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Abstract: Alzheimer’s disease (AD) represents a significant public health concern in modern so-
ciety. Metabolic syndrome (MetS), which includes diabetes mellitus (DM) and obesity, represents
a modifiable risk factor for AD. MetS and AD are interconnected through various mechanisms,
such as mitochondrial dysfunction, oxidative stress, insulin resistance (IR), vascular impairment,
inflammation, and endoplasmic reticulum (ER) stress. Therefore, it is necessary to seek a multi-
targeted and safer approach to intervention. Thus, 10-hydroxy-2-decenoic acid (10-HDA), a unique
hydroxy fatty acid in royal jelly, has shown promising anti-neuroinflammatory, blood–brain barrier
(BBB)-preserving, and neurogenesis-promoting properties. In this paper, we provide a summary
of the relationship between MetS and AD, together with an introduction to 10-HDA as a potential
intervention nutrient. In addition, molecular docking is performed to explore the metabolic tuning
properties of 10-HDA with associated macromolecules such as GLP-1R, PPARs, GSK-3, and TREM2.
In conclusion, there is a close relationship between AD and MetS, and 10-HDA shows potential as a
beneficial nutritional intervention for both AD and MetS.
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1. Introduction

DM is characterized by chronic hyperglycemia that results from disturbed insulin
secretion or insulin dysfunction, or both [1]. Reportedly, in 2018, a total of 440 million
people worldwide were living with DM [2], and China and India were the countries with the
highest rates [3]. It is estimated that this number will see a worldwide increase of 202 million
by 2040 [3]. According to a nationwide population-based study, individuals recently
diagnosed with DM have an increased risk of developing AD after an 11-year follow-up
period [4]. Furthermore, an epidemiological study suggests that type 2 diabetes mellitus
(T2DM) is a critical independent risk factor for neuropsychological symptoms, inducing
anxiety, depression, and appetite disturbance in early AD [5]. The strong association
between AD and DM has led many researchers to refer to AD as “type 3 DM” [6].

Moreover, obesity is a risk factor of T2DM. Obesity is a global public health problem,
the incidence of which has tripled since 1975 [7]. It is a health condition defined as excess
body fat that endangers one’s health. In clinical practice, it is evaluated by the body mass
index (BMI), calculated as weight (kg)/height2(m2), and is diagnosed at a BMI ≥ 30 kg/m2

according to the WHO [8].
AD is the primary cause of dementia, which is characterized by progressive memory

loss and cognitive dysfunction. According to global data, it is estimated that 50 million
people were living with dementia in 2018, and this is suggested to triple by 2050 [9].
According to current knowledge, AD is a neuron-jeopardizing disease, which brings
about a gradual loss of capacity to carry out everyday functions such as walking and
gripping. Furthermore, it can lead to coma and eventually, death [10]. All the above pose a
considerable challenge to society. In addition, the risk of developing AD increases from
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50% to 75% in people with DM [11], especially T2DM [12]. Moreover, the likelihood of a
person having AD increases when their BMI is higher than average, especially if they have
both obesity and poorly controlled DM [13,14]. Notably, T2DM and obesity originate from
an unhealthy diet and lifestyle, which means that intervention through personal, clinical,
and public health means is practical.

Through several interacting mechanisms, obesity and T2DM progressively cause tis-
sue damage, particularly in the hippocampus, ultimately resulting in a decline in overall
health [15–17]. Among the mechanisms linking MetS to AD, low-grade chronic inflamma-
tion plays a critical role in the pathogenesis of AD. Importantly, low-grade inflammation
disarms the BBB, making brain cells vulnerable to external stimuli [18,19].

Royal jelly (RJ), a white or yellowish gelatinous substance, is produced by the hy-
popharynx and mandibular salivary glands of honeybees [20]. It has a long history of
use in traditional Chinese medicine due to its various benefits, including its antioxidative,
antimicrobial, anti-inflammatory, immunomodulatory, neurotrophic, and MetS-preventing
activities [21,22]. Regarded as a marker of RJ quality, 10-HDA is a distinctive, unsaturated
fatty acid that is present in RJ [23], and it may be involved in the biological activities of RJ,
such as antitumor and antimicrobial activities [24,25]. Moreover, recent research has found
that 10-HDA exhibits various advantageous characteristics, such as anti-inflammatory,
immunomodulatory, antimicrobial, antitumor, antioxidative, and vessel-preserving proper-
ties [26]. These properties make 10-HDA a potentially valuable nutrient for addressing AD,
particularly AD associated with MetS.

This article aims to elucidate the current understanding of the relationship between
AD, DM, and obesity, and subsequently introduces 10-HDA as a potential intervention
nutrient, supported by bioinformatic analysis.

2. Metabolic Syndrome and Alzheimer’s Disease

The WHO defines MetS as a state characterized by IR, abdominal obesity, hypertension,
and hyperlipidemia. The brains of individuals with AD-related dementia also seem to
develop IR, according to research published in recent years [27]. This means that MetS
might not only be a risk factor of AD, but it might also play a role in the pathogenesis
process [28]. Considering the above, interventions targeting MetS may be beneficial in
preventing and treating AD [29]. A summary is shown in Figure 1.
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tyrosine phosphorylation. Afterwards, IR induces hyperglycemia, which causes the formation of
more AGEs. IR also leads to energy metabolism dysfunction in mitochondria, which causes more
ROS production. Released inflammatory cytokines, AGEs, and ROS damage the BBB; then, they
enter the brain matter via the impaired BBB. After entering, they directly hamper neurons or activate
microglia cells to damage neurons.

2.1. Type II Diabetes Mellitus

DM is recognized as the primary form of MetS. A study conducted as part of the
AD Neuroimaging Initiative suggests that the level of amyloid β1-42 increases in the
cerebrospinal fluid of T2DM patients compared to nondiabetic patients, while the opposite
pattern is observed in the cerebral cortex [30]. Additionally, another observational study
shows that the level of total tau is raised in APOE E4+ AD patients with DM [31]. According
to a data-driven modeling study, genes such as ABCG1, COMT, MMP9, and SOD2 may
play roles in T2DM and AD, and are related to biological process such as IR, oxidative
stress, apoptosis, and cognition [32]. Using bioinformatics analysis, Huang et al. discovered
that T2DM and AD are closely related through microvascular complications [33]. In a study
searching for biomarkers such as insulin, HbA1c, and lipid profile disturbance, it was
suggested that CRP and D-dimer play a role in the bilateral pathogenesis between AD and
T2DM [34]. These findings further emphasize the interconnectedness between AD and DM.

T2DM is distinguished by a gradual beta cell failure and IR, and IR is the primary
mechanism that relates DM to AD. Moreover, BBB injury, inflammation, oxidative stress, mi-
tochondrial dysfunction, glucose metabolism dysfunction, AGEs, and vascular dysfunction
also play a role in the interplay between DM and AD [35].

2.1.1. Insulin Resistance

Insulin plays a crucial role as a metabolic regulator in the brain. Firstly, insulin se-
creted by pancreatic beta cells can find its way across the BBB or the blood–cerebrospinal
barrier through insulin transporters. Additionally, certain regions of the brain are capable
of producing and releasing their own insulin, although majority of insulin in the brain is be-
lieved to be derived from the pancreas [36]. Secondly, the brain itself is an insulin-sensitive
organ. The brain expresses insulin receptors in various regions, such as the olfactory bulb,
cerebral cortex, hypothalamus, cerebellum, and hippocampus [37]. Thirdly, after insulin
binds to the insulin receptors, they phosphorylate the insulin receptor substrate. Then, the
insulin receptor substrate activates PI3K and downstream MAPK pathways. The activated
PI3K upregulates Akt, and then Akt downregulates GSK-3β, mTOR, and forkhead box O
(FOXO). Eventually, PI3K signaling regulates protein synthesis, inflammation, mitochon-
drial dysfunction, autophagy, cell survival, and proliferation, while the MAPK pathway
regulates proliferation, inflammation, and apoptosis [38]. Furthermore, the activation of
JNK pathways (a subtype of the MAPK pathway) can inhibit PI3K signaling and lead to IR.
Increased intracellular Ca2+ has been proposed as a possible mechanism that affects the
localization and protein–protein interactions of key signaling mediators, explaining both
JNK activation and the inhibition of PI3K signaling [39].

IR is a condition in which insulin-targeted tissues such as the liver, adipose tissue,
and skeletal muscle do not effectively respond to insulin stimulation. As a mechanism,
hypertrophic adipose cells create hypoxic conditions, which leads to the death of adipocytes.
Then, the dead adipocytes summon macrophages via released environmental factors. When
macrophages have trouble clearing the debris of dead adipocytes, low-grade inflammation
occurs. Macrophages and other immune cells release cytokines such as TNF-α, thereby
targeting the insulin receptor substrate protein in serine residues and impairing tyrosine
phosphorylation, leading to IR [40]. Moreover, dysbiosis complicates the inflammatory
response in obese adipose tissue via 4-IBBL, which promotes IR through 4BL cells [41].

Among the various features of T2DM and metabolic disorders, IR is believed to be a
prominent factor. Insulin plays a crucial role in energy balance and metabolism throughout
the body, including the brain. When IR occurs, the normal functions performed by insulin,
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such as its neurotrophic function, become impaired, eventually leading to the death of
neurons [42]. The critical role of insulin in neuron survival suggests that IR may be closely
related to the development of neurodegenerative diseases such as AD. Furthermore, obesity,
which is associated with reduced insulin sensitivity, can lead to peripheral hyperglycemia,
contributing to cognitive dysfunction and neuron death in animal models [43].

Within the pathogenesis of T2DM, there are two kinds of IR: peripheral IR and brain
IR. The former refers to IR in tissues outside the brain, as mentioned earlier, while the latter
specifically refers to IR in certain brain regions, for instance, the hippocampus, cerebral
cortex, cerebellum, and choroidal plexus [44]. Regarding brain IR, Zhao et al. discovered
that apolipoprotein E4 (apoE4) impairs insulin signaling in the neurons of apoE-targeted
replacement mice. Mechanically, apoE4 can trap insulin receptors inside the endosomes
of neurons. Consequently, neurons become insensitive to insulin stimulation. It is also
worth noting that the apolipoprotein E ε4 gene allele is the greatest genetic risk factor of
late-onset AD [45]. Another in vivo study on two mouse models suggests that early AD
is related to brain IR through different signaling pathways, such as the AKT signaling
and ERK MAPK pathways. Consequently, brain IR further contributes to peripheral IR,
establishing a detrimental feedback loop [46].

2.1.2. Inflammation and Vascular Impairment

In the central nervous system, microglia cells play a pivotal role in AD local inflamma-
tion, secreting TNFα, IL-1β, IL-18, IL-6, chemokines, neurotransmitters, reactive oxygen
species (ROS), and nitric oxide, which act as neuron destroyers [47].

Inflammation plays an important role in DM-related AD. AD and T2DM are both
maladies characterized by systemic inflammation, and they encompass local inflammation.
The overlap between systemic inflammation and local inflammation is represented by
shared inflammatory markers, such as C-reactive protein, TNF-α, and interleukin-6 [48]. A
clinical study tested the levels of chemokines such as IL-6, TNF-alpha, and IL-1-beta in AD
and DM patients, and the serum level of these chemokines increased. Along with other
results, this also suggests that low-grade systemic inflammation links AD and DM [49].
Moreover, a review summarized that the activation of the NLRP3 inflammasome represents
a shared mechanism in AD and T2DM [50]. It is worth noting that elevated levels of
inflammatory markers, ROS, and AGEs induced by T2DM can contribute to the disruption
of the BBB [51].

The main battlefield of AD pathogenesis is in the brain. The BBB serves as a fortress for
brain cells, and once it becomes damaged, chemicals such as inflammatory cytokines leak
in, resulting in the activation of microglia cells. In neurodegenerative diseases, a subpopu-
lation of microglia is called disease-associated microglia, which can be activated through
TREM2 [52]. Within this subpopulation, there are two phenotypes of microglia cells, M1
(proinflammatory) and M2 (anti-inflammatory). Both phenotypes participate in different
stages of AD [53]. In AD local inflammation, activated microglia cells play a pivotal role,
secreting TNFα, IL-1β, IL-18, IL-6, chemokines, neurotransmitters, ROS, and nitric oxide,
which act as neuron killers [47]. Moreover, microglia cells phagocytose apoptotic neurons,
which is considered a protective mechanism. However, when excessive phagocytosis
occurs, healthy synapses are “trimmed”, contributing to neurodegeneration [54].

2.1.3. Glucose Metabolism Dysfunction and Mitochondrial Oxidative Stress

Glucose metabolism is a crucial process in which cells generate ATP and NADH using
glucose as an energy source. Hence, this process is critical for the survival of cells, includ-
ing neurons. A metabolomics study using nuclear magnetic resonance revealed a global
disorder in glucose metabolism in APP/PS1 double-transgenic mice [55]. Additionally, in
the early stages of AD pathogenesis, the most common type of disorder is amnestic mild
cognitive impairment, which is characterized by a decrease in glucose metabolism, as ob-
served in a longitudinal study [56]. Therefore, targeting disrupted glucose metabolism may
be a promising approach to early-stage interventions for AD. Neurons cannot synthesize
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or store glucose. When glucose is required, plasma glucose travels to neurons through
neurovascular coupling to neurons via glucose transporters. However, in neurodegen-
erative diseases such as AD, there is a noticeable decline in the neuron glucose intake
because of the lowered glucose transporter 1 and 3 expression in the hippocampus and
cortex [57,58]. Once glucose enters neurons, it undergoes aerobic glycolysis and enters the
Krebs cycle, producing NADH and ATP. Eventually, the produced NADH interacts with
the membrane of mitochondria, and then generates more ATP. This is known as oxidative
phosphorylation [59]. Glycolytic enzymes play a vital role in these processes, and evidence
suggests that the activity of these enzymes is reduced in AD patients [60]. When the activity
of glycolytic enzymes declines, NADH and ATP production is reduced; consequently, a
vicious cycle of mitochondrial dysfunction, oxidative stress, and calcium deregulation takes
place [61].

Mitochondria are the major energy-metabolizing organelles in a cell and are also cru-
cial for programmed cell death. In other words, a reduction in the number of mitochondria
or in the activity of mitochondrial enzymes can lead to decreased energy metabolism. Inter-
estingly, two critical metabolic pathways in neurons, oxidative phosphorylation and the
Krebs cycle, are inhibited in the mitochondria in AD [62]. In addition to hypometabolism,
mitochondrial dysfunction is also a pathogenesis process in AD brains. In healthy brains,
mitochondrial dysfunction and metabolic deficiencies can be compensated by lysosome
pathways, including the mitophagy of damaged mitochondria [63]. In AD brains, lysosomal
deficiency is detected, which might exacerbate the hypometabolic state triggered by mito-
chondrial dysfunction [64]. As a result, hypometabolism and mitochondrial dysfunction
cause oxidative stress and alter Ca2+ homeostasis, eventually leading to programmed neu-
ron death [65]. Conversely, oxidative stress may also impair the function of mitochondria,
thus forming another vicious cycle [66].

2.1.4. Hyperglycemia and Advanced Glycation End Products

A population-based study showed that people diagnosed with severe hyperglycemia
are liable to be living with AD [67]. Another study also found that poor glycemic control is
associated with worse cognitive outcomes [68].

Hyperglycemia is common in untreated DM, which can be related to neuropathy. The
hippocampus, an important part of the brain for working memory, and neuropathy in the
hippocampus are found in AD. According to an in vivo study, after treating homozygous
3xTg-AD mice with 20% sucrose for 6 months, the hippocampal neurogenic reserve was
reduced, and cognitive deficits were shown [69]. A longitudinal study included 266 indi-
viduals without DM or cognitive dysfunction. After controlling for confounding factors
such as age and sex, the authors found that higher plasma glucose within the normal
range is associated with hippocampal and amygdala atrophy based on an MRI scan [70].
This suggests that controlling raised blood sugar is a possible method of dealing with
AD-related cognitive deficits. In addition to neuropathy in the hippocampus, neuropathy
in the prefrontal lobe is another characteristic of AD. The prefrontal lobe is responsible for
executive function. It has been reported that hyperglycemia is related to a higher HbA1c
level in cognitively impaired patients, which suggests that hyperglycemia might reduce
executive function in such patients [71]. At an early stage of AD, white matter hyperin-
tensity is a sign of mild cognitive deficits. Based on a cross-sectional study, it is known
that hyperglycemia is linked to brain atrophy and white matter hyperintensity, which also
suggests that hyperglycemia is associated with cognitive decline and neuropathy [72].

Despite the current studies on neuropathy and cognitive decline in AD patients with
hyperglycemia, the underlying mechanisms of this condition are still not fully understood.
Several mechanisms have been discovered, including vascular impairment, microglial over-
activation, and the involvement of receptors for advanced glycation end products (RAGE).
Overactivated microglia are associated with neurodegeneration. A study reported that
chronic hyperglycemia can induce microglia to exhibit a proinflammatory subtype known
as M1, mediated by ERK5 signaling [73]. Moreover, high glucose impairs vesicle integrity
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in the brain, especially the BBB. Rao et al. found that the thrombin pathway contributes to
damage in cultured microvascular endothelial cells of the human brain [74]. Furthermore,
RAGE is the receptor of AGEs. AGEs are generated through a non-enzymic process be-
tween reduced sugar and aminos and are produced in larger quantities in hyperglycemia
and DM patients, compared to those without these conditions. On the one hand, when
AGEs are produced in the neurons it prompts oxidative stress and neuroinflammation; on
the other hand, extracellular AGEs could affect neuron function after binding to RAGE [75].
Upon injecting AGEs into DM model mice, the mice showed AD-like features, such as
decreased memory, suggesting that AGEs are contributing factors in the comorbidity of
DM and AD [76].

Hyperglycemia is a detrimental element in AD, and hypoglycemia is not beneficial
either. Recurrent moderate hypoglycemia is common in treated DM, and a study of
streptozotocin-induced diabetic APP/PS1 mice indicated that recurrent hypoglycemia
could promote AD via the damaged TRPC6/GLUT3 pathway [77]. Another study also
discovered that non-severe hypoglycemia has an adverse effect on the cognition of T2DM
patients [78]. Conversely, a different in vivo study indicated that only severe hyperglycemia
shows damage to neurons and cognition, while recurrent moderate hypoglycemia does
not show damage to cognition or hippocampal neurons. Ironically, recurrent moderate
hypoglycemia prepares the brain to better handle possible neuron damage caused by severe
hypoglycemia [79]. It is worth noting that the possible mechanisms underlying this process
have not yet been elucidated.

2.2. Obesity

Obesity is associated with a variety of factors, including genetic composition, diet, and
lack of exercise [80]. One of the main mechanisms via which obesity contributes to AD is
IR. We have already provided details of IR in the section on T2DM. Herein, we will discuss
other studied mechanisms that may underlie the obesity-to-AD pathogenesis process, for
instance, oxidative stress, ER stress, inflammation, and leptin [81].

2.2.1. Inflammation

Systemic inflammation plays a role in the pathogenesis of AD, and chronic low-grade
systemic inflammation is the main feature of obesity. An experiment conducted on obese
C57BL/6 mice fed on a high-fat diet confirmed that obesity in aging is associated with
an increase in the systemic inflammatory status, which exacerbates the destruction of the
BBB [82]. Research has demonstrated that adipose tissue can promote the secretion of some
cytokines, such as tumor necrosis factor-α, interleukin-1β, interleukin-6, and chemokine
(C-C motif) ligand 2, and thus recruit macrophages and lymphocytes [83]. Then, secreted
tumor necrosis factor-α and interleukin-6 can reduce lipoprotein lipase activity, thereby
increasing blood lipid levels [84]. It is worth noting that a high blood lipid level and a
high-fat diet are associated with dysbiosis in the gut, and this can lead to impaired lipid
metabolism [85]. Furthermore, these adipokines and cytokines are able to act together
on distant organs, especially the brain, promoting the production of brain cytokines by
activating endothelial and glial cells, particularly microglia [81].

Neuroinflammation is also linked to AD pathogenesis, and neuropathy in the hip-
pocampus is one of the key processes of AD pathogenesis. According to an in vivo study,
after consuming a high-fat diet for three days, molecular changes such as neuroinflam-
mation, ER stress, and the apoptotic signal were found in the hippocampus of C57BL/6J
mice [86]. Another study also suggested that a high-fat diet induces inflammation, repre-
sented by microgliosis and astrocytosis in the hippocampus of THY-Tau22 male mice [87].
Obesity is accompanied by an array of metabolic disorders, and the AMPK pathway is
critical in metabolic homeostasis. Mechanically, the AMPK pathway regulates glucose and
lipid metabolism. Upon activation, it ameliorates oxidative stress, IR, and mitochondrial
dysfunction [88]. Liu et al. found that activated C/EBPβ/AEP signaling inhibits AMPK
signaling, which is related to an AD-like pathology. After feeding Thy1-C/EBPβ Tg mice
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with a high-fat diet to induce DM and obesity, they found neuroinflammation characterized
by gliosis and microglia activation, which activates C/EBPβ/AEP signaling. After deleting
AEP, DM, obesity, and AD-like pathogenesis were lessened [89].

2.2.2. Leptin

In addition to inflammation, the role of adipokines in linking obesity and AD has
also been discovered. Adipose tissue releases some adipokines into the circulation, such
as leptin. Leptin is transported into the brain through leptin receptors in the BBB or
tanycytes [90]. Leptin receptors broadly reside in brain regions such as the hypothalamus
and hippocampus. Moreover, leptin regulates food consumption and energy expenditure
through neuroendocrine signaling in the hypothalamus, and at the same time, it can
enhance the plasticity and strength of synapses and prevent tau phosphorylation [91].

According to a cross-sectional study, elevated serum levels of adipokines, including
leptin, are observed in AD patients compared to patients with mild cognitive impairment
(MCI) [92]. Another study suggests that the degree of dementia is negatively associated
with serum leptin levels in AD patients [93]. However, a cross-sectional study by Teunis-
sen et al. concluded that the serum level of leptin is not related with cognitive decline
in AD or vascular dementia patients [94]. Although no changes in CSF leptin levels are
observed in AD patients, alterations in leptin signaling have been documented. It has been
suggested that leptin plays a role in early-stage rather than late-stage AD [95]. Concerning
leptin signaling, another study suggested that the alternation of leptin signaling in the hip-
pocampus is a characteristic process in AD pathogenesis [96]. In terms of the mechanism,
an in vitro study found that leptin could ameliorate mitochondrial dysfunction induced by
glucose–serum deprivation and Aβ1–42 stimulation [97]. Considering the above, there is
still a heated discussion about the role of leptin in AD pathogenesis, and further research is
needed to fully understand its implications.

2.2.3. Endoplasmic Reticulum Stress

ER stress is implicated in the progression of AD neuropathy and is responsible for
cognitive decline in AD. It is activated by a spectrum of diseases, for instance, diabetes
mellitus and obesity [98]. The hippocampus contains progenitor cells in the dentate gyrus
and the sub-granular zone, and altered neurogenesis in the hippocampus is a cornerstone
of early-stage AD. An in vivo study suggests that long-term obesity can induce ER stress
in the hippocampus DG of C57BL/6J and APP23 mice [99]. This suggests that ER stress
might play a critical role in early-stage AD.

2.2.4. Mitochondrial Oxidative Stress and Impaired Blood–Brain Barrier

Mitochondrial oxidative stress in brain microvascular endothelial cells represents
another link between obesity and AD. Roh et al. found that mitochondrial oxidative stress
can impair the integrity of the BBB [100]. However, the underlying mechanisms have
still not been elucidated. Considering the roles of insulin and the mitochondria in energy
metabolism, mitochondrial dysfunction can be regulated through insulin-mediated PI3K
signaling. Hence, epithelial mitochondrial dysfunction might be induced by epithelial IR.
Nagano et al. knocked out insulin receptors in brain microvascular endothelial cells, and
they found that insulin signaling is critical in BBB function and maintenance [101]. After
the disruption of mitochondria by ROS, the debris is recognized by pattern recognition
receptors such as NLRP3. Eventually, the NLRP3 inflammasome is activated, leading
to pyroptosis. In summary, under the influence of mitochondrial oxidative stress, the
BBB becomes more permeable. After the permeability of the BBB increases, cytokines
produced by adipose tissue find their way across it. With so many cytokines crossing
the BBB, it can affect the CNS, including a loss of synapses, hypothalamic dysfunction,
and impaired cognition and neurodegeneration [102]. Notably, a clinical study found a
strong correlation between alterations in BBB permeability in the human hippocampus and
cognitive dysfunction [103].
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2.2.5. Gut Microbiota

It is well known that the gut and the brain are associated with each other through
many bioactive compounds secreted by both, hence proposing the name “gut–brain axis”
or “brain–gut axis”. Bioactive compounds secreted by the gut microbiota incorporate
neurotransmitters and neuromodulators such as glutamate, short-chain fatty acids, and
serotonin. The connections between them are diverse, and include pathways such as
neural, metabolic, and endocrine pathways [104]. Therefore, it is often believed that
neurodegenerative diseases such as AD are associated with the gut, and there is indeed
some etiological evidence suggesting that AD is associated with a disturbance in the gut
microbiota, called dysbiosis [105]. Moreover, dysbiosis is also a pivotal starter in many
other diseases such as T2DM [106] and obesity [107].

In addition to the neuroinflammation hypothesis of AD pathogenesis, where microglia
are overactivated, a recent study suggests that amino acids such as phenylalanine and
isoleucine in dysbiosis are key to the infiltration of peripheral immune cells such as B cells,
dendritic cells, and natural killer cells in the brain. Moreover, dysbiosis has also been found
to evoke microglia to a destructive state called the M1 subtype through peripheral Th1 cells,
and it is a critical contributor to Th1/M1 predominant inflammation in AD [108]. Another
study suggests that the gut microbiota in AD patients can activate the NLRP3 inflamma-
some in intestinal cells; then, the intestinal cells secret an array of cytokines that can pass
through the BBB, which causes central inflammation [109]. On the contrary, short-chain
fatty acids secreted by the gut microbiota, such as acetate, propionate, butyrate, formate,
and valerate, not only show anti-inflammatory activity in the peripheral system, but also in-
hibit the production of inflammatory cytokines and cytotoxins by microglia-like cells [110].
Moreover, another study suggests that sodium butyrate relieves neuroinflammation by
inhibiting microglia and ameliorates synaptic plasticity in 5XFAD mice [111].

In oxidative stress and neuroinflammation, a molecule called Nox2 plays a pivotal
role. A study found that LPS released by the gut microbiota can activate Nox2; thus,
LPS are associated with oxidative stress and neuroinflammation in AD through Nox2
activation [112]. Another study suggests that the oral intake of lactobacilli and bifidobac-
teria improves spatial performance and balances oxidant/antioxidant biomarkers in the
β-amyloid-administered animals [113]. Furthermore, other authors suggest that sodium
butyrate suppresses Nox2 and upregulates SOD1 via the p21/Nrf2 pathway [114].

Regarding lipid metabolism, the deregulation of lipid homeostasis considerably con-
tributes to the onset and development of AD. Bonfili et al. found that gut microbiota
adjustment through the combination of probiotic strains can ameliorate neuroinflamma-
tion and oxidative stress by regulating the plasma lipid profile [115]. Moreover, glucose
metabolism is also a contributor in AD onset and progression. A study suggested that
lactic acid bacteria and bifidobacterial supplementation increases GLUTs in 3×Tg-AD mice
and downregulates phosphorylated AMPK and Akt, thus suggesting that gut microbiota
manipulation ameliorates impaired glucose metabolism [116]. Considering that dysbiosis
is closely related to metabolic syndromes such as DM and obesity, a gut metabolite called
trimethylamine N-oxide has been discovered. It was used to induce oxidative stress and
cause cognitive impairment in 3×Tg-AD mice [117].

In summary, manipulating dysbiosis can have a positive effect on the onset and
progression of AD by regulating oxidative stress, inflammation, and metabolism. It also
offers a potential target for AD intervention.

3. Biomarkers

AD is so detrimental that the early identification of markers that can anticipate the
onset and progression of AD is critical. On the one hand, DM is an independent risk factor
for AD, and early AD may manifest with DM-like symptoms. Therefore, it is worth search-
ing for biomarkers that can predict changes in the onset and progression of AD associated
with DM. These biomarkers can be detected in different body fluids. The first category
is biomarkers present in cerebrospinal fluid, such as pTau, Aβ42, sLRP1, and autotaxin,



Metabolites 2023, 13, 954 9 of 23

and their elevation is related to the occurrence and development of AD [118,119]. Another
class of biomarkers, such as GGT, can be detected in serum. Furthermore, gamma-glutamyl
transferase (GGT) plays a role in oxidative stress and inflammation, and a nation-wide
study found that GTT increases the incidence of dementia in DM patients independently
of other factors [120]. Additionally, plasma biomarkers such as clusterin can be measured.
One study demonstrated that clusterin levels were elevated in both AD and DM patients,
and its elevation is correlated with disease severity [121]. In addition to molecular biomark-
ers, a new technology, called microperimetry, can identify DM individuals who are more
likely to develop AD by assessing their retinal sensitivity [122].

Mild cognitive impairment (MCI) is often regarded as an early stage of AD, and
it is also considered as an independent risk factor for AD. Individuals with MCI have
a higher likelihood of developing AD after several decades. A study found that, com-
pared with Aβ1-42/Aβ1-40, rGSK-3 is the most effective biomarker in identifying MCI from
T2DM patients [123]. Another study suggests that a lower level of an adipocytokine called
adiponectin is related to development from MCI to AD. Neurofilament light chain is a
cytoskeletal protein in neural axons that becomes elevated when neurodegeneration occurs.
A study found that elevated plasma levels of NfL may serve as a potential biomarker
for MCI in individuals with DM [124]. Moreover, another study suggested that plasma
neuroexosomal NADH ubiquinone oxidoreductase core subunit S3 and succinate dehydro-
genase complex subunit B are elevated in the early stage of AD [125]. One more adipokine,
called resistin, is also a biomarker of T2DM-related cognitive decline [126]. Furthermore,
Wang et al. found that a high plasma PAI-1 level and a low tPA/PAI-1 molar ratio are
correlated with MCI in DM patients [127]. A muti-center study suggested that aging, the
expression of ApoE ε4, the activation of GSK-3beta in the peripheral circulation, and an
increased olfactory score are indicative biomarkers of MCI in DM patients, and they can
be used together to achieve a higher diagnostic accuracy [128]. In addition to molecular
biomarkers, a new technology, called microperimetry, can identify DM individuals who
are more likely to develop AD by assessing retinal sensitivity [122]. A summary of related
biomarkers are shown in Table 1.

Table 1. Biomarkers of MetS-related AD.

Biomarker Fluid Source Function Results References

pTau Cerebrospinal fluid

Correlated with the intensity of
neurodegeneration and

neurofibrillary-tangle pathology,
respectively

The level of total tau was
raised in APOE E4+ AD

patients with DM
[31,129]

Aβ42 Cerebrospinal fluid
Forms neurotic plaques and

causes impaired synaptic
plasticity and neuronal cell death

CSF levels of Aβ42 were
higher in patients with type 1

diabetes than in controls
[118,130]

sLRP1 Cerebrospinal fluid A member of the LDL receptor
family

CSF levels of LRP1 were
higher in patients with type 1

diabetes than in controls
[118,131]

autotaxin Cerebrospinal fluid
Hydrolyzes

lysophosphatidylcholine into
lysophosphatidic acid

Autotaxin levels were
significantly higher in MCI

and AD
[119,132]

GGT Serum Cellular antioxidant, glutathione
metabolism

Higher levels of GGT activity
were correlated with

dementia in patients with
DM

[133]

GSK-3beta Serum A serine/threonine kinase

Serum level of GSK-3β
protein was higher in the

T2DM-MCI group than the
T2DM-nMCI group

[128]
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Table 1. Cont.

Biomarker Fluid Source Function Results References

Clusterin Plasma

Participates in several kinds of
cellular processes, such as
synaptic regulation, lipid

transport, extracellular
misfolded protein clearance, and

complement inhibition

Clusterin increased with
disease severity in AD and

DM patients
[121,134]

NfL Plasma An intermediate filament
of the neuronal cytoskeleton

Elevated blood levels of NfL
can be used to screen for AD [135]

NDUFS3 Plasma Subunits of electron transport
chain complex

NDUFS3 was lower in
patients with T2DM with AD

dementia and progressive
MCI

[125]

SDHB Plasma Subunits of electron transport
chain complex

SDHB was lower in patients
with T2DM with AD

dementia and progressive
MCI

[125]

resistin Plasma Play a role in energy homeostasis
and regulation of metabolism

Higher plasma levels of
resistin were associated with
a decreased risk of dementia

and AD

[136]

PAI-1 Plasma A serine protease inhibitor and
cell senescence marker

Plasma PAI-1 protein levels
were increased in the elderly

and in the AD brain
[137]

4. Properties of 10-Hydroxy-2-decenoic Acid
4.1. Anti-Neurodegeneration and Immunomodulation

The process of pyroptosis, a form of cell death associated with inflammation, has been
implicated in the development of AD and MetS. The NLRP3 inflammasome is responsible
for initiating pyroptosis. A study has shown that 10-HDA can enhance the function of the
colonic barrier by inhibiting the NLRP3 inflammasome-mediated apoptotic pathway [138].
Additionally, You et al. discovered that 10-HDA can alleviate neuroinflammation in mi-
croglia BV2 cells through the FOXO1-mediated autophagy pathway, indicating that it may
be a promising agent for various neuroinflammation-associated diseases [139]. Damage to
the BBB is considered a crucial factor in the pathogenesis of AD. You et al. demonstrated
that 10-HDA can inhibit the degradation of tight-junction proteins, reduce BBB permeability,
and protect the integrity of the BBB through the AMPK/PI3K/AKT pathway [140].

Furthermore, recent research has suggested that 10-HDA possesses immunomodu-
latory effects as it binds to pattern recognition receptors. One of these receptors is TLR4,
which serves as a sensor for damage-associated molecular patterns [141]. Farshid et al.
found that 10-HDA acts as an antagonist to inhibit immune cell activation induced by
TLR4 [142]. These findings underscore the immunomodulatory properties of 10-HDA and
its potential role in regulating immune responses.

4.2. Antitumor

Zafer et al. found that 10-HDA elevates the expression of caspase 3, Bax, and miR-34a.
Then, it increases necrotic and apoptotic human hepatoma cells [143]. Albalawi et al. found
that 10-HDA, in combination with cyclophosphamide, showed antitumor effects against
Ehrlich solid tumors [144]. Lin et al. suggested that 10-HDA induces cell cycle arrest and
apoptosis in A549 human lung cancer cells through the MAPK, STAT3, NF-κB, and TGF-β1
signaling pathways [145]. These studies highlight the potential antitumor properties of
10-HDA and its ability to induce cell death and inhibit cancer cell growth. Properties of
10-HDA are shown in Table 2.
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Table 2. Mechanisms related to 10-HDA properties.

Related Mechanisms Results Model References

Apoptosis Inhibits apoptosis in human hepatoma cells. Human hepatoma cell line. [143]

Inflammation
Antioxidation

Hypoglycemic effects on diabetic mice,
through the PI3K/AKT/GSK3β signaling

pathway.
Diabetic C57BL/6J mice. [146]

Inflammation Blocks TLR4. HEK293T cells with high
TLR4 expression. [142]

Inflammation
Antioxidation

Increases serum concentrations of
immunoglobulin G at d 21, as well as IgM and

interleukin-10 at d 42, while decreasing the
levels of tumor necrosis factor-α.

Broiler Chickens. [147]

Inflammation
Antioxidation

Inhibits inflammasome-mediated pyroptosis
induced by LPS/ATP. Male C57BL/6 mice. [138]

Antioxidation
Energy metabolism
Vascular function

Maintains vascular health via scavenging •OH. Vascular smooth-muscle cells. [148]

Inflammation Attenuates the secretion of TNF-α, IL-6, and
IL-1β.

Macrophages (RAW264.7
cells) [149]

Antimicrobial Decreases biofilm viability and effectively
eradicates mature biofilms. Staphylococcus aureus. [150]

Antitumor Decreases tumor volume, tumor markers (AFP
and CEA), and TNF-α level. Female Swiss albino mice. [144]

Immunomodulation Blocks TLR4. Dendritic cells [141]

Antimicrobial
Antioxidation Shows antioxidant and antimicrobial activity. Statens Seruminstitut Rabbit

Cornea cell culture line. [151]

Apoptosis
Antioxidation

Induces apoptosis through ROS-mediated
MAPK, STAT3, NF-κB, and TGF-β1 signaling

pathways.
A549 human lung cancer cells. [145]

Autophagy Protects against neuroinflammation through
FOXO1-mediated activation of autophagy.

Microglial BV-2 cells
(LPS-induced). [139]

Immunomodulation Improves immunity in the thymus and spleen BALB/c mice. [152]

Vascular function Improves blood–brain barrier dysfunction by
activating the AMPK/PI3K/AKT pathway.

C57BL/6 mice
(LPS-stimulated). [140]

Insulin signaling
Anti-adipogenesis

Inhibits cAMP/PKA pathway and p-Akt- and
MAPK-dependent insulin signaling pathway. 3 T3-L1 adipocyte cell line. [153]

Inflammation
Antimicrobial

Modulates interleukin-8, IL-1β, and tumor
necrosis factor-alpha. WiDr cell. [154]

Melanogenesis inhibitor

Inhibits the activity of tyrosinase and the
expression of tyrosinase-related protein 1,

TRP-2, and microphthalmia-associated
transcription factor.

B16F1 melanoma cells. [155]

Antioxidation Decreases tumorigenic potential of various
tumor cells.

Human colorectal
adenocarcinoma cells. [156]

Insulin-like signaling Extends lifespan through dietary restriction
signaling. Caenorhabditis elegans. [157]

Antioxidation Reduces the UVA-induced activation of the
JNK and p38 MAPK pathways. Human dermal fibroblasts. [158]

Inflammation Increases procollagen type I and TGF-β1
production. Human dermal fibroblasts. [159]
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4.3. Metabolic Adjusting Properties

As mentioned previously, IR plays a critical role in MetS-related AD. Hu et al. found
that 10-HDA increases insulin sensitivity by upregulating the PI3K/Akt pathway in the
liver [146]. In addition to adjusting glucose metabolism, Fan et al. found that 10-HDA
may protect •OH-damaged vascular smooth-muscle cells by adjusting energy metabolism
and protein metabolism [148]. Considering the above, T2DM and obesity are linked to
AD through a spectrum of mechanisms, whereas no metabolic adjusting targets have been
studied. Herein, we screened several macromolecules that might be targets for MetS-related
AD intervention. Then, we performed molecular docking between these macromolecules
and 10-HDA. The results are shown in Table 3 and Figures 2–6.

Table 3. The results of molecular docking (optimal conformation).

Macromolecule PDB DeltaG
(KJ/mol) RMSD (Å)

Binding Site
(Number)

Hydrogen
Bonds

GLP-1R 3c5t −24.27 2.193 Ala28, Ser31, Thr35, and Pro90 4
PPAR-gamma 2q59 −20.59 0.956 Asn375, Lys230, and Asp381(2) 4
PPAR-alpha 3vi8 −22.47 1.598 Tyr468(2), Met467, Gln445(2), and Lys448 6

GSK-3 1q5k −23.81 1.556 Lys292, Lys94, and Arg96 4
TREM2 6yye −12.38 1.212 Ser106, Asn109, Asn173(2), and Ala189 5

GLP-1 is an insulinotropic incretin hormone that plays a role in inhibiting beta cell
death. It is also important to understand that GLP-1 mimetics can cross the BBB. Overall,
this suggests that the GLP-1 pathway overlaps with the insulin pathway, and it could
compensate for the DM, obesity, or AD damage to the insulin pathway. A review also
suggests that GLP-1 serves as an ameliorator of ER stress, IR, CNS inflammation, mito-
chondrial dysfunction, etc., which sheds light on AD intervention [160]. A GLP-1R agonist,
liraglutide, has been approved for obesity treatment [161]. Furthermore, GLP-1R agonists
are currently used to treat T2DM [162].

PPARs are a family of type II nuclear receptors and transcription factors, which
include PPAR-α, PPAR-δ, and PPAR-γ. They have been found to be involved in metabolic
syndromes such as DM and obesity [163]. PPAR-γ is considered a general sensor for
nutrients and lipids, residing in the nucleus, and playing a role in mediating responses to
nutrients and hormones. It is also implicated in metabolic syndrome [164]. Lin et al. found
that Aβ-induced ER stress can be alleviated through PPAR-γ signaling [165]. PPAR-α is
another nuclear receptor belonging to PPARs. Many agonists, such as Gemfibrozil, are
synthesized or found to tackle AD in clinical trials [166]. In the hippocampus, according to
Avik Roy et al., PPAR-α resides in CA1, CA2, CA3, and the dentate gyrus in the brains of
mice and monkeys, and the absence of PPAR-α in both wild-type mice and hippocampal
neurons leads to an insufficient calcium influx and reduced hippocampal plasticity-related
molecules, such as GluR1 and NR2A [167]. Moreover, PPAR-α participates in energy
metabolism and fatty acid regulation in mitochondria. Furthermore, PPAR-α also plays a
role in oxidative stress [168].

There are two isoenzymes in the GSK-3 family, called GSK-alpha and GSK-beta. GSK-
beta, most importantly, acts as a blood glucose regulator in DM. It is also one of the vital
factors that leads to IR and insulin deficiency [169]. Moreover, it is reported that GSK-3
plays an important role in energy metabolism and apoptosis. It is known as a negative
regulator of inflammation in microglial cells, macrophages, and dendrite cells, and is also
involved in osteoclast development. Furthermore, Min Park et al. suggested that TREM2
promotes IR and facilitates diet-induced obesity, which makes TREM2 a possible target in
treating obesity and DM [170]. Zhang et al. used a DM rat model treated with a combination
of HFD and a low dose of STZ. They found that TREM2 negatively regulates the p38 MAPK-
mediated inflammation response and neuronal cell death in the hippocampus and cortex
in cognitively impaired DM rats [171].
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Figure 3. Docking results between 10-HDA and PPAR-γ: (a) A gross view of the optimal confor-
mation between PPAR-γ and 10-HDA after molecular docking. (b) Details of the binding site be-
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sented as a grey surface. And amino acid residues are represented as blue sticks, while hydrogen 

Figure 2. Docking results between 10-HDA and GLP-1R: (a) A gross view of the optimal conformation
between GLP-1R and 10-HDA after molecular docking. (b) Details of the binding site be-tween GLP-
1R and 10-HDA. Here, 10-HDA is represented as orange sticks, while GLP-1R is represented as a
grey surface. And amino acid residues are represented as blue sticks, while hydrogen bonds are
represented as dashed yellow sticks. Four hydrogen bonds are shown in the image, and 10-HDA is
rooted in the binding pocket of GLP-1R.
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Figure 3. Docking results between 10-HDA and PPAR-γ: (a) A gross view of the optimal conformation
between PPAR-γ and 10-HDA after molecular docking. (b) Details of the binding site be-tween PPAR-
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rooted in the binding pocket of PPAR-γ.
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rooted in the binding pocket of PPAR-α.
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represented as dashed yellow sticks. Four hydrogen bonds are shown in the image, and 10-HDA is
rooted in the binding pocket of GSK-3.
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AGEs, and ROS compromise the BBB, and then they infiltrate the brain matter. After-
wards, neurons are scarred or killed by inflammatory cytokines, AGEs, ROS, or microglia 
cells. However, considering that the underlying etiology of AD has not yet been pin-
pointed, it is important to introduce a possible intervention nutrient to relieve these dis-
eases at an early stage [5]. 

In RJ, 10-HDA is the most abundant fatty acid, which shares similar properties with 
RJ. Moreover, compared with RJ, 10-HDA has little allergy risk. Regarding its metabolic 
adjusting property, Takikawa et al. found that 10-HDA promotes glucose uptake by trans-
locating glucose transporter 4 to the plasma membrane in mice skeletal muscle [172]. 
However, the metabolic adjusting capability of 10-HDA remains vague. Herein, we 
screened a few macromolecules (GLP-1R, PPAR-gamma, PPAR-alpha, GSK-3, and 
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Interventional methods such as nutrimental supplementation are ideal ways of deal-
ing with chronic disease related to age based on common knowledge, and 10-HDA is eas-
ily accessible from RJ. Our research suggests that 10-HDA might represent an intervention 
nutrient that can deal with AD, DM, and obesity by targeting GLP-1R. However, it is im-
portant to note that the study of 10-HDA is currently limited, and further in vitro and in 
vivo studies are necessary to fully understand its potential benefits. 

Author Contributions: Conceptualization, J.C. and Y.G.; methodology, J.C. and Y.G.; software, J.C., 
Y.G., H.L., Z.L. (Zhen Liu) and Z.L. (Zeju Li); investigation, H.L. and Y.F.; writing—original draft 
preparation, Y.G.; writing—review and editing, J.C., Y.F., H.L., Z.L. (Zeju Li), Y.G. and Z.L. (Zhen 
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between TREM2 and 10-HDA after molecular docking. (b) Details of the binding site be-tween
TREM2 and 10-HDA. Here, 10-HDA is represented as orange sticks, while TREM2 is represented as
a grey surface. And amino acid residues are represented as blue sticks, while hydrogen bonds are
represented as dashed yellow sticks. Five hydrogen bonds are shown in the image, and 10-HDA is
rooted in the binding pocket of TREM2.

5. Summary and Outlook

MetS and AD have a significant global impact. They are connected through both
epidemiological and pathological aspects. In the connection between MetS and AD, low-
grade systemic inflammation is at the core, IR represents a bridge, and BBB damage
represents a hallmark on the bridge. In other words, systemic IR is induced by low-grade
systemic inflammation, especially inflammation in adipose tissue. Subsequently, IR leads to
hyperglycemia and dysfunction in energy metabolism. Moreover, IR causes dysbiosis in the
gut as well as more AGEs and ROS in the circulation. Inflammatory cytokines, AGEs, and
ROS compromise the BBB, and then they infiltrate the brain matter. Afterwards, neurons
are scarred or killed by inflammatory cytokines, AGEs, ROS, or microglia cells. However,
considering that the underlying etiology of AD has not yet been pinpointed, it is important
to introduce a possible intervention nutrient to relieve these diseases at an early stage [5].

In RJ, 10-HDA is the most abundant fatty acid, which shares similar properties with RJ.
Moreover, compared with RJ, 10-HDA has little allergy risk. Regarding its metabolic adjust-
ing property, Takikawa et al. found that 10-HDA promotes glucose uptake by translocating
glucose transporter 4 to the plasma membrane in mice skeletal muscle [172]. However,
the metabolic adjusting capability of 10-HDA remains vague. Herein, we screened a few
macromolecules (GLP-1R, PPAR-gamma, PPAR-alpha, GSK-3, and TREM2) that might
be targets for MetS-related AD intervention. Our results suggest solid binding between
10-HDA and GLP-1R, PPAR-γ, PPAR-α, GSK-3, and TREM2. Moreover, GLP-1R might
be the most promising intervention target for 10-had, with the lowest free binding energy
being −24.27 KJ/mol.

Interventional methods such as nutrimental supplementation are ideal ways of dealing
with chronic disease related to age based on common knowledge, and 10-HDA is easily
accessible from RJ. Our research suggests that 10-HDA might represent an intervention
nutrient that can deal with AD, DM, and obesity by targeting GLP-1R. However, it is
important to note that the study of 10-HDA is currently limited, and further in vitro and
in vivo studies are necessary to fully understand its potential benefits.
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