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Abstract: The microbiome and gut-skin axis are popular areas of interest in recent years concerning
inflammatory skin diseases. While many bacterial species have been associated with commensalism of
both the skin and gastrointestinal tract in certain disease states, less is known about specific bacterial
metabolites that regulate host pathways and contribute to inflammation. Some of these metabolites
include short chain fatty acids, amine, and tryptophan derivatives, and more that when dysregulated,
have deleterious effects on cutaneous disease burden. This review aims to summarize the knowledge
of wealth surrounding bacterial metabolites of the skin and gut and their role in immune homeostasis
in inflammatory skin diseases such as atopic dermatitis, psoriasis, and hidradenitis suppurativa.
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1. Introduction

Commensal microbiota of the skin and gastrointestinal (GI) system have been linked to
the homeostasis and pathogenesis of inflammatory skin diseases. Specific bacterial species
have been shown to regulate pro- and anti-inflammatory responses in the skin. The inter-
play between the microbiome and skin inflammation has been associated with conditions
such as atopic dermatitis, psoriasis, connective tissue diseases, and other autoimmune in-
flammatory disorders such as lupus erythematosus [1]. Relationships between the immune
system and these inflammatory skin conditions have been well studied. However, the
influence of bacterial metabolites on immune regulation has only begun to be investigated
for its subsequent application to skin inflammation. The main metabolites associated with
immune physiology include short-chain fatty acids (SCFAs), tryptophan metabolites, and
amine derivatives such as trimethylamine N-oxide (TMAO) [1–4]. The gut-skin axis has
become a topic of increasing interest in recent years due to the ability of next-generation
sequencing to characterize microbial compositions as well as the discovery of concomitant
gut alterations in those with skin disorders [5–7]. Disruption of this relationship and its
implications on the pathophysiology of inflammatory skin conditions have led to questions
of whether clinical interventions pose efficacy in re-establishing a homeostatic balance
between the gut and skin [8]. Debate in this area of research currently discusses whether
microbial dysbiosis is a causation or result of inflammatory skin diseases and whether
certain metabolites play different roles in the skin and GI tract.

This review serves to provide a concise summary of recent literature regarding specific
bacterial metabolites of both the skin and gastrointestinal tract implicated in inflammatory
skin conditions such as atopic dermatitis, psoriasis, hidradenitis suppurativa, and others.

2. Discussion
2.1. Cutaneous Microbiome in Atopic Dermatitis

The pathogenesis of atopic dermatitis (AD) is multifactorial, including aberrant im-
mune responses, skin barrier defects, and environmental allergen and microbe effects.
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Environmental cutaneous exposures have been well-established in this dynamic disease-
causing eczema flares and superimposed infections [9]. The cutaneous immune response
is essential due to the increased trans-epidermal water loss seen in AD skin; however,
the gut immune response has yet to be as thoroughly elucidated in its effects [10]. This
increased susceptibility to infection that affects 15–20% of children puts this population at a
significantly higher risk of developing skin and soft tissue infections, eczema herpeticum,
bacteremia, osteomyelitis, septic arthritis, and endocarditis [11,12]. Up to 90% of people
with AD are heavily colonized with Staphylococcus aureus, and the enterotoxins (superanti-
gens) produced by this bacteria may contribute to keratinocytes apoptosis, skin barrier
defects, and mast cell degranulation [9,10,13]. Cutaneous barrier dysfunction via genetic
and environmental factors contributing to AD allows for aberrant alteration of commensal
bacteria. Recent literature on the AD skin microbiome reveals increased density of lesional
AD skin overall with increased relative abundance and burden of S. aureus. Microbiome
analysis of eczematous lesions in mice has revealed prominent dysbiosis similar to that
of humans, with skewed prominence of S. aureus and Corynebacterium spp. [14]. Numer-
ous studies have demonstrated dysbiosis of the skin microbiota in AD, as evidenced by
Alam et al.’s 2022 review on microbiota manipulation for AD treatment [15].

In comparison to the gut microbiota, skin microbiota is thought to have different
metabolic functions, be nutrient-poor, and be more acidic in nature [16]. The two are
often compared as part of the body’s overall microbiome, but play very different roles
in terms of environment and immune regulation. The stratum corneum contains amino
acids derived from keratin and dead keratinocytes that are thought to provide substrates
for tryptophan (Trp) metabolism by the skin microbiota [16,17]. Tryptophan acts as an
energy source and immunomodulator through other metabolites, such as indoles and their
derivatives [18]. These indole derivatives mediate interactions between Escherichia coli and
hosts and serve to tighten gut epithelial junctions [16,19]. Chng et al. conducted a whole
metagenome analysis of 80 skim microbiome samples to reveal insight into how the skin
surface microenvironment and immune system cross-modulate each other and found the
tryptophan metabolic pathway to be attenuated in the skin microbiota of patients with
AD [16,20]. A subsequent study by Yu et al. revealed that indole-3-aldehyde (IAId), a skin
microbiota-derived Trp catabolite, negatively regulates skin inflammation in patients with
AD [16]. These Trp derivatives act as ligands for aryl hydrocarbon receptors (AhR) that have
been suggested to play an essential role in many physiological and pathological processes
in the skin [21,22]. Activation of this AhR signaling pathway in epidermal keratinocytes
initiates inflammatory skin lesions and has been implicated in inflammatory diseases such
as psoriasis and AD [21,23]. With the findings from Yu et al. regarding IAId, it is thought
that perhaps its stimulation of AhR may interact with pro-inflammatory thymic stromal
lymphopoietin (TSLP) promoter regions in keratinocytes to suppress inflammation and
promote immune homeostasis in the skin of healthy subjects [16,21].

It has also been suggested that AhR expression levels in peripheral blood mononuclear
cells are higher than in AD patients and may be associated with eczema area and severity
index scores [21,24]. Investigations into this pathway prompt the notion that IAId and
tryptophan derivatives positively suppress inflammatory responses associated with AhR
activation in AD. Additionally, Liu et al. investigated the role of Langerhans cells and
their response to microbial metabolites of the skin [25]. They found that IAId acted as
a negative regulator on LCs by promoting activation of AhR and IL10 production and
inhibition of LC-induced CD4+ T cell proliferation. Through this pathway, these tolerogenic
properties of LCs may be utilized for future treatment of inflammatory skin diseases [25].
According to other studies, some AhR ligands activate the antioxidative transcription factor
Nrf2, attenuating inflammatory responses in AD and psoriasis [21,26,27]. In this case,
the use of AhR agonists such as tapinarof have confirmed efficacy in clinical studies for
AD [21,28]. While it is evident that the AhR pathway is implicated in AD pathogenesis,
further delineation is needed to address which ligands serve as optimal regulators of anti-
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inflammation and whether therapeutic targets related to tryptophan and indole-related
derivatives exist.

In atopic dermatitis lesions, S. aureus has also been found to co-exist with other com-
mensal bacteria on the skin surface, such as Cutibacterium acnes (C. acnes) and Staphylococcus
epidermidis (S. epidermidis) [29,30]. Fermentation products of carbohydrates such as short-
chain fatty acids such as propionic acid are produced by C. acnes and have been shown to
have anti-inflammatory activities and regulate the production of cytokines such as TNF-a,
IL-2, IL-6, and IL-10 [29,31]. S. epidermidis also ferments glycerol to butyric acid and acetic
acid that suppress the growth of methicillin-resistant S. aureus infections [29]. Butyric
acid has functions, including inhibiting histone deacetylases in keratinocytes to suppress
inflammation and attenuate lipopolysaccharide-induced NFkB activation and nitric oxide
production [29,32,33]. SCFAs also regulate the ability of immune cells to migrate towards
inflammatory loci in AD lesions [34]. Recently, Traisaeng et al. demonstrated that S. epi-
dermidis could mediate glycerol fermentation to reduce skin colonization by AD S. aureus
and that high concentrations of butyric acid can kill AD S. aureus. Their previous data also
showed propionic acid effectively killed MRSA strains by reducing intracellular pH [29,35].
Additionally, a 2023 comprehensive review by Stec et al. concerning gut microbiota and
dermatological diseases consolidated data from multiple studies that associate AD dys-
biosis with low butyrate and propionate levels and the bacteria that produce them, as
well as the finding that higher butyrate levels correlated with less severe disease [1,36–40].
Dysregulated fecal SCFAs and valeric acid production were also associated with a higher
prevalence of disordered microbiota and AD development risk [1,39,41,42]. These findings
lend interest to the possibility of optimizing butyric acid metabolite concentrations via
therapeutics. SCFAs also act to dampen IgE allergic responses, influence cholesterol and
ceramide concentrations, and decrease transepidermal water loss for the maintenance of
the epidermal barrier in AD and other inflammatory skin diseases [1]. A depiction of their
functions can be seen in Figure 1.
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The microbial makeup of the skin is strongly influenced by intraspecies competition
and antimicrobial peptide production by both the host and competitive strains of bacte-
ria [43]. Commensal populations of coagulase-negative staphylococci (CoNS) can inhibit
nonresident pathogenic bacteria such as S. aureus, group A. streptococci, and Escherichia
coli through the production of bacteriocins [43–47]. Small cyclic peptides, known as autoin-
ducing peptides (AIPs), are also produced by CoNS to kill S. aureus, specifically [43,48,49].
However, most patients with AD lack protective strains of CoNS in addition to deficiencies
in AMPs. Nakatsuji et al. isolated a strain of Staphylococcus hominis significantly lower in
those with AD vs. healthy adults and conducted a phase I randomized clinical trial with its
use topically [43]. This method of bacteriotherapy sought to reestablish the skin commensal
microbiome by replenishing protective microbes and their metabolites against damaging S.
aureus. The primary endpoint of safety was met, and although eczema severity was not
significantly different, secondary endpoints were met for significant decreases in S. aureus
were seen [43]. Improvement in local eczema severity was suggested by post-hoc analysis
and lend hope towards the future success of targeted microbiome transplant for AD [43].

While S. aureus has been highly implicated as a negative modulator of AD exacerba-
tion, some studies have observed overlap in areas of skin affected by AD and areas typically
colonized with gram-negative bacteria in healthy controls, but not in AD patients [30,50–52].
This suggests the possibility of a homeostatic role of commensal gram-negative bacteria in
the skin microbiome. Myles et al. discovered that the gram-negative bacteria Roseomonas
mucosa isolated from healthy volunteers improved outcomes in AD mice and cell models. In
contrast, AD-sourced R. mucosa had no impact or worsened outcomes [52]. In a phase I/II
safety and activity placebo-controlled clinical trial for topical microbiome transplantation
with R. mucosa, treatment was associated with significant decreases in subjective and objec-
tive measures of disease severity, topical steroid requirements, and S. aureus burden [52].
Follow-up studies showed skin improvements and colonization up to 8 months afterward.
The mechanism for its efficacy was also further studied, suggesting that the production of
sphingolipids by R. mucosa may have contributed to the therapeutic impact [53]. Sphin-
golipids and their downstream antimicrobial peptides are deficient in the skin of people
with AD as the sphingolipid pathway is linked to the control of S. aureus, epithelial barrier
maintenance, and immune regulation [53–56]. Subsequent studies on 14 patients prior
to and after treatment with R. mucosa demonstrated increases in sphingomyelin and re-
lated lipids, suggesting alterations in arachidonic metabolism with treatment [53]. Further
clinical trials are warranted to investigate the long-term efficacy and optimal therapeutic
interventions for both R. mucosa and other gram-negative microbial commensal transplanta-
tions for AD. Subsequently, a biotherapy has been developed as a live bacterial formulation
skin dressing with R. mucosa, hypothesized to colonize and restore the skin microbiome
and suppress commensal S. aureus and inflammatory responses [57].

2.2. Gut Microbiome in Atopic Dermatitis

The gut microbiome has become an increasing area of popularity in studying its mod-
ulatory effects on systemic inflammation, specifically inflammatory dermatoses [1,58]. One
of the focused realms of study related to this topic is the use of probiotic bacterial metabo-
lites for their positive effects on inflammatory suppression and homeostatic maintenance.
These live microorganisms are thought to restore function in gut dysbiosis and stimulate
the production of SCFA metabolites generated by anaerobic bacteria [59,60]. Regulation of
the immune response by Lactobacillus spp. have gained attention for their strong ability
to decrease Th1, Th2, and Th17-related cytokines and increase IL-10 and CD4+CD25+
regulatory T cells [60–64]. It has been shown to alleviate AD via modulation of gut mi-
crobiota [63]. A study by Kim et al. showed that with the administration of Lactobacillus
fermentum in AD-induced mice, significant reductions in serum IgE, tissue mast cells and
eosinophils, and Th2 related cytokines, with increases in anti-inflammatory cytokines IL-10
and transforming growth factor-B [60]. Metabolic analysis of the cecum showed significant
changes in treated mice in levels of amino acids, including methionine, phenylalanine,
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serine, and tyrosine, and SCFAs such as acetate, butyrate, and propionate [60]. Further,
Matsumoto et al. also investigated the effects of probiotics with the administration of
Bifidobacterium animalis in yogurt. This double-blind, placebo-controlled crossover study
found that scores of itch and burning improved to a greater extent, IFN-y serum levels
significantly increased, and fecal spermidine and butyrate concentrations significantly
increased [65,66]. The aforementioned comprehensive review of microbial manipulation by
Alam et al. consolidated all recent studies regarding probiotic administration with further
efficacy surrounding Lactobacillus spp. [15,67–70]. A recent metanalysis of randomized
control trials found that intake of L. rhamnosus during pregnancy significantly lowered the
risk of infantile development of AD at 2 and 6–7 years of life [1,71]. The findings from
these studies suggest the plausibility of gut microbiome alteration to produce these various
metabolites through probiotic therapeutics.

Further, fecal microbiota transplantation (FMT) has even been suggested as a potential
new therapy for AD. A recent study aimed to restore gut microbiota in AD mice via FMT
to ameliorate AD-induced allergic responses [72]. Gut metabolite levels were determined
by fecal SCFA contents and increased post-FMT [72]. FMT also restored the balance of
Th1/Th2, modulated T-regs, reduced IgE levels, and the number of mast cells, eosinophils,
and basophils, suggesting suppression of AD immune responses [72]. Conclusions from
this study suggested FMT may be more effective than probiotics for long-term efficacy
of restoring gut dysbiosis and subsequent AD treatment. However, it should be kept in
mind that the risks of FMT are not well known, and those with existing gut dysbiosis
may have a more compromised barrier and be more susceptible to these risks [15]. While
many inflammatory pathways and cytokines are well established in AD pathogenesis and
regulation, Hou et al. demonstrate that there is more to be discovered through the cytokine
IL-37b of the IL-1 family [73–75]. In IL-37b knock-in mice, this cytokine showed a distinct
intestinal microbiota pattern and restored gut microbiota diversity [73]. This occurred
via regulation of the in vivo autophagy mechanism mediated by intestinal metabolite 3-
methyladenine, adenosine monophosphate, 2-hydroxyglutarate, purine, and melatonin,
suggesting IL-37b as a potential anti-inflammatory cytokine for AD treatment [73]. Human
models and further delineation of ways to upregulate this cytokine in the gut of those with
AD is needed. A recent article published in March of 2023 brought to light considerations of
the gut virome and its effects on bacterial metabolism in the context of the entire microbial
environment, suggesting a possible mechanism for bacterial phage contributions to overall
gut health and skin health [76]. They observed fecal samples in a 2-year-old boy over six
months and found temporal correlations among virome alterations, microbial metabolite
changes such as downregulation in the catabolism of aromatic amino acids, and symptom
remission [76].

Overall, it has become apparent from recent literature that both cutaneous and gut
commensal microbiota play a significant role in AD disease pathogenesis. Alterations of
specific flora populations contribute to overall immune homeostasis of the skin. With varia-
tions in microbial makeup, subsequent production and signaling of bacterial metabolites
are also altered and affect disease development and exacerbations systemically and on the
local level. Future studies are indicated to optimize the production of anti-inflammatory
bacterial metabolites by maximizing colonization of beneficial commensal microbes and
minimizing aberrant S. aureus growth in AD susceptible skin areas. A summary of key
studies related to specific metabolites associated with AD can be found in Table 1.
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Table 1. Summary of studies related to bacterial metabolites and their role in AD homeostasis.

Author Metabolite or Microbe Gut or Skin
Microbiota Findings/Conclusion

Chng et al. [20] Tryptophan Skin Metagenome analysis revealed attenuation of
Trp metabolic pathway in AD patients

Yu et al. [16] Indole-3-aldehyde
(Trp derivative) Skin

Trp metabolites of skin microbiota play a
significant functional role in AD and IAId

induced AhR interactions may promote skin
immune homeostasis

Liu et al. [25] Indole-3-aldehyde
(Trp derivative) Skin

IAId activation of AhR in LCs inhibit CD4+ T
cell proliferation and induce IL-10 production

and immune tolerance

Nakatsuji et al. [43] Staphlococcus hominus Skin
Bacteriotherapy with CoNS may help restablish

commensal bacterial metabolites to protect
against S. aureus

Traisaeng et al. [29] Butyric acid Skin
Production of butyric acid derivatives by S.

epidermidis inhibit growth of S. aureus in
AD patients

Wang et al. [35] Propionic acid Skin
Propionic acid and its esterified derivative

provide efficacy as antimicrobial agents against
AD S. aureus

Myles et al. [52] R. mucosa &
sphingomyelins Skin

Topical treatment was associated with
amelioration of disease severity, improvement in
barrier function, and reduction in both S. aureus

and need for topical steroids

Myles et al. [53] R. mucosa &
sphingomyelins Skin

Mouse models of AD found production of
sphingolipids by R. mucosa, cholinergic signaling,

and flaggelin expression may contribute to
therapeutic impact in the previous trial [52]

Kim et al. [60]
Lactobacillus spp. for

production of multiple
metabolites

Gut

Administration of probiotic microorganisms
reduced inflammatory immune responses
associated with AD and increased levels of

amino acids and SCFAs

Matsumoto et al. [65] Fecal spermidine
and butyrate Gut

Bifidobacterium animalis in yogurt improved
scores of itch and burning and significantly

increased IFN-y serum levels

Kim et al. [72] FMT Gut

FMT resulted in an increase in levels of SCFAs as
gut metabolites and decreases in blood

parameters suggested of AD-induced allergic
responses with suggested prolonged efficacy

compared to probiotics

Hou et al. [73] IL-37b cytokine Gut

IL-37b restored gut dysbiosis in terms of
diversity and could ameliorate

eosinophil-mediated allergic inflammation via
intestinal bacteria and metabolite modulation

Chu et al. [76] Lytic crAssphage
viral strains Gut

Gut virome phage alterations manipulate gut
bacterial production of aromatic amino acids and

AD symptoms

2.3. Skin Microbiome in Psoriasis

Psoriasis is another inflammatory skin disease with multiple subtypes and heavily
immune-mediated pathogenesis with a predominant IL-23/Th17 axis [77]. Inflammation of
the skin and joints is the most common presentation, but it has been identified as a systemic
entity due to its associated comorbidities. These include an increased risk of developing
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hyperlipidemia, coronary artery disease, and type 2 diabetes compared to controls [77,78].
In addition to metabolic syndrome, psoriasis has been associated with inflammatory bowel
disease. It has also been postulated that nutrition and diet influence psoriatic patients in
that saturated fatty acids, simple sugars, red meat, and alcohol are thought to exacerbate
disease through many immune mechanisms and gut dysbiosis [79]. Roles have also been
suggested for vitamins D and B12, SCFAs, genistein, selenium, and probiotics to ameliorate
psoriasis or its comorbidities [79].

SCFAs such as butyrate that were heavily discussed surrounding AD also play a role
in psoriasis via their induction of differentiation of thymic T regulatory cells and naïve
CD4+ T cells into peripheral Tregs by histone deacetylase inhibition [79–81]. T regs in
psoriasis patients have been reported to have reduced suppressive activity that normalizes
with sodium butyrate administration and IL-10 levels and expression of Foxp3, IL-17, and
IL-6 in psoriatic skin lesions [82,83]. Sodium butyrate also enhances keratinocyte differenti-
ation and mRNA of filaggrin and transglutaminase A, while promoting cornified envelope
formation of keratinocytes and downregulating their proliferation [82,84]. SCFAs can be
produced by Cutibacterium acnes for homeostasis and act via G-protein-coupled receptors
(GPCRs) [79,85]. Certain GPCRs in psoriatic skin have decreased expression compared to
control skin, suggesting perhaps an absence of normal SCFAs produced by commensals as
well as a reduced ability to respond to them in psoriatic skin [79,86]. Absence of beneficial
bacterial phyla have been implicated as potential mediators of dysregulation and inflam-
mation in the skin and joints. The AhR tryptophan signaling pathway has been implicated
in psoriasis, much like in AD [21,23]. AhR-mediated Th17 activity upregulates the produc-
tion of IL-22, a cytokine that contributes to the increased proliferation of epidermal cells
and whose plasma concentrations have been correlated with disease severity [21,87–91].
6-formylindolo[3,2-b]carbazole (FICZ) is a ligand of AhR that is known to reduce inflam-
matory responses in skin lesions and psoriasis [21,92]. It has been suggested that the
microbiome may modulate some properties of AhR signaling, and optimal therapeutics
or interventions such as FICZ regulation and tryptophan dysregulation require further
investigation [21]. AhR agonists have ameliorated imiquimod-induced psoriasis in mouse
models and may be a therapeutic target [17].

2.4. Gut Microbiome in Psoriasis

Intestinal overrepresentation of Escherichia coli, Salmonella, Campylobacter, Helicobacter,
Alicaligenes, and Mycobacterium species has been observed in psoriasis as well as an in-
creased Firmicutes-to-Bacteroidetes ratio (F/b) [93]. Studies have shown decreased intestinal
microbiome diversity in psoriasis patients compared to controls and reduced beneficial
microbiota such as Parabacteroides, Coprobacillus, and Faecalibacterium prausnitzii [79,94,95].
These are known bacteria to produce SCFAs, and Olejniczak-Staruch et al. concluded from
previous studies that intestinal dysbiosis in psoriasis and psoriatic arthritis is characterized
primarily by lower production of butyrate due to this dysbiosis [94]. In turn, the intestinal
barrier is weakened and becomes more susceptible to systemic bacterial-induced inflam-
mation and the formation of psoriatic phenotypes. While there have been reports of no
difference in SCFA fecal concentrations in psoriasis, others confirm reductions in concentra-
tions of enzymes involved in the synthesis of butyrates and decreased abundances of these
SCFA-producing bacteria [93,94,96]. Fecal samples have also revealed reduced expression
of receptor activator of nuclear factor kappa-B ligand (RANKL) that may be due to bacteria
typical of psoriasis and psoriatic arthritis or indicate the modulating effect of this molecule
on systemic inflammation [93,94].

There has been discussion in the literature surrounding an association between multi-
ple inflammatory diseases such as psoriasis and trimethylamine oxide (TMAO), a molecule
involved in cholesterol and cardiovascular disease processes [93,97,98]. This gut metabolite
has been associated with the elevated F/b ratio seen in psoriasis and is produced by bacteria
capable of metabolizing carnitine to TMA [93]. This associated increase in F/b ratio may
result in the limitation of SCFA and butyrate production and may predispose people with
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psoriasis to the development of metabolic syndrome [93,99,100]. Correlations between
other bacterial species such as Vibrio, Ferruginibacter, Romboustia, and psoriasis have also
been drawn in addition to specific metabolites [101]. Chen et al. showed a significant
positive association of psoriasis with itaconic acid, crotonic acid, and heptadecanoic acid,
all involved in lipid metabolism. Negative associations were also made with several lipids,
xanthine, d-ribose 5-phosphate, and uric acid, suggesting a role of skin microbial influence
on lipid and nucleotide metabolism [101]. Conclusions of this study include evidence
for underlying mechanisms of skin microbiome-mediated regulation of blood and lipid
metabolism in addition to inflammatory responses in psoriasis patients [101]. People with
psoriasis and concomitant metabolic syndrome have also been observed to have higher lev-
els of lipopolysaccharide-binding protein (LBP), an indicator of serum LPS, a toxic bacterial
byproduct [102]. With the known associations of immune dysregulation and epidermal
proliferation in psoriasis, identification of the most prominent metabolite contributors will
be essential to the understanding of comorbidities and future development of therapeutics
and interventions to manipulate disease state in this patient population.

2.5. Micriobiota in Additional Inflammatory Cutaneous Conditions

While AD and psoriasis are the inflammatory dermatoses that have been more ex-
tensively investigated in their pathogenesis related to bacterial metabolites, there have
been studies related to the subject in hidradenitis suppurativa (HS), acne, and rosacea
as well. Crohn’s disease has been reported as being the most associated disease with
HS [103]. A pooled data analysis even suggested a prevalence of HS in IBD patients of
12.8% [103]. While both genetic and environmental factors such as smoking have been
suggested as associations, recent findings look towards an interplay between intestinal
and skin microbiota. HS lesions have an abundance of S. aureus and coagulase-negative
staphylococci, although different cutaneous regions have been seen to have different mi-
crobial communities [104,105]. One study has even shown the presence of S. epidermidis
biofilms present in hair follicles and sinus tracts [103,106]. It has been hypothesized that un-
regulated inflammation may cause lesions typical of both HS and IBD, which need further
exploration in terms of specific metabolites that may relate to the pathogenesis of immune
dysregulation and disease exacerbation in both [103]. While depletion of Faecalibacterium
prausnitzii was seen in psoriasis patients, when studied in HS, its relative abundance was
only decreased in cases where patients had concomitant IBD and HS [95].

Trimethylamine oxide (TMAO) has also been investigated as a bacterial metabolite in
HS. Barrea et al. found increased circulatory TMAO levels in HS patients and correlations
of these levels with increased HS Sartorius scores after adjustment for body mass index
and waist circumference [107,108]. Those with more severe Hurley stage II disease also had
higher TMAO levels compared to stage I [107,108]. While no studies have explored toxins
such as LPS in HS, increased levels of LBP in psoriasis and obesity may also be present
in excess in HS [107,109,110]. Luck et al. hypothesize that perhaps bacterial pathways
leading to the production of harmful metabolites may be associated with or contribute to
HS development in addition to microbial dysbiosis [107]. The exact pathogenesis of HS is
still up for debate, but is proposed to be multifactorial with infectious components. In a
summary of HS research during the last 15 years in the European Hidradenitis Suppurativa
Foundation official journal, authors found downregulation of alarmins/antimicrobial
peptides of S100A and S100A9 and increased expression of antimicrobial cathelicidins LL-
37 in HS lesional skin, suggesting innate barrier dysfunction and development of altered
host-microbiome crosstalk [111]. Additionally, one of the theories related to smoking-
induced HS exacerbation is the finding that nicotine promotes the growth of S. aureus and
alters the microbiome and synthesis of antimicrobial peptides such as hbD2, rendering hair
follicles weaker against pathogens [111].

Alterations in metabolic pathways by bacterial microbes include those involved with
amino acids, carbohydrates, and lipids in HS [112,113]. Schell et al. recognized a consensus
from multiple studies revealing increased abundances of anaerobic bacteria and oppor-
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tunistic pathogens that seem to replace normal commensals such as Cutibacterium in HS
skin [112–117]. Multiple metabolite synthesis pathways are dysregulated in HS including
ATP and extracellular nucleotide receptors, the NLRP3 inflammasome, and the produc-
tion of specific cytokines [113,118]. Amino acid and tryptophan sensing are also altered,
including the aryl hydrocarbon receptor, as seen in both AD and psoriasis [113,119]. Tryp-
tophan is aberrantly catabolized into kynurenine, and catabolism into indole metabolites is
reduced, which in turn reduces AhR activation that may drive inflammation in HS due to
microbiome dysbiosis [113,119]. Mass spectrometry has also identified increased levels of
SCFAs in HS skin, which is contradictory to the decreased presence of SCFAs and butyrate
in AD and psoriasis, but SCFAs have limited study in HS pathophysiology [113,120].

Acne is another skin inflammation disease where SCFAs produced by C. acnes on
the skin in hypoxic, lipid rich conditions have been reported to have a pro-inflammatory
effect on epidermal keratinocytes [121,122]. Keratinocytes treated with SCFAs also have
shown increased proinflammatory cytokine responses. This effect contrasts the well-
established anti-inflammatory effects of SCFAs on cells of myeloid origins and the reported
benefits of SCFAs in the gut microbiome in other inflammatory dermatoses [121,123–125].
Sanford et al.’s 2019 study supported speculation that SCFAs from P. acnes drive cytokine
expression prior to follicular skin rupture and may influence local pilosebaceous units and
surrounding skin [121]. Special considerations must be taken for acne-specific skin sites
that may contribute to the supposed contradictory effects of SCFAs in other inflammatory
skin diseases. For example, acne-prone skin is characterized by high amounts of free fatty
acids in sebum, such as lauric, palmitic, and oleic acids that induce antimicrobial peptide
expression from sebocytes [121,126]. Authors note that the local follicular environment and
its antimicrobial processes may be altered by fatty acids from the host, resident microbes,
and their bacterial metabolites to induce inflammation [121]. Further investigation into
types of SCFAs produced by various microorganisms and their effect on host responses is
needed to characterize their deleterious effects further, if present.

The role of the gut and skin microbiome has even been discussed in the pathogenesis
of rosacea. Polymicrobial commensalism of the skin involved in rosacea and sebum
makes homeostasis of these areas essential to suppressing excess inflammation. Abnormal
toll-like receptor signaling has been observed in rosacea, a group that often responds to
specific microbial products and metabolites [127]. The epidermis of subjects affected by
rosacea have higher TLR2 expression than healthy subjects, suggesting a mechanism for
inflammatory signaling at a low threshold to external stimuli [127,128]. Triggers for TLR2
activation include bacterial products [129]. This enhanced expression can also cause the
production of cathelicidin antimicrobial peptides and increased activity of serine protease
kallikrein. Serine protease LKL-5 is involved in the cleavage of cathelicidin to the active
peptide form L-37, a modulator of neutrophil chemotactic and stimulates cytokine and
chemokine release from mast cells. These processes lead to erythema, angiogenesis, and
telangiectasias seen in rosacea inflammation. Small intestinal bacterial overgrowth has also
been associated with rosacea development, suggesting a systemic inflammatory process
dependent on microbial communities and immune signaling [127,130].

3. Conclusions and Future Directions

The microbial environment of the skin and gut is vast in its diversity and role in
immune signaling. With the abundance of data in recent years to characterize the makeup of
specific microbial communities in inflammatory disease processes, the wealth of knowledge
grows surrounding metabolite production and their functions in cutaneous and systemic
inflammation. It is apparent that short chain fatty acid and aryl hydrocarbon receptor
signaling pathways are essential to many metabolic and immune processes affected by
inflammatory skin diseases. Future studies are warranted to identify states of optimal
metabolite production for anti-inflammatory signaling and immune maintenance and
whether those processes are varied between the cutaneous and gastrointestinal microbiome.
With further confirmatory knowledge of these complex processes, the identification and use
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of therapeutics for microbial community modulation in the form of probiotics or immune
modulators will make significant strides for future clinical application.
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