0.1017

L-Phenylalanine_OL1_3.22_165.0787 n −0.61 0.0042322 −0.48 0.033566 −0.54 0.014204
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Table 1. Cont.

Metabolite (Name_Ontology Level_Retention Time_Mass)
MDA-MB-231 DOX-RES-50 DOX-RES-100

Correlation p-Value Correlation p-Value Correlation p-Value

Deoxyadenosine_OL2b_3.57_252.1084 m/z −0.60 0.0048732 −0.20 0.39106 −0.29 0.22223

L-Methionine_OL2a_1.07_172.0400 m/z −0.59 0.0057758 −0.37 0.11265 −0.25 0.28305

Pantothenate_OL1_4.04_219.1102 n −0.58 0.0068454 0.12 0.60768 0.24 0.31459

Trans-Cinnamic Acid_OL2b_3.24_148.0522 n −0.58 0.0069352 −0.35 0.12974 −0.42 0.063941

Pyridoxal_OL2b_2.81_150.0548 m/z −0.58 0.0079745 0.22 0.36202 0.07 0.77067

Leucyl-Leucine_OL1_5.89_245.1852 m/z −0.57 0.0083982 −0.34 0.14013 −0.28 0.23375

Indole-3-Aldehyde_OL2b_4.34_146.0599 m/z −0.56 0.0094943 −0.24 0.31034 −0.33 0.15284

2-Octenedioic Acid_OL2a_6.83_195.0622 m/z 0.56 0.010025 −0.17 0.47878 −0.38 0.093781

N-Acetylaspartate_OL1_1.11_175.0478 n 0.54 0.013375 0.61 0.0046458 0.50 0.025329

Spermidine_OL2a_0.65_145.1575 n −0.54 0.013553 −0.14 0.56286 0.05 0.82905

Phenylacetylglycine_OL1_5.92_193.0737 n −0.54 0.014787 0.16 0.48874 0.15 0.5273

Dodecenoylcarnitine_OL1_11.80_342.2630 m/z −0.53 0.015577 −0.39 0.087782 −0.09 0.70138

Indole-3-Ethanol_OL2b_4.34_144.0806 m/z −0.52 0.017664 −0.22 0.34956 −0.26 0.26126

Guanine_OL2b_3.62_152.0563 m/z −0.51 0.020217 −0.21 0.36735 −0.18 0.45806

L-Tyrosine_OL2b_3.37_182.0807 m/z −0.51 0.020866 −0.09 0.70388 −0.20 0.40599

Threonine_OL1_1.07_102.0548 m/z −0.51 0.021699 0.14 0.56117 −0.14 0.56762

Butenylcarnitine_OL2a_2.71_262.1642 m/z −0.51 0.022923 0.17 0.47043 0.35 0.126

Creatine_OL2a_0.51_263.1455 m/z −0.50 0.024141 0.39 0.093473 0.85 0.00000202

5-Oxoproline_OL2b_0.77_129.0424 n −0.49 0.026792 −0.10 0.68462 −0.04 0.85349

S-Adenosylhomocysteine_OL1_2.09_384.1212 n −0.48 0.030318 0.21 0.38359 −0.07 0.75567

Propionyl-L-Carnitine_OL1_2.09_218.1387 m/z −0.48 0.033559 0.34 0.1442 0.15 0.52079

Trigonelline_OL2b_5.41_138.0546 m/z 0.47 0.035034 −0.35 0.12744 −0.02 0.93339

Creatine_OL2a_0.49_132.0766 m/z −0.47 0.036563 0.43 0.055497 0.82 0.00000987

L-Phenylalanine_OL2a_3.22_331.1643 m/z −0.47 0.0368 −0.38 0.10306 −0.51 0.022902

N-Acetylhistidine_OL2b_2.24_198.0872 m/z −0.46 0.039432 0.28 0.23266 −0.02 0.92921
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Table 1. Cont.

Metabolite (Name_Ontology Level_Retention Time_Mass)
MDA-MB-231 DOX-RES-50 DOX-RES-100

Correlation p-Value Correlation p-Value Correlation p-Value

Spermidine_OL2a_0.49_73.5862 m/z −0.46 0.040849 0.10 0.66657 0.22 0.35548

Pantetheine_OL2b_9.30_261.1260 m/z 0.46 0.041443 −0.08 0.74182 0.18 0.43803

Acetyl-Dl-Carnitine_OL1_1.01_204.1229 m/z −0.46 0.041794 −0.16 0.49485 0.13 0.57551

1-Aminocyclopropanecarboxylic Acid_OL2a_0.77_84.0443 m/z −0.46 0.043552 −0.02 0.93018 0.00 0.99278

Hexanoylcarnitine_OL1_6.23_260.1850 m/z −0.45 0.047391 −0.24 0.2993 0.19 0.4278

4-Acetamidobutanoic Acid_OL2b_3.37_146.0809 m/z −0.41 0.075098 0.51 0.020527 0.38 0.099942

Hexanoylcarnitine_OL1_6.53_260.1850 m/z −0.40 0.079541 −0.33 0.15004 −0.55 0.011742

Maleic Acid_OL2a_1.11_134.0445 m/z 0.39 0.087469 0.52 0.017879 0.41 0.074901

Glutamyl-Valine_OL2b_3.72_247.1284 m/z −0.39 0.090678 0.39 0.090925 0.53 0.016339

2-Hydroxytetradecanoic Acid_OL2a_14.99_227.1998 m/z 0.38 0.099925 −0.06 0.81747 0.51 0.021926

Acetyl-DL-Carnitine_OL1_0.71_203.1156 n −0.36 0.11621 0.46 0.039795 0.00 0.99876

Butanoylcarnitine_OL1_3.64_231.1467 n −0.34 0.14514 0.41 0.072478 0.48 0.032961

Glycoursodeoxycholic Acid_OL2b_14.05_449.3136 n −0.32 0.16414 0.47 0.037037 −0.09 0.71422

Sorbitol_OL1_0.65_182.0786 n 0.30 0.19459 −0.07 0.78117 0.47 0.037825

Betaine_OL2a_0.67_140.0680 m/z −0.30 0.20182 −0.56 0.01107 −0.03 0.90492

Cadaverine_OL2a_0.83_102.1150 m/z −0.30 0.20579 0.16 0.49012 0.55 0.011389

2-Methylbutyroylcarnitine_OL1_4.84_246.1696 m/z −0.28 0.23419 0.55 0.012568 0.38 0.095206

Tetradecenoyl-L-Carnitine_OL1_12.82_370.2941 m/z −0.27 0.24147 −0.61 0.0043994 0.00 0.99629

Creatinine_OL1_0.67_136.0479 m/z 0.27 0.24167 0.20 0.38662 0.45 0.046976

Citric Acid_OL2a_0.98_176.0083 m/z −0.27 0.25513 0.27 0.24076 −0.45 0.048451

Spermine_OL2b_1.97_202.2156 n −0.25 0.27928 0.17 0.48187 0.49 0.028223

7-Ketodeoxycholic Acid_OL2b_15.51_406.2712n 0.25 0.28049 −0.22 0.34463 −0.47 0.038013

Indolelactic Acid_OL1_7.14_205.0735 n −0.25 0.28598 −0.26 0.26977 −0.68 0.00088093

2-Hydroxytetradecanoic Acid_OL2a_15.04_283.1663 m/z 0.25 0.29295 −0.12 0.60035 0.55 0.012847
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Table 1. Cont.

Metabolite (Name_Ontology Level_Retention Time_Mass)
MDA-MB-231 DOX-RES-50 DOX-RES-100

Correlation p-Value Correlation p-Value Correlation p-Value

Glutarate_OL1_2.66_115.0388 m/z −0.24 0.30605 0.52 0.018071 0.55 0.011919

Cytosine_OL1_1.04_112.0503 m/z 0.22 0.34136 0.83 0.00000607 0.61 0.0043897

B-Nicotinamide Adenine Dinucleotide_OL2a_3.06_333.5691 m/z −0.18 0.44516 0.06 0.81435 0.51 0.02153

Cadaverine_OL2a_0.40_102.1150 m/z −0.18 0.4511 0.21 0.36841 0.59 0.0061138

Xanthine_OL1_1.54_153.0403 m/z −0.15 0.52016 0.69 0.0007609 0.28 0.23164

Creatine_OL1_0.69_131.0693 n 0.04 0.8519 0.25 0.27987 0.46 0.039218

Docosatrienoic Acid_OL2a_16.73_299.2728 m/z 0.00 0.99386 −0.58 0.0073867 0.26 0.27377

Metabolites are named in the following format: metabolite_ontology level_retention time_mass. An “m/z” following the mass denotes an ion mass, whereas an “n” denotes a neutral
mass. The names given for each match are based on the names of the reference standards run on our UHPLC-HRMS platform or the names provided in public databases. This
method does not necessarily differentiate between some isomeric forms, such as D and L enantiomers. Positive correlation values indicate metabolites that positively correlate with
doxorubicin treatment.
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Figure 8. Multivariate analysis of media metabolomics data for each cell line treated across a range of
doxorubicin doses. (A) OPLS-DA of MDA-MB-231 cells. (B) OPLS-DA of DOX-RES-50 cells. (C) OPLS-
DA of DOX-RES-100 cells. Plots are colored based on doxorubicin treatment concentrations in µM.
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Table 2. Media metabolites significantly correlated with doxorubicin treatment across drug-sensitive and drug-resistant cell lines.

Metabolite (Name_Ontology Level_Retention Time_Mass)
MDA-MB-231 DOX-RES-50 DOX-RES-100

Correlation p-Value Correlation p-Value Correlation p-Value

Cytosine_OL1_1.04_112.0503 m/z 0.84937 0.00000217 0.59474 0.0056768 0.67691 0.001046

Methylthioadenosine_OL1_4.92_297.0893 n −0.79527 0.0000278 −0.87672 0.000000396 −0.79282 3.06 × 10−5

Malic Acid_OL2a_0.86_157.0103 m/z 0.58391 0.0068684 0.0039314 0.98688 −0.020673 0.93106

Threonine_OL1_1.07_102.0548 m/z 0.56734 0.009083 0.29776 0.2023 −0.040839 0.86426

Butanoylcarnitine_OL1_3.64_231.1467 n 0.56564 0.0093398 0.015986 0.94667 0.16808 0.47874

Xanthine_OL1_1.54_153.0403 m/z 0.55436 0.011196 0.43665 0.054237 0.41854 0.066265

N-Methyl-D-Aspartic Acid_OL2a_0.65_147.0526 n −0.54143 0.013681 −0.25443 0.27903 0.39605 0.083868

Glutarate_OL2b_4.07_115.0388 m/z 0.53065 0.016078 0.32205 0.16614 −0.20547 0.38482

Indoleacetaldehyde_OL1_4.34_160.0754 m/z 0.52999 0.016234 0.094866 0.69075 0.10551 0.65797

3-(Carbamoylamino)Propanoic Acid_OL2a_1.07_177.0240 m/z −0.52048 0.018636 0.4759 0.033922 −0.045774 0.84803

N-Acetylserine_OL2a_1.16_148.0600 m/z −0.51527 0.020066 −0.1719 0.46865 0.0052969 0.98232

12-Hydroxydodecanoic Acid_OL2b_5.12_261.1439 m/z 0.51409 0.020401 −0.23781 0.31268 −0.064887 0.78579

Indoleacetaldehyde_OL2b_2.46_159.0682 n 0.50304 0.02377 −0.21828 0.35521 −0.22613 0.33773

Nicotinamide_OL1_1.23_123.0551 m/z 0.48868 0.028787 0.10396 0.66271 −0.20153 0.39419

Fructose_OL2a_0.88_113.0206 m/z −0.48047 0.03201 −0.22229 0.34621 −0.037041 0.87679

L-Phenylalanine_OL2a_3.22_331.1643 m/z 0.47757 0.033214 0.32444 0.16283 0.28265 0.22724

Pantothenate_OL1_4.04_219.1102 n 0.46838 0.037262 0.082628 0.7291 0.0097354 0.96751

7-Ketodeoxycholic Acid_OL2b_15.51_406.2712 n −0.45131 0.045786 −0.59553 0.0055969 −0.61972 0.003564

Glutamyl-Valine_OL2b_3.72_247.1284 m/z 0.44907 0.047004 0.061125 0.79795 −0.076558 0.74836

1-Methyl-L-Histidine_OL2a_0.58_192.0737 m/z 0.44537 0.049076 −0.25272 0.28237 0.10562 0.65765

Creatinine_OL1_0.65_114.0661 m/z 0.39497 0.084797 0.051977 0.82772 −0.47478 0.034403

Sphinganine_OL2b_17.24_284.2941 m/z 0.38174 0.096742 0.44605 0.048695 0.14411 0.54441

Guanine_OL2b_3.62_152.0563 m/z −0.29382 0.20862 −0.49466 0.026606 −0.37563 0.10266

Prostaglandin B2_OL2b_15.92_357.2030 m/z 0.2713 0.24726 −0.44964 0.046693 0.18064 0.44597
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Table 2. Cont.

Metabolite (Name_Ontology Level_Retention Time_Mass)
MDA-MB-231 DOX-RES-50 DOX-RES-100

Correlation p-Value Correlation p-Value Correlation p-Value

Histidine_OL1_0.58_155.0693 n −0.18863 0.42576 0.61221 0.0041156 0.20709 0.381

Arginine_OL1_0.58_175.1188 m/z −0.14538 0.54083 0.58944 0.0062371 0.40546 0.076132

Deoxyadenosine_OL2b_3.57_252.1084 m/z −0.087792 0.71284 −0.44602 0.048709 −0.32382 0.16369

L-Carnitine_OL2a_0.69_144.1017 m/z 0.080419 0.73609 0.016996 0.9433 0.47174 0.035739

Lysine_OL1_0.51_146.1053 n −0.079963 0.73754 0.40311 0.078011 0.56567 0.009334

2-Hydroxypyridine_OL2b_1.23_96.0443 m/z −0.034015 0.88679 0.56715 0.0091119 0.28764 0.21879

Pipecolate_OL1_0.51_130.0861 m/z −0.0041201 0.98625 0.42884 0.059206 0.51643 0.019741
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3. Discussion

This study created doxorubicin-resistant cell lines by exposing MDA-MB-231 cells
to a single dose of doxorubicin followed by a six-week recovery period. The acquisition
of drug resistance was confirmed through an increase in doxorubicin IC50 values in both
resistant cell lines. While the fold increase in IC50 values is more modest compared to
other studies, this degree of resistance is more clinically relevant—indeed, other methods
of generating drug resistance can lead to fold changes of 100–1000 in IC50 levels, but cause
cellular changes that are not reflective of this in cancer patients [17]. Our generation of cell
lines with modest increases of doxorubicin IC50 levels allows for more relevant biological
changes to be observed, and may even reflect more accurately the early stages of resis-
tance development. We used an untargeted metabolomics approach to gain insights into
metabolic reprogramming during this stage by assessing metabolic differences between
drug-resistant and parental MDA-MB-231 cells. Our results showed clear metabolic dif-
ferences in baseline intracellular and secreted metabolomes of parental and drug-resistant
cells. Moreover, we demonstrated that while parental MDA-MB-231 cells had metabolite
sets with clear dose-response activity following a dose range of doxorubicin treatment,
drug-resistant cells lost dose-response relationships with the majority of these metabolites.
Interestingly, a small number of metabolites were significantly correlated with doxorubicin
treatment in the resistant cell lines but not the parental MDA-MB-231 cells, suggesting that
these metabolites may play a role in suppressing the metabolic changes associated with
doxorubicin exposure in resistant TNBC cells.

Pathway analysis (using KEGG maps) of all peaks revealed arginine and proline
metabolism, glutathione metabolism, and beta-alanine metabolism as significantly altered
in both resistant cell lines. The arginine and proline metabolism pathway connects arginine,
proline, and glutamate, as well as their intermediates. This metabolic pathway connects key
processes of cancer cell metabolism, including biosynthesis of other amino acids, nucleotide
biosynthesis, TCA cycle activity, and polyamine biosynthesis. Interestingly, this pathway is
being investigated as a therapeutic target of several cancers through starvation of specific
amino acids in this pathway, including arginine, proline, and glutamine [18]. This pathway
also directly feeds into glutathione metabolism and beta-alanine metabolism pathways
through spermine. The role of glutathione metabolism has been highly studied in the
context of cancer drug resistance, including resistance to doxorubicin. Glutathione is well
known to play a role in balancing redox levels within the cell, and also conjugates to exoge-
nous agents, including drugs, for clearance. Cancer cells have been observed to increase
glutathione levels to increase their buffering capacity towards reactive oxygen species
(ROS) levels. Because many chemotherapeutic drugs work by increasing ROS levels, this
is a highly effective survival mechanism for cancer cells [19,20]. The connection between
beta-alanine, a non-proteinogenic amino acid, and cancer drug response is less clear; how-
ever, this metabolite has been shown to modulate glycolytic activity and cellular migration
in cervical and renal cancer models [21]. The KEGG map for beta-alanine metabolism
also connects with other anabolic pathways, including pyrimidine metabolism and fatty
acid biosynthesis, providing a potential role for this pathway in mediating biosynthetic
pathways to support enhanced cell growth, which may aid in resisting cytotoxic agents.

Upon investigating metabolites that were matched to our in-house library, we iden-
tified several acylcarnitines as significant differentiators of parental MDA-MB-231 cells
and the doxorubicin-resistant cell lines. In general, we observed a decrease in short-
and medium-chain acylcarnitines and an increase in long-chain acylcarnitines in the
doxorubicin-resistant cell lines. Acylcarnitines are intermediates in fatty acid metabolism
and are generated during the process of mitochondrial and peroxisomal β-oxidation of fatty
acids, making them markers of energy metabolism. Additionally, they have been identified
as indicators of metabolic diseases including cardiovascular disease, diabetes, and certain
cancers [22]. More recent studies have found a role of the carnitine system in control-
ling metabolic plasticity, as this pathway is involved in coupling glucose and fatty acid
metabolism through the Randle cycle. Excessive activity of fatty acid oxidation (FAO) leads
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to high levels of NADH and acetyl-CoA, which can promote the conversion of pyruvate
into lactate through pyruvate dehydrogenase inhibition, which in turn leads to a myriad of
pro-cancer epigenetic and metabolic changes [23]. This makes the carnitine system a poten-
tial anticancer target, where the balance between carbohydrate and fatty acid metabolism
can be disrupted. In the context of diabetes, increased long-chain acylcarnitines has been
shown to be a marker of decoupling between glycolysis and FAO, leading to incomplete
breakdown of fatty acids [24,25]. This points towards a potential mechanism where cancer
cells decouple glycolysis and FAO during the acquisition of drug resistance, allowing for
the rapid and incomplete breakdown of fatty acids to promote other pro-survival pathways.
Interestingly, in a recent investigation, we identified that several chemosensitizing dietary
compounds—including polyunsaturated fatty acids and polyphenols—significantly in-
crease long-chain acylcarnitines, suggesting that this may also be a mechanism to restore
drug response, perhaps if these metabolites are increased past a certain threshold [26].
Additionally, these compounds may also restore glycolysis–FAO coupling mechanisms,
increasing the toxic response of the cell to elevated acylcarnitines [27,28].

One of the unique contributions of this study is the analysis of metabolites that reacted
in a dose-responsive manner to a range of doxorubicin doses in the drug-resistant cell lines
and the parental MDA-MB-231 cell line. The loss of dose response in the metabolome,
particularly at lower doxorubicin levels, suggests that the resistant cells rewire cellular
metabolism to survive doxorubicin exposure. Our analysis revealed novel metabolic fea-
tures that are perturbed during resistance acquisition and may represent novel targets
that could be targeted to reverse or mitigate doxorubicin resistance in TNBC. Additionally,
these metabolites may have potential to be used as markers to be monitored during therapy
to guide treatment dose, treatment length, and/or number of treatments. The correla-
tion data also provide additional insights into the mechanism of action of doxorubicin in
breast cancer cells, which, despite its widespread clinical use, still remains unclear [29].
Methylthioadenosine (MTA) was significantly negatively correlated with doxorubicin ex-
posure in all cell lines, suggesting a role for this metabolite in mediating response to this
drug. MTA has been shown to play a significant role in cancer, controlling polyamine
synthesis/methionine salvage pathways as well as regulating apoptosis, invasiveness, and
metastasis [30]. Interestingly, MTA accumulation, through the loss of methylthioadenosine
phosphorylase (MTAP), has been shown to lead to increased proliferation and resistance
to chemotherapeutic drugs, including doxorubicin, in liver cells [31]. While MTA was
significantly correlated with doxorubicin exposure in our resistant cell lines, the correla-
tion value was weaker when compared to the parental MDA-MB-231 cell line, suggesting
that suppression of MTA response is a potential mechanism of resistance. Additionally,
metabolites regulated by MTA, including polyamines and methionine, lost dose depen-
dence in the resistant cell lines, supporting the conclusion that resistant cells decouple MTA
from its effector pathways. More studies are needed to identify the role of MTA in the
doxorubicin response of breast cancers, including models with more severely resistant cell
lines than those used in this study. Additionally, due to the untargeted nature of this study,
targeted methods should be performed to confirm the relationship of these metabolites
with chemotherapeutic responses.

In conclusion, the findings of this study contribute to our understanding of metabolic
reprogramming in drug-resistant breast cancer cells and suggest potential mechanisms
and treatment strategies for this challenging clinical problem. Our findings point to a
significant role of acylcarnitines/fatty acid oxidation, as well as specific metabolites such as
MTA, 5-oxoproline, and 7-ketodeoxycholic acid in the process of acquired drug resistance.
Surprisingly, metabolic investigations regarding the acquisition of drug resistance are
sparse in the literature, particularly for TNBC. Because of this, our study provides many
novel insights into the metabolic changes that occur during TNBC drug resistance, forming
the basis for future research to further investigate this process and generate novel findings,
such as metabolic targets that could be manipulated to potentially increase drug sensitivity.
Further studies are needed to validate the findings of this study and to explore the functional
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significance of the metabolic changes observed in the drug-resistant cell lines. Additionally,
in vivo model systems should also be investigated to determine if these metabolic changes
are observed in this setting as well.

4. Methods
4.1. Chemical Reagents

Optima grade solvents (water with 0.1% formic acid and methanol with 0.1% formic
acid) and fetal bovine serum (FBS) were purchased from Fisher Scientific (Waltham, MA,
USA). Dubelcco’s Modified Eagle Medium (DMEM) with high glucose and phosphate-
buffered saline (PBS) was purchased from Gibco (Grand Island, NY, USA). Doxorubicin
was purchased from SelleckChem (Houston, TX, USA). The MDA-MB-231 cell line was
purchased from the American Type Culture Collection (ATCC) (Manassas, VA, USA).

4.2. Cell Culture and Establishment of Doxorubicin Resistance

MDA-MB-231 cells were cultured according to manufacturer guidelines. Cells were
cultured in DMEM supplemented with 10% FBS, 2 mM glutamine, 50 U/mL penicillin,
and 50 µg/mL streptomycin. To generate doxorubicin-resistant cells, MDA-MB-231 cells
were treated with 50 or 100 nM doxorubicin for 24 h and were allowed to recover in
supplemented DMEM for six weeks. To verify resistance, treatment-naïve and treatment-
experienced cells were plated into 96-well plates at 2 × 104 cells per well and were allowed
to attach overnight. Cells were then treated with an 11-point dose curve of doxorubicin
with a top concentration of 10 µM and a dilution series of 1:1 (n = 3–6 per group). Cell
viability was assessed using the alamarBlue assay according to manufacturer instructions
(Thermo Scientific). GraphPad was used to generate viability dose curves and calculate
doxorubicin IC50 values. DMSO was used as a vehicle, with a final concentration of 0.1%
for all treatments.

4.3. Doxorubicin Treatment and Metabolite Extraction

Cells were plated at approximately 80% confluency in 6-well culture plates and were
treated with 500, 200, 100, 50, or 0 nM doxorubicin with a final DMSO amount of 0.1%
(n = 4 per group). After 24 h of treatment, metabolites were extracted from cell samples as
described previously [26,32–34]. Briefly, treatment media were aspirated, and cells were
washed with 1 mL of ice-cold PBS. After aspirating off PBS, 500 µL of ice-cold 80% methanol
was added to culture dishes, and cells were detached using cell scrapers. Protein concentra-
tion was assessed by a bicinchoninic acid (BCA) assay and additional 80% methanol was
added to each sample to normalize for protein concentration. Samples were vortexed at
5000 rpm for 10 min, centrifuged at 16,000× g at 4 ◦C for 10 min, and supernatants were
transferred to autosampler vials for analysis by ultra-high-pressure liquid chromatography–
high-resolution mass spectrometry (UHPLC-HRMS). Quality control study pools (QCSP)
were created by combining 10 µL of each sample into a single mixture. Method blanks
were created by adding 500 µL of 80% methanol to empty tubes and were processed in an
identical manner as the study samples.

4.4. UHPLC-HRMS Metabolomics Data Acquisition and Preprocessing

Metabolomics data were acquired via previously published UHPLC-HRMS meth-
ods [26,32–37]. The analysis utilized a Vanquish UHPLC system coupled to a Q Exactive™
HF-X Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo Fisher Scientific, San Jose,
CA, USA) equipped with an HSS T3 C18 column (2.1 mm × 100 mm, 1.7 µm, Waters
Corporation) held at 50 ◦C. A binary pump was used with water + 0.1% formic acid (A)
and methanol + 0.1% formic acid (B) as mobile phases. The mobile phase gradient started
from 2% B, increased to 100% B in 16 min, and was then held for 4 min with a flow rate of
400 µL/min. Mass spectral data were collected using a data-dependent acquisition mode
in positive polarity at 70–1050 m/z. QCSP and blank injections were placed at a rate of
10% throughout the study samples. An injection volume of 5 µL was used for analysis
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of each sample. Raw UHPLC-HRMS data were imported into Progenesis QI (version 2.1,
Waters Corporation, MA, USA) for alignment, peak picking, and deconvolution. Back-
ground signals were removed by filtering out peaks with a higher average abundance in
the blank injections as compared to the QCSP injections. Data were normalized using a
QCSP reference sample using the “normalize to all” function in progenesis [38].

4.5. Compound Identification/Annotation

Peaks were matched to an in-house library of reference standards or public mass
spectral databases from the National Institute of Standards and Technology (NIST) and
METLIN. Peaks were matched to metabolites by retention time (RT, ±0.5 min, in-house
library only), exact mass (MS, <5 ppm), and fragmentation pattern (MS/MS, similarity
score > 30). An ontology system was given to denote the evidence basis for each metabolite
assignment. OL1 refers to a match to the in-house library for RT, MS, and MS/MS; OL2a
refers to an in-house match to the in-house library for RT and MS; OL2b refers to a match
to the in-house library for MS and MS/MS; PDa refers to a match to public databases for
MS and MS/MS; PDb refers to a public database match for MS and theoretical MS/MS
(HMDB); PDc refers to a public database match for MS and isotopic similarity; PDd refers
to a public database match for MS only.

4.6. Multivariate, Univariate, and Pathway Analyses

Principal component analysis (PCA) and partial least squares discriminant analysis
(OPLS-DA) was performed in SIMCA 16 (Sartorius Stedim Data Analytics AB, Umeå,
Sweden) using the normalized, filtered data. Unit Variance (UV) scaling was used for all
multivariate plots. PCA plots were used to assess data quality by verifying the clustering
and centering of QCSP samples by PCA, and OPLS-DA plots were used to assess the
separation of metabolomes between vehicle and treated cells, as well as to calculate variable
importance to projection (VIP) scores for each peak. Heatmaps were generated using
MetaboAnalyst 5.0 [39]. Fold changes and p-values were calculated for each peak for each
treatment as compared to the vehicle control. p-values were calculated using Student’s
t-test. Correlation analyses were performed by using the Statistical Analysis (metadata
table) module in MetaboAnalyst 5.0 using Pearson r as the correlation measure. p-values
were not adjusted for multiple testing due to the small sample size of this study and the
exploratory, rather than confirmatory, nature of this study [40]. Pathway analyses were
conducted using the “Functional Analysis” module of MetaboAnalyst 5.0 using all peaks
in the metabolomics dataset. Metabolites were mapped on the KEGG metabolite set library
using a p-value cutoff of 0.05.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13070865/s1, Table S1: Peak information and statistics
for intracellular metabolomics samples; Table S2: Peak information and statistics for extracellular
metabolomics samples.
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