
Citation: Takata, T.; Motoo, Y. Novel

In Vitro Assay of the Effects of Kampo

Medicines against Intra/Extracellular

Advanced Glycation End-Products in

Oral, Esophageal, and Gastric

Epithelial Cells. Metabolites 2023, 13,

878. https://doi.org/10.3390/

metabo13070878

Academic Editor: Michał Tomczyk

Received: 30 June 2023

Revised: 20 July 2023

Accepted: 21 July 2023

Published: 24 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metabolites

H

OH

OH

Opinion

Novel In Vitro Assay of the Effects of Kampo Medicines against
Intra/Extracellular Advanced Glycation End-Products in Oral,
Esophageal, and Gastric Epithelial Cells
Takanobu Takata 1,*,† and Yoshiharu Motoo 2,†

1 Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa
Medical University, Uchinada 920-0293, Ishikawa, Japan

2 Department of Medical Oncology and Kampo Medicines, Komatsu Sophia Hospital,
Komatsu 923-0861, Ishikawa, Japan; mot@sophia-hosp.jp

* Correspondence: takajjjj@kanazawa-med.ac.jp; Tel.: +81-76-286-2211
† These authors contributed equally to this work.

Abstract: Kampo medicines are Japanese traditional medicines developed from Chinese traditional
medicines. The action mechanisms of the numerous known compounds have been studied for
approximately 100 years; however, many remain unclear. While components are normally affected
through digestion, absorption, and metabolism, in vitro oral, esophageal, and gastric epithelial cell
models avoid these influences and, thus, represent superior assay systems for Kampo medicines. We
focused on two areas of the strong performance of this assay system: intracellular and extracellular
advanced glycation end-products (AGEs). AGEs are generated from glucose, fructose, and their
metabolites, and promote lifestyle-related diseases such as diabetes and cancer. While current
technology cannot analyze whole intracellular AGEs in cells in some organs, some AGEs can be
generated for 1–2 days, and the turnover time of oral and gastric epithelial cells is 7–14 days.
Therefore, we hypothesized that we could detect these rapidly generated intracellular AGEs in such
cells. Extracellular AEGs (e.g., dietary or in the saliva) bind to the receptor for AGEs (RAGE) and the
toll-like receptor 4 (TLR4) on the surface of the epithelial cells and can induce cytotoxicity such as
inflammation. The analysis of Kampo medicine effects against intra/extracellular AGEs in vitro is a
novel model.

Keywords: Kampo medicines; digestion; absorption; metabolism; oral epithelial cells; esophageal
epithelial cells; gastric epithelial cells; advanced glycation end-products; in vitro

1. Introduction

Kampo medicines, the Japanese traditional medicines, developed based on Chinese
traditional medicines. The major differences are that Japanese Kampo medicine is inte-
grated with Western (modern) medicine and used in a unified medical system, the amount
of crude drugs used in prescriptions is small, and the quality of medical extract preparations
is extremely high. It is high, not ideological, but practical like “Housoushoutai (Japanese
original treatment of Kampo medicine)” [1]. Although up to the 19th century, doctors and
individuals used to extract and apply components from crude drugs as needed, modern
Kampo medicines are produced from extracts following manufacturing methods that are
governed by a number of national laws in Japan [2,3]. Officially recognized current Kampo
medicines are stipulated in the Japanese Pharmacopoeia, and their quality must comply
with legal provisions [2,3]. Modern medical methods have proven Kampo preparations
are beneficial in various clinical fields, and their value is being reassessed following their
successful use in cancer support care [4]. Over 500 randomized controlled trials using
Kampo preparations have been published as structured abstracts and clinical evidence
for their efficacy is accumulating [5,6]. The slogan “Kampo for cancer supportive care”
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is supported by industry, academia, and the Japanese government [7]. Kampo prepara-
tions are characterized by containing multiple ingredients and should be administered
orally. They often contain crude drugs with different compound contents [2]. Analysis
using three-dimensional high-performance liquid chromatography (3D-HPLC) of com-
pounds in Kampo medicines such as Goshajinkigan and Ninjin’yoeito have indicated a
wide range of contents [8–10]. Although the main and most common elements contained
in the principal components of some Kampo medicines have been identified [11], complete
component identification has so far not been achieved. Because Kampo medicines are
usually administered orally, the components should be digested in the stomach, absorbed
in the small intestine, and metabolized in the liver and other organs [12]. The metabolized
compounds have wide-ranging effects throughout the body [13]. Although the effects of
Kampo medicines have been investigated in animal models with some success [14,15], the
precise mechanisms involved have so remained elusive. Furthermore, in vitro assays of
Kampo medicines are more difficult than in vivo assays because such laboratory experi-
ments cannot account for normal digestion, absorption, and metabolism processes [16].
This makes in vitro assays using human oral administration conditions an attractive novel
assay system. Oral, esophageal, and gastric epithelial cells have so far been used in this
type of assay [17–19].

We investigated reports of the use of these three kinds of epithelial cells in assays of
extracts of Kampo medicines and other natural products. To reproduce the absorption step,
small intestinal cells should be selected for such assays, but the factor of acid hydrolysis
of Kampo medicines may make this difficult. Furthermore, we focused on the strong
performance of this assay system against intracellular and extracellular advanced glycation
end-products (AGEs). AGEs are generated from glucose, fructose, and their metabolites,
and promote lifestyle-related diseases such as diabetes and cancer [20–23]. Whole intra-
cellular AGEs in cells cannot be analyzed with current technology, although some have
been detected in the liver [24], brain [24], kidney [24], lung [25], heart [26–28], skeletal
muscle [29], skin [30], and pancreatic islets [31]. Some AGEs such as glyceraldehyde-
derived pyridinium (GLAP), argpyrimidine, and Nδ-(5-hydro-5-methyl-4-imizazolon-2yl)-
ornithine (MG-H1) can be generated for a duration of 1–2 days [32–34], and the turnover
time of oral and gastric epithelial cells is 7–14 days [35,36]. Therefore, we hypothesize
that it should be possible to detect rapidly generated intracellular AGEs in these cells.
The receptor for AGEs (RAGE) [17,18,37–39] and the toll-like receptor 4 (TLR4) [40–42]
are expressed on the surface of the epithelial cells of interest. Extracellular AGEs (e.g.,
dietary [20,21] or in saliva and blood [43,44]) bind to RAGE and TLR4 and can cause cyto-
toxicity, such as inflammation [37–42]. Therefore, an in vitro assay using oral, esophageal,
and gastric epithelial cells could assess the effects of samples such as Kampo medicines
against the AGEs-RAGE/TLR4 combination. We hypothesize that the action mechanisms
of Kampo medicines can be studied against intra- and extracellular AGE using this novel
in vitro assay.

2. Components in Kampo Medicines and Their Digestion, Absorption,
and Metabolism

Because Kampo medicines contain various crude drugs, each with a number of differ-
ent components [2], research has been undertaken to characterize the main components
and their cell- and organ-level effects. Kishida et al. and Nakanishi et al. used 3D-HPLC to
analyze the components of Gosyajinkigan extract, and reported moconiside, (+)-catechin,
loganin, paconiflorin, penta-O-gallolyglucose, benzozylmesaconie, cinnamic acid, isoacteo-
side, benzyoyl lpaeconiflorin, cinnamaldehyde, 16-ketoalisol A, and paenol. Further as yet
uncharacterized compounds were also detected [8,9]. Hosogi et al. reported that paeoni-
florin, hesperidin, and glycyrrhizic acid were effective chemical markers in analyzing
the components in Ninjin’yoeito extract; they showed the presence of a number of com-
pounds, many of which were not identified [10]. Jin et al. reported the main components in
34 Kampo medicines and their major elements, but were unable to elucidate the complete
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mechanisms of the effects of each medicine [11]. Each component of Kampo medicines is
digested in the stomach, absorbed in the small intestine, metabolized in the liver, and passes
into the blood, which induces various effects on organs [12,13] (Figure 1). Components in
Kampo medicines may be affected in the mouth through the activity of enzymes such as α-
amylase [45], and this enzyme reaction may be the first step in their respective metabolism.
The mechanisms of Kampo medicine effects have, therefore, frequently been investigated,
with in vivo animal models treated with oral administration of the extract [8–10,14,15].
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Figure 1. Schematic diagram of progression of Kampo medicines used as oral administration in a
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the liver, and passed into the blood.

3. Novel In Vitro Assay of Kampo Medicines Effects
3.1. Effects of Kampo Medicine Extracts and Other Natural Products on Dermal, Adipose, and
Cardiac Cells In Vitro

We previously investigated the effects of the extract of Saikokeishito on the premature
senescence of human dermal fibroblasts [16]. In that study, the activity of p53 decreased and
that of adenosine monophosphate (AMP)-activated protein kinase (AMK) α1 (AMPKα1)
increased in the treatment of hydroperoxide-induced premature senescence. Because
p53 promotes senescence and while AMPKα1 inhibits it, Saikokeishito may act to inhibit
cellular senescence. Matsuda et al. reported that an extract of a kava (Piper methysticum)
rhizome, a traditional medicine of Micronesia, induced the generation of melanin in B16F1
(murine melanoma cell line) [46]. Because melanocytes generate and secrete melanin, the
authors measured intracellular melanin in cell lysates and extracellular melanin in the
supernatant when cells were incubated. Yamagishi et al. used a DNA microarray system
and a transcriptase-polymerase chain reaction (RT-PCR) assay to analyze RNA expression
in rat white adipocytes that were treated with the extracts of Orengedokuto, Bofutsushosan,
and Boiogito [47]. Poindexter et al. analyzed the effects of Panax ginseng (a crude drug
used in Kampo medicines [2]) on intracellular calcium levels and the beating of rat primary
cardiomyocytes [48].

Although these four investigations demonstrated the effects of Kampo medicines
or other traditional medicines on cells in vitro, the factors of digestion, absorption, and
metabolism were not incorporated in the assessments [12,13]. The identified components
may, thus, induce different effects on cells in vivo, which is a limitation of these results.

3.2. Effects of Kampo Medicine Extracts on Oral Epithelial Cells In Vitro

Miyano et al. investigated the effects of Hangeshashinto extract on primary hu-
man oral keratinocyte [49]. They found that this extract enhanced scratch-induced ker-
atinocyte migration through mitogen protein kinase (MAPK) and C-X-C chemokine recep-
tor 4 (CXCR4). Furthermore, it upregulated C-X-C motif chemokine ligands 12 (CXCL12)
through extracellular-signal-regulated kinase (ERK). Using in vitro examination, they were
able to employ scratch keratinocyte cells as a model of the lack of oral epithelial area
and easily assess the confluence in the wound area. Hsu et al. investigated the effect of
San-Zhong-Kui-Jian-Tang (Japanese name: Sanshukaigento) on SAS, OC3, and OEC-M1,
which belong to oral squamous cell lines [50]. They showed a substantial increase in the
proportion of cells arrested in the S phase, whereas the migration of SAS and OC3 cells was
inhibited and their proportions in the G2/M phase decreased.
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3.3. Effects of Natural Product Extracts on Esophageal Epithelial Cells In Vitro

Krestry et al. evaluated how the esophageal epithelial cell lines OE33 and JHAD1
responded to exposure to an acidified bile cocktail (pH = 4). They reported that cell types
were acid-sensitive and responded with rapid cell death (40% and 50%, respectively) within
24 h post-treatment. When treating JHAD1 acid-resistant cells (JHAD1-AR) with cranberry-
derived proanthocyanin extract (C-PAC), they found that this significantly induced cell
death via late apoptosis and substantial cellular necrosis [51]. Tesfaye et al. researched the
cytotoxicity of 80% methanol extracts of 22 plants against various cell lines and selected
4 extracts that evaluated IC50 against KYSE-70, an esophageal epithelial cell [52].

3.4. Effects of Natural Product Extracts on Gastric Epithelial Cells In Vitro

Matsuhashi et al. investigated a novel rice extract (Rice Power Extract No. 101) using
gastric epithelial cells treated with ethanol (ulcer model) in vivo and in vitro, showing
that this reduced the ulcer index. In contrast, 3% ethanol decreased the cell viability
of RGM-1 cells (rat gastric epithelial cell line), and rice extract was shown to be able to
recover this cell viability. Furthermore, rice extract significantly abolished the suppressive
effects of the 3% ethanol against RGM-1 cells in a wound restoration assay [53]. Wang
et al. investigated the effects of Hekikaso (Trichodesma khasianum Clarke) leaves on ethanol-
induced gastric mucosal injury in vivo and in vitro by preparing an 80% ethanol extract of
Heikaso leaves (80EETC) [54]. 80EETC was found to moderate gastric injury induced by
oral administration of 100% ethanol in BALB mice, but promoted the migration of RGM-1
cells in a wound-healing assay without, at 0%, and with 5% ethanol.

Both of these experiments suggest that a strength of this assay is in the capacity for
comparing in vitro with in vivo experimental outcomes.

3.5. Application of the Novel In Vitro Assay Using Oral, Esophageal, and Gastric Epithelial Cells to
Assess the Effects of Kampo Medicines

In vitro assay systems using oral, esophageal, and gastric epithelial cells appear suit-
able for investigating the direct effects of Kampo medicines. In this approach, the digestion,
absorption, and metabolism steps can be removed (Figure 2), which is a benefit with re-
spect to the investigation of Kampo medicines, and the results of both in vitro and in vivo
examinations can be compared [53,54]. However, this assay system is not complete because
(i) oral and gastric epithelial cells secrete α-amylase and hydrochloric acid [45,55,56] and
(ii) under normal circumstances, various components in Kampo medicines are digested,
absorbed, and metabolized in specific organs, and their metabolized compounds can affect
the epithelial cells of interest. Despite these limitations, we consider that this in vitro assay
system is a valuable novel approach for the investigation of the effects of Kampo medicines.
If samples of Kampo medicines treated with hydrochloride acid can be prepared [55,56],
then the effects of such medicines as digested in the stomach can be examined (Figure 2).
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4. Use of the Novel In Vitro Assay to Assess the Effects of Kampo Medicines against
Intracellular AGEs
4.1. Various Intracellular AGEs

During the early investigation of AGEs, six categories were established: glucose-derived
AGEs (Glc-AGEs, AGE-1), glyceraldehyde-derived AGEs (GA-AGEs, AGE-2), glycolaldehyde-
derived AGEs (AGE-3), methylglyoxal-derived AGEs (MGO-AGEs, AGE-4), glyoxal-derived
AGEs (GO-AGEs, AGE-5), and 3-deoxyglucosone-derived AGEs (3DG-AGEs, AGE-6) [20].
These groups were named based on the saccharide/metabolite/intermediate that was the
origin of the AGE’s structure. Subsequent research has altered the recognition of AGEs. It
was reported that GLAP [57,58], MG-H1 [59], and argpyrimidine [60] were generated from
glyceraldehyde in test tubes (categorized as GA-AGEs), although MG-H1 and argpyrimi-
dine had been categorized as MGO-AGEs. Senavirathna et al. identified and quantified
GLAP, MG-H1, and argpyrimidine-modified proteins in a human pancreatic ductal cell
line (PANC-1) and human normal pancreatic ductal epithelial (HPDE) cells treated with
glyceraldehyde [32]. In contrast, Wang et al. reported that Nε-(carboxymethyl)-lysine
(CML)-modified proteins in H9c2 (a rat cardiomyocyte cell line), which were treated with
methylglyoxal, increased in Western blot analysis, but did not categorize them as MGO-
AGEs [61]. Basakal et al. used gas chromatography–mass spectroscopy (GC-MS) to show
that both CML and Nε-(carboxyethyl)-lysine (CEL) were generated from methylglyoxal in
the test tube [62]. They investigated various generation conditions, such as the concentra-
tion of lysine, reaction time, and temperature, and found that CEL was generated at much
higher proportions than CML under the same condition (CEL >> CML). Litwinowicz et al.
determined the structure of novel melibiose-derived AGEs (MAGE) and classified them as
AGE-10 [63].

Due to the increased availability of technology suitable for the identification and quan-
tification of AGEs, such as nuclear magnetic resonance [64,65], Western blot [29,61], immunos-
taining [25,31], slot blot [66–68], ELISA [27,69–71], GC-MS [62], MALDI-MS [34,72], and
ESI-MS [32,73–75], individual AGEs can be increasingly investigated to reveal novel findings.

4.2. Use of the Assay to Assess the Effects of Kampo Medicines against Rapidly Generated
Intracellular AGEs

Current technology does not allow the analysis of complete intracellular AGEs in cells;
however, more limited analysis of AGEs is possible under specific conditions. We focused
on several AGEs that can be generated to persist for a short period (1–2 days) [20,32,74,76];
in comparison, the turn-over time of oral and gastric epithelial cells is 7–14 days [35,36].
Methylglyoxal, glyceraldehyde, and glycolaldehyde are able to rapidly generate
AGEs [59,60,74]. Senavirathana et al. identified GLAP-, MG-H1-, and argpyrimidine-
modified proteins in both PANC-1 and HPDE cells treated with glyceraldehyde for 48 h [32].
Nokin et al. and Oya-Ito et al. prepared argpyrimidine-, MG-H1-, and CEL-modified re-
combinant human heat shock protein (HSP) 90 and HSP27 at 37 ◦C for 24 h in a test
tube [33,34]. Suzuki et al. reported that glycolaldehyde was able to generate CML in
MC3T3-E1 (murine osteoblast cell line) within 24 h and that CML may be rapidly generated
if cells quickly produce a high amount of glycolaldehyde [74]. Kinoshita et al. prepared
Glc-AGEs-modified BSA at 37 ◦C for 4 weeks in a test tube [28]. In the investigation of
intracellular AGEs in oral and gastric epithelial cells, rapidly generated AGEs (e.g., GLAP-,
MG-H1, argpyrimidine-, and CEL-modified proteins) may be suitable as targets. Oya-Ito
et al. reported that some arpyrimidine-modified proteins were generated in RGM-1 and
RGK-1 (an N-methyl-N’-nitro-N-nitrosoguanidine-induced mutant of a tumor in RGM-1)
cells incubated in normal Dulbecco’s modified Eagle medium and Ham’s F-12 medium
(DMEM/F12) [34]. Because they did not treat the cells with methylglyoxal or glyceralde-
hyde, these argpyrimidine-modified proteins may have been generated from intracellular
methylglyoxal/glyceraldehyde. Based on these reports, it may be possible to investigate
the relationship between hyperglycemia, ulcers, and rapidly generated intracellular AGEs.
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Furthermore, the action mechanisms of Kampo medicines against oral and gastric epithelial
cells that rapidly generate intracellular AGEs can be revealed (Figure 3).
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Kampo medicines on intracellular advanced glycation end-products (AGEs) rapidly generated in
oral and gastric epithelial cells. RAGE: receptor for AEGs. TLR4: toll-like receptor 4.

5. Use of the Novel In Vitro Assay to Assess the Effects of Kampo Medicines against
Extracellular AGEs
5.1. Extracellular AGEs Released from Organs and Ingested from Foods and Beverages

Intracellular AGEs in some organs that are released into extracellular fluids, such
as saliva, blood, and urine [43,44,77,78], are termed extracellular AGEs. The relationship
between extracellular AGEs and diseases, such as diabetes and atherosclerosis, has been
investigated [43,44,78]. If these relationships can be proved, extracellular AGEs could
represent a biomarker against disease.

Litwinowicz et al. showed that a MAGE they synthesized, identified, and named AGE-
10 existed in blood, and proved that it was associated with alcoholic hepatitis [65]. Dietary
AGEs have received attention as a type of extracellular AGEs that are generated in foods
and beverages and ingested daily [20,21,39,79,80]. CML is the product most commonly
used to estimate dietary AGEs in the body and has a well-characterized structure [43].
Although CML may be generated in the body only slowly [18], there is the possibility that
humans take in a large amount of CML as dietary AGEs. Chen et al. focused on CML, CEL,
and MG-H1 as dietary AGEs consumed by humans [21]. Extracellular AGEs can induce
cytotoxicity, such as inflammation, via RAGE [81,82] and TLR4 receptors [83,84]. While
studies have investigated the interaction of dietary AGEs, such as CML-modified BSA,
with the cells of some organs (e.g., liver, heart, kidney, and brain), these experiments lacked
the three steps of digestion, absorption, and metabolism.

5.2. Using the Novel In Vitro Assay with Oral, Esophageal, and Gastric Epithelial Cells to Assess
the Effects of Kampo Medicines against Extracellular AGEs

RAGE is expressed on the surface of oral [17], esophageal [17], and gastric [41] ep-
ithelial cells, allowing extracellular AGEs to bind to and induce effects against these cells.
TLR4 is also expressed in all three cell types [38–41,44,85]. In the investigation of the
effects of extracellular AGEs via RAGE/TLR4 in these cells in vitro, digestion, absorption,
and metabolization can be excluded, as discussed above, and an assessment of the effects
of samples such as Kampo medicines against AGEs-RAGE/TLR4 combinations is, thus,
practical (Figure 4). We expect that the investigation of dietary AGEs and Kampo medicines
will be promoted using this assay.
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Kampo medicines against extracellular advanced glycation end-products (AGEs) that can bind to
receptor for AEGs (RAGE) and/or toll-like receptor 4 (TLR4) in oral, esophageal, and gastric epithelial
cells. Yellow AGEs: AGEs released from organs. Pink AGEs: dietary AGEs.

5.3. Potential of the Novel Assay

This novel assay is suitable for the investigation of the relationships between lifestyle-
related diseases or cellular dysfunctions, intracellular/extracellular AGEs, and the effects
that Kampo medicines may exert against them. The effects of Kampo medicines can
be assessed while bypassing the influence of digestion, absorption, and metabolism on
the examined compounds. While other, unrelated natural products, such as different
Eastern traditional medicines, may also be assessed in this manner, we consider that
Kampo medicines represent more suitable candidates due to their ensured quality and
conformance to the Japanese Pharmacopoeia [2,3]. We suggest that the mechanisms of
intracellular/extracellular AGEs have the potential to induce ulcers and to promote tu-
mors in three kinds of epithelial cells. Although the cytotoxicity of intracellular AGEs in
oral and esophageal cells remains unclear, clear relationships between such AGEs and
gastric ulcers and tumors have been reported [34,86,87]. Naito et al. and Takagi et al.
reported that an argpyrimidine-modified peroxidoxin VI protein was detected in gastric
cells in diabetic model mice, and found that methylglyoxal modification of proteins delayed
gastric ulcer healing [86,87]. Oya-Ito et al. detected argpyrimidine-modified HSP25 in
RGK-1 cells, but not in RGM-1 cells [34]. Because these AGE-modified proteins are of the
argpyrimidine-modified type, we propose that rapidly generated AGEs may be suitable
targets for such investigations into AGE associations with lifestyle-related diseases or organ
dysfunction. Because this in vitro assay constitutes a simple system, the cells of which can
be incubated in media in dishes or plates, researchers can make use of it to treat the cells
with metabolites/intermediate compounds from glucose and fructose metabolism and
collect both cells and supernatant. Intracellular AGEs can then be identified and quantified
by using Western blot [29,61], immunostaining [25,31], slot blot [66–68], ELISA [27,69–71],
GC-MS [62], MALDI-MS [34,72], and ESI-MS [32,73–75]. mRNA levels, intracellular protein
levels, secreted/released proteins (e.g., cytokine), and the type of cell death (e.g., necro-
sis or apoptosis) can be determined with PCR [88,89], Western blot [90,91], slot blot [66],
ELISA [92–94], MALDI/ESI-MS [90], microscope [95,96], or flow cytometry [95,97–99].
Specific investigation methods such as the measurement of membrane potential, DNA
biosynthesis assessment, cell viability assay, and enzyme assay in microsomes can also
be applied because researchers can obtain each reagent and instrument required for ex-
amination [100–103]. Extracellular AGEs may be able to promote ulcers in three kinds of
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epithelial cells via the AGEs-RAGE/TLR4 axis, although this may also be caused by other
factors (such as anti-cancer drug side effects [7]). Researchers may employ AGEs obtained
from manufacturers or prepared by themselves as models of AGEs in saliva, blood, food,
and beverage against cells [104–106], and these methods are applicable to extracellular as
well as intracellular AGEs.

6. Conclusions

The analysis of the effects of Kampo medicines on intra/extracellular AGEs in three
kinds of epithelial cells in vitro is a novel model.
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AGEs Advanced glycation end-products
CEL Nε-(carboxyethyl)-lysine
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ESI Electrospray ionization
ESI-MS ESI-mass spectrometry
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GC Gas chromatography
GC-MS GS-mass spectrometry
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MALDI Matrix-associated laser desorption/ionization
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