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Abstract: Approximately 25% of psoriasis patients have an inflammatory arthritis termed pso-
riatic arthritis (PsA). There is strong interest in identifying and validating biomarkers that can
accurately and reliably predict conversion from psoriasis to PsA using novel technologies such
as metabolomics. Lipids, in particular, are of key interest in psoriatic disease. We sought to de-
velop a liquid chromatography-mass spectrometry (LC-MS) method to be used in conjunction with
solid-phase microextraction (SPME) for analyzing fatty acids and similar molecules. A total of
25 chromatographic methods based on published lipid studies were tested on two LC columns. As
a proof of concept, serum samples from psoriatic disease patients (n = 27 psoriasis and n = 26 PsA)
were processed using SPME and run on the selected LC-MS method. The method that was best for
analyzing fatty acids and fatty acid-like molecules was optimized and applied to serum samples. A
total of 18 tentatively annotated features classified as fatty acids and other lipid compounds were
statistically significant between psoriasis and PsA groups using both multivariate and univariate
approaches. The SPME-LC-MS method developed and optimized was capable of detecting fatty
acids and similar lipids that may aid in differentiating psoriasis and PsA patients.

Keywords: psoriatic disease; metabolomics; lipids; solid-phase microextraction; liquid chromatography;
mass spectrometry

1. Introduction

Psoriasis is an inflammatory skin disease that affects approximately 10 million Ameri-
cans and 1 million Canadians [1]. The most common form of psoriasis is chronic plaque
psoriasis, which clinically manifests as well-demarcated erythematous scaly plaques affect-
ing the skin. Approximately a quarter of psoriasis patients have an inflammatory arthritis
termed psoriatic arthritis (PsA) [2], which is linked to reduced quality of life and limited
functional capacity [3]. PsA presents clinically with peripheral joint involvement, enthesitis,
tendonitis, dactylitis, inflammatory spinal disease, and other extra-musculoskeletal fea-
tures [4]. Psoriatic disease patients often present with comorbidities such as cardiovascular
disease, obesity, and hyperlipidemia. These conditions are more prevalent in PsA patients
than in patients with psoriasis without PsA (PsC) [5].

Recently, there has been growing interest in exploring predictive biological markers
(biomarkers) for psoriatic disease, with a specific focus on PsA [6]. Biomarker discovery
may help elucidate unexplored mechanisms behind psoriatic disease pathogenesis and may
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help identify novel disease targets. Biomarker research in PsA is in the beginning stages
of exploration and has focused mostly on single modality ‘omic’ studies [7]. There have
been a few markers discovered that have been shown to be associated with PsA diagnosis
via untargeted genomic, transcriptomic, and proteomic studies; however, the predictive
value of these markers has not been sufficient to achieve the high threshold required for
a diagnostic test [7]. Future biomarker research in psoriatic disease is transitioning in the
direction of additional technologies such as metabolomics.

Metabolomics is an emerging field of ‘omics’ sciences that systematically investigates
the diverse array of small molecules (<1500 Da) present in a biological system, including but
not limited to sugars, nucleotides, amino acids, organic and inorganic acids, xenobiotics,
and lipids. The metabolome is a rapid indicator of biological status [8]. In contrast to
the genome and transcriptome, where genetic changes take longer to take effect, the
metabolome is dynamic and constantly changing. Thus, the metabolome provides a
snapshot of an organism’s physiological status at a specific point in time. Furthermore, the
metabolome reflects not only the genome but also the environment and microbiome [9].
Metabolomics provides the opportunity to observe interactions between all these factors,
which may play a role in the disease’s pathophysiology. Therefore, the metabolome can be
regarded as the best reflection of the organism’s observable phenotype. Metabolomics in
combination with other ‘omics’ scientific studies can be a powerful strategy for capturing
the genetic, immunologic, and environmental factors that lead to PsA pathogenesis and
may aid in biomarker discovery.

A scoping review of the literature revealed that the vast majority of metabolomic
studies published in psoriatic disease have identified amino acids and lipids that may
be associated with psoriasis diagnosis and activity [6]. Very few studies have examined
the metabolome of PsA patients; however, the few that have have reported keto acid and
fatty acid dysregulation in PsA compared to PsC [6]. Furthermore, a previous preliminary
untargeted metabolomics study revealed that serum levels of select lipids, indicative of
dysregulation of fatty acid metabolism, may be associated with PsA activity [10]. As such,
there is a definite need to identify and further validate biomarkers that can accurately and
reliably predict disease diagnosis, disease activity, and disease conversion from PsC to
PsA [6]. Thus, a new untargeted metabolomics approach geared towards the separation of
fatty acids from PsA patients is needed.

In order to develop and undergo an untargeted metabolomic study, an appropriate
workflow must be selected [6]. The most common analytical instruments used to perform
metabolomics are nuclear magnetic resonance (NMR) and mass spectrometry (MS), paired
with either gas chromatography (GC-MS) or liquid chromatography (LC-MS) for separa-
tion prior to MS detection. Over time, however, MS-based platforms have become the
preferred analytical technique in metabolomics due to their high sensitivity, comprehensive
metabolite coverage, smaller sample volume requirements, and lower initial expense in
comparison to NMR [6,11].

LC separates analytes in a sample based on their interactions with the mobile and
stationary phases, while MS measures the molecular weight of an analyte in relation to
its charge (mass-to-charge [m/z] ratio). The capability of LC-MS to detect most semi-
and non-volatile organic molecules from a range of biological fluids and tissues has ren-
dered it the most utilized technique for capturing lipid metabolites [6,12]. For example,
Chen et al. utilized LC-MS to identify a panel of serum phosphatidylcholines and phos-
phatidylethanolamines capable of differentiating patients with early stage non-small cell
lung cancer from healthy controls [13]. Similarly, Zhang et al. employed a targeted
LC-MS/MS metabolomics approach to identify several plasma fatty acid metabolites as
candidate markers of Parkinson’s disease [14].

While negligible sample preparation is required for NMR-based metabolomics, sample
preparation is especially important for GC-MS and LC-MS metabolomic platforms, as these
techniques necessitate substantial sample clean-up to prevent clogging, fouling, or potential
damage to the instruments [15,16]. The aim of sample preparation in metabolomics is to
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establish an appropriate quenching mechanism and isolate metabolites of interest effectively
and exclusively from complex samples [15,16]. Traditional sample preparation techniques
have included liquid-liquid extraction (LLE) and solid-phase extraction (SPE). Compounds
are separated in LLE based on their solubilities in two immiscible liquids, while SPE
employs a cartridge with a solid adsorbent to extract analytes from a sample [15,17]. LLE is
simple, fast, and does not require specialized equipment; however, the method requires a
large solvent-to-sample ratio, uses environmentally toxic organic solvents, and is not easily
automated [6]. SPE, on the other hand, consumes fewer environmentally toxic solvents,
offers superior sample clean-up, and facilitates easier automation; however, the selection
of a solid sorbent increases selectivity for specific metabolites, ultimately reducing the
coverage of metabolite classes [6].

Unlike conventional sample preparation methods, solid-phase microextraction (SPME)
is a novel, non-exhaustive technique that extracts only a small portion of free analytes
from a sample [18]. A solid support (fiber) with a polymer coating is exposed to a sam-
ple for a preset amount of time, during which analytes migrate from the sample matrix
onto the coating [19]. An equilibrium is then established between the fiber coating and
sample matrix, whereby the amount of the analyte in/on the coating is proportional to
the concentration of that analyte in the sample matrix [19]. Multiple forms of functional-
ized polymer particles with varying extraction capabilities exist for SPME [20]. After an
extensive evaluation of multiple SPME coatings, Liu et al. discovered that a combination of
PS-DVB and HLB coatings extracted the largest range of analytes, including acidic, basic,
and neutral compounds with a wide spectrum of log P values [20]. As such, SPME is a
promising sample preparation method to perform prior to LC-MS untargeted metabolomic
studies given its capabilities for non-selective extraction of a wide range of hydrophilic and
hydrophobic metabolites from multiple forms of complex matrices (liquid, gaseous, and
solid samples) [15,19]. This rapid technique is less labor intensive, has a more streamlined
workflow, and is amenable to minimal lab footprint automation and semi-automation
for high throughput analysis compared to conventional sample preparation methods of-
ten requiring large benchtop systems [15]. Furthermore, as a non-exhaustive extraction
technique, it allows for efficient sample clean-up and minimized matrix effects [18].

There is strong interest in discovering predictive biomarkers for PsA vs. PsC using
novel ‘omics’ technologies such as metabolomics. Lipids, in particular, are of key interest
in psoriatic disease. PsA patients exhibit a higher prevalence of cardiovascular disease,
obesity, and dyslipidemia compared to patients with psoriasis alone [5]. Additionally, since
previous studies have revealed an abnormal serum fatty acid profile in PsA patients, we
sought to develop an SPME-LC-MS method focused on isolating, separating, and analyzing
lipids, fatty acids, and fatty acid-like molecules. As a proof of concept, the method was
subsequently applied to serum samples from a subset of patients from a larger study who
had psoriatic disease. We sought to examine if the method could detect serum lipids and if
any significant differences existed between PsC and PsA patients.

2. Materials and Methods

LC-MS-grade solvents (acetonitrile, methanol, water, acetonitrile, isopropanol, and
acetone), formic acid, concentrated hydrochloric acid, N,N-dimethylformamide (DMF),
L-ascorbic acid, dodecanedioic acid, and 12-aminolauric acid were purchased from Thermo
Fisher Scientific (New Waltham, MA, USA). The following internal standards and chem-
icals were purchased from Millipore Sigma (Burlington, MA, USA): amphetamine-d5,
MDMA-d5, ketamine-d4, diazepam-d5, oxazepam-d5, codeine-d3, fentanyl-d5, heroin-d9,
buprenorphine-d4, nordiazepam-d5, SPLASH LIPIDOMIX Mass Spec Standard, isobutyryl-
L-carnitine, and polyacrylonitrile. The standards 1,11-undecanedicarboxylic acid and 10-
hydroxy-2-decenoic acid were purchased from Toronto Research Chemicals (Toronto, ON,
Canada). Oasis hydrophilic-lipophilic balanced (HLB) particles (50–65 µm) and polystyrene
divinylbenzene with weak anion exchanger (PS-DVB-WAX) particles (50–65 µm) were pur-
chased from Waters Corporation (Milford, MA, USA).
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Thin-film stainless steel combs and the Concept-96 manual kit were purchased from
PAS technologies (Magdala, Germany). The dip coater and lab oven were purchased from
Ni-Lo Scientific (Ottawa, ON, Canada) and Hogentogler (Columbia, SC, USA), respec-
tively. 1 mL deep-well plates were purchased from Canadian Life Science (Peterborough,
ON, Canada). A Vanquish autosampler and pump coupled to a Q Exactive Plus Hy-
brid Quadrupole-Orbitrap Mass Spectrometer, as well as an Accucore C30 HPLC column
(100 mm× 2.1 mm, 2.6 µm) and an Accucore C18 HPLC column (50 mm× 2.1 mm, 1.5 µm),
were purchased from Thermo Fisher Scientific (New Waltham, MA, USA).

High-performance liquid chromatography with high-resolution mass spectrometry
detection was performed using a Vanquish autosampler and pump coupled to a Q Exactive
Plus Hybrid Quadrupole-Orbitrap Mass Spectrometer. Chromatographic separation was
conducted on an Accucore C30 HPLC column (100 mm× 2.1 mm, 2.6 µm) and an Accucore
C18 HPLC column (50 mm × 2.1 mm, 1.5 µm). Thirteen chromatographic methods in
positive mode (Table 1) and twelve chromatographic methods in negative mode (Table 2),
based on published metabolomic studies focused on lipid metabolism, were tested on
both columns.

Table 1. Liquid chromatographic gradients used for separation in positive mode.

Method Study Mobile Phase A Mobile Phase B Gradient
Length (min)

Flow Rate
(mL/min)

Column
Temp. (◦C)

1 [21,22]
60% ACN 40% H2O

+ 10 mM ammonium
formate + 0.1% formic acid

90% IPA 10% ACN + 10 mM
ammonium formate + 0.1%

formic acid
31 0.3 50

2 N/A 60% ACN 40% H2O
+ 10 mM ammonium formate

90% IPA 10% ACN + 10 mM
ammonium formate 31 0.3 50

3 [23]
60% H2O 40% MeOH

+ 10 mM ammonium acetate
+ 1 mM acetic acid

90% IPA 10% MeOH
+ 10 mM ammonium acetate

+ 1 mM acetic acid
50 0.2 55

4 N/A
60% H2O 40% MeOH
+ 10 mM ammonium

formate + 1 mM formic acid

90% IPA 10% MeOH
+ 10 mM ammonium

formate + 1 mM formic acid
50 0.2 55

5 N/A 60% H2O 40% MeOH
+ 10 mM ammonium formate

90% IPA 10% MeOH
+ 10 mM ammonium formate 50 0.2 55

6 [24] 50% ACN 50% H2O + 5 mM
ammonium formate

85% IPA 10% ACN 5% H2O
+ 5 mM ammonium formate 32 0.325 50

7 [25] H2O + 0.1% formic acid ACN 45 0.2 30

8 [26] H2O + 0.1% formic acid ACN + 0.1% formic acid 30 0.5 50

9 [27] H2O + 0.1% formic acid ACN + 0.1% formic acid 57 0.05 50

10 [28] H2O + 0.1% formic acid ACN + 0.1% formic acid 22 0.4 40

11 [29] H2O + 0.1% formic acid MeOH + 0.1% formic acid 25 0.4 60

12 [30] H2O + 12 mM ammonium
acetate + 0.02% acetic acid

90% ACN 10% H2O +
12 mM ammonium acetate +

0.02% acetic acid
35 0.5 30

13 [31] H2O + 20 mM ammonium
formate

60% IPA 36% ACN 4% H2O
+ 0.1% formic acid 25 0.4 60

Abbreviations: ACN—acetonitrile; H2O—water; IPA—isopropanol; MeOH—methanol; Temp.—temperature.
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Table 2. Liquid chromatographic gradients used for separation in negative mode.

Method Study Mobile Phase A Mobile Phase B Gradient
Length (min)

Flow Rate
(mL/min)

Column
Temp. (◦C)

1 [21,22]
60% ACN 40% H2O + 10 mM

ammonium formate + 0.1%
formic acid

90% IPA 10% ACN + 10 mM
ammonium formate + 0.1%

formic acid
31 0.3 50

2 N/A 60% ACN 40% H2O + 10 mM
ammonium formate

90% IPA 10% ACN + 10 mM
ammonium formate 31 0.3 50

3 [23] 60% H2O 40% MeOH + 0.02%
acetic acid

90% IPA 10% MeOH + 0.02%
acetic acid 50 0.2 55

4 [24] 50% ACN 50% H2O + 5 mM
ammonium formate

85% IPA 10% ACN 5% H2O
+ 5 mM ammonium formate 32 0.325 50

5 [27] H2O + 0.1% formic acid ACN + 0.1% formic acid 57 0.05 50

6 [28] H2O + 0.1% formic acid ACN + 0.1% formic acid 22 0.4 40

7 [29] H2O + 0.1% formic acid MeOH + 0.1% formic acid 25 0.4 60

8 [32] H2O + 0.1% formic acid MeOH 15 0.4 50

9 [30] H2O + 12 mM ammonium
acetate + 0.02% acetic acid

90% ACN 10% H2O +
12 mM ammonium acetate +

0.02% acetic acid
35 0.5 30

10 [31] H2O + 20 mM ammonium
formate

60% IPA 36% ACN 4% H2O
+ 0.1% formic acid 25 0.4 60

11 [33] 60% ACN 40% H2O + 10 mM
ammonium acetate

50% ACN 50% IPA + 10 mM
ammonium 23 0.450 55

12 [34] 90% H2O 10% MeOH 80% MeOH 20% ACN 8 0.3 50

13 [21,22]
60% ACN 40% H2O + 10 mM

ammonium formate + 0.1%
formic acid

90% IPA 10% ACN + 10 mM
ammonium formate + 0.1%

formic acid
31 0.3 50

Abbreviations: ACN—acetonitrile; H2O—water; IPA—isopropanol; MeOH—methanol; Temp.—temperature.

The Q Exactive Plus Hybrid Quadrupole-Orbitrap Mass Spectrometer included an Ion
Max heating source containing a heated electrospray ionization (HESI-II) probe. Mass spec-
trometer parameters were optimized based on direct infusion with the SPLASH LIPIDOMIX
Mass Spec Standard. The mass spectrometer was operated in positive mode at high resolu-
tion (70,000), and data was acquired within an m/z range of 150–1200 with an automatic
gain control target of 1 × 106 and an injection time of 100 milliseconds. In negative mode,
the mass spectrometer was operated at high resolution (70,000), and data was acquired
within an m/z range of 100–1000 with an automatic gain control target of 1 × 106 and an
injection time of 50 milliseconds. The sheath, auxiliary, and sweep gas were set to 48, 11,
and 1, respectively, in positive mode and 75, 30, and 1, respectively, in negative mode.
The electrospray voltage applied in positive mode was 3.50 kV and −2.60 kV in negative
mode. In each method, several lipid standards (Table 3) were assessed for good peak shape
(narrow, symmetrical, and gaussian) and good peak resolution. The relative standard
deviation (RSD) of the peak area and the retention time were recorded. An injection volume
of 5 µL was used for standards; the autosampler temperature was 5 ◦C.

Serum samples were obtained from the University of Toronto Psoriatic Disease Re-
search Program Biobank. The study received full ethical approval from the University
Health Network Research Ethics Board. Patients with PsC (n = 27) and PsA (n = 26) as
well as healthy controls (n = 25) were included (see Table 4 for patient demographics).
Sample collection took place from 2009 to 2019. Blood was collected in red-top serum
separator tubes without additives and allowed to clot at room temperature before centrifu-
gation at 2000× g for 15 min. Serum was aliquoted in 0.5 mL vials and frozen at −80 ◦C
until analysis.
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Table 3. Standards analyzed in positive and negative modes.

Compound Lipid Category m/z Positive Mode m/z Negative Mode

15:0-18:1(d7) PC Glycerophospholipids 753.6134 N/A

18:1(d7) Lyso PC Glycerophospholipids 529.3994 N/A

15:0-18:1(d7) PE Glycerophospholipids 711.5664 709.5519

18:1(d7) Lyso PE Glycerophospholipids 487.3524 485.3379

15:0-18:1(d7) PG Glycerophospholipids 759.5875 740.5464

15:0-18:1(d7) PI Glycerophospholipids 847.6036 828.5625

15:0-18:1(d7) PS Glycerophospholipids 755.5562 753.5417

15:0-18:1(d7)-15:0 TAG Glycerolipids 829.7985 N/A

15:0-18:1(d7) DAG Glycerolipids 605.5844 N/A

18:1(d7) MAG Glycerolipids 364.3429 N/A

18:1(d7) Chol Ester Sterol Lipids 675.6779 N/A

d18:1-18:1(d9) SM Sphingolipids 738.647 N/A

15:0-18:1(d7) PA Glycerophospholipids N/A 666.5097

Cholesterol-d7 Sterol Lipids 411.4326 N/A

Dodecanedioic acid Fatty Acyls 231.1591 229.1445

Isobutyryl-L-carnitine Fatty Acyls 232.1544 230.1398

12-Aminolauric acid Fatty Acyls 216.1958 214.1812

1,11-
Undecanedicarboxylic

acid
Fatty Acyls N/A 243.1602

10-Hydroxy-2-decenoic
acid Fatty Acyls N/A 185.1183

Table 4. Patient demographics.

Characteristic Healthy Controls Psoriasis Psoriatic Arthritis

Number of patients 25 27 26

Number of females (%) 40 51 46

Mean age (years) 48 43 47

BMI 29 27 26

The solid-phase microextraction (SPME) device was prepared using a dip-coating
method optimized at the Schroeder Arthritis Institute—Centre for Arthritis Diagnostic
and Therapeutic Innovation: Metabolomics Core Facility. First, the stainless steel blades
were prepared using a previously established protocol [35]. Briefly, the blades were
etched in concentrated hydrochloric acid for one hour, rinsed with tap water, and dried
overnight in an oven. A 7% w/v polyacrylonitrile (PAN) solution was then prepared in N,N-
dimethylformamide (DMF). A specialized software-operated dip-coating machine coated
the stainless steel support with a slurry mixture consisting of 7% w/v 1:1 HLB and PS-DVB-
WAX particles in PAN solution. The coating was cured in an oven at 150 ◦C for 1 min after
each layer of slurry. The solution was used to coat a total of 32 combs, each of which had
12 blades. Every 8 combs were assembled to create a SPME brush for sample preparation.
Each brush was cleaned with 50:25:12.5:12.5 (v/v) water:methanol:acetonitrile:isopropanol
and then measured for reproducibility. The final coating on each blade was 2 cm long with
an average thickness of 2 mm.
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Serum samples were then processed using SPME. Each well of a 96-well plate was filled
with 200 µL of serum and 400 µL of phosphate buffered saline (PBS) containing deuterated
nordiazepam. The serum samples were then agitated for 30 min at 500 rpm prior to
extraction. During this time, the SPME device was placed onto the Concept-96 manual
kit and was conditioned in a mixture of 1:1 methanol:water (v/v) for 30 min at 1500 rpm.
Subsequent to conditioning, the device underwent a 15 min rinse with water at 1500 rpm,
followed by exposure to the serum samples for 1 h at 1500 rpm for extraction. The device
underwent another 10 s rinse with water at 500 rpm, and the extracted metabolites were
then desorbed for 1 h at 1500 rpm in 600 µL of 4:3:3 methanol:acetonitrile:water (v/v/v)
+ 0.1% ascorbic acid containing the following deuterated compounds: amphetamine-d5,
MDMA-d5, ketamine-d4, diazepam-d5, oxazepam-d5, codeine-d3, fentanyl-d5, heroin-
d9, buprenorphine-d4, and SPLASH LIPIDOMIX Mass Spec Standard. The desorption
solution was then diluted with 240 µL of water to produce a final extract composed of
1:1 organic/aqueous content (4:3:7 methanol:acetonitrile:water). A total of 10 µL of each
sample extract was combined to form a pooled quality control (QC) sample that was
injected in the analytical run every 10 sample injections.

Chromatographic separation was conducted on an Accucore C30 HPLC column
(100 mm × 2.1 mm, 2.6 µm) using the developed method. Gradient elution in positive
mode was accomplished over a 30 min period using mobile phases composed of 99.9 wa-
ter/0.1 formic acid (v/v) and 99.9 methanol/0.1 formic acid (v/v). Gradient elution in
negative mode was accomplished over a 20 min period using mobile phases composed of
99.9 water/0.1 formic acid (v/v) and methanol. During analysis, 5 µL of each sample extract
was injected, with the autosampler at 5 ◦C and the column temperature at 60 ◦C. Please see
Tables 5 and 6 for additional details on the chromatographic gradient elution. The parame-
ters for mass spectrometry were consistent with those outlined in the assay development.
The lipids outlined in Table 3 were prepared in 4:3:7 methanol/acetonitrile/water and used
as quality control standards throughout the LC-MS analysis.

Table 5. Liquid chromatographic gradient used for separation in positive mode.

Time (min) % Mobile Phase B
(Methanol + 0.1% Formic Acid)

0 5

1 5

20 100 (curve 3)

22.5 100

25 5

30 5

Table 6. Liquid chromatographic gradient used for separation in negative mode.

Time (min) % Mobile Phase B
(Methanol + 0.1% Formic Acid)

0 0

2 0

12 100 (curve 3)

15 100

18 0

20 0

The LC-MS data files acquired during instrumental analysis were pre-processed on
MetaboAnalyst 5.0. The raw LC-MS data files were first converted to mzML files using
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MSConvert [36] and then pre-processed using the MetaboAnalyst LC-MS Spectra Process-
ing module [37]. The module performed automated parameter optimization based on
pooled quality control (QC) samples run throughout the sequence and supported spectra
data processing for peak picking, alignment, and gap filling [37]. The peak lists generated
using MetaboAnalyst were initially filtered by removing features with a pooled QC relative
standard deviation (RSD) greater than 30%. Further filtering was performed by removing
features that had a pooled QC to solvent/device blank ratio of less than 5. The data was
uploaded back onto MetaboAnalyst; default settings were used for missing values, with
no supplementary filtering applied. A total of 1786 features were detected in positive
mode and 1059 features in negative mode. Prior to univariate or multivariate chemometric
analyses, a log transformation was performed on the negative mode data, and a cube root
transformation in addition to pareto scaling was performed on the positive mode data.

Statistical analysis was performed using MetaboAnalyst 5.0. Since the distribution
of the data cannot be assumed, a Wilcoxon Rank test or a Kruskal–Wallis test, both with
a false discovery rate (FDR) of 0.05, were applied for univariate analysis. Multivariate
analysis included Principal Component Analysis (PCA), Partial Least Squares-Discriminant
Analysis (PLS-DA), and Orthogonal Projection to Latent Structures-Discriminant Analysis
(OPLS-DA). Model validation for O-PLS-DA and PLS-DA included a combination of
permutation (p < 0.05 at 2000) and 10-fold cross-validation (10-fold CV). Only features with
a variable of importance in projection (VIP) score of >1 were investigated further. Significant
features from both univariate and multivariate analyses were tentatively annotated based
on exact mass using METLIN [38] and LIPID MAPS [39] in conjunction with the Human
Metabolome Database (HMDB) [40]. Global Natural Products Social Molecular Networking
(GNPS) [41] and MS-DIAL [42] were used for MS/MS spectral matching. Biochemical
importance for all identified compounds was obtained from the Human Metabolome
Database (HMDB) [40].

3. Results
3.1. Method Development

Thirteen chromatographic methods in positive mode and twelve methods in negative
mode were tested on both the Accucore C18 HPLC column and the Accucore C30 HPLC
column. Overall, both columns provided similar separation of lipids and good peak shapes.
The Accucore C30 column resulted in slightly narrower peaks with less tailing. Thus, the
Accucore C30 column was selected as the more favorable column for lipid analysis.

Each chromatographic method that was then tested on the Accucore C30 HPLC column
had different solvents, additives, and gradients. Many of the methods were not capable
of generating a good separation of lipids with a good peak shape. Methods that used
water and acetonitrile as mobile phases tended to perform poorly, while methods that
used methanol instead of acetonitrile in their mobile phase B were found to generate good
separation of lipids and good peak shapes. No singular method, however, was able to
capture all lipids adequately. The method that was best for analyzing larger lipids such as
glycerophospholipids, glycerolipids, sterol lipids, and sphingolipids was not the best for
analyzing smaller lipids such as fatty acids. These differences in lipid analysis may be due
to the lipid categories or may be because of the size of the lipids. Method 11 in positive
mode and method 8 in negative mode were selected as the chromatographic methods of
choice because they provided narrow, symmetrical peaks for most of the fatty acids and
fatty acid-like molecules, which were our focus, as mentioned, based on previous research.
Regardless, the methods also performed well for many of the other lipids.

The two selected methods were then optimized to achieve the best initial conditions
and gradient. The initial percentage of solvent B was increased from 0% to 30%. Both
methods showed a similar pattern, where larger initial percentages of B resulted in wider,
more asymmetrical peaks. In positive mode, the method showed the best peak shapes at
5% solvent B. In negative mode, solvent B was selected to be the best at 0%. The curvature
of each method’s gradient was then modified into a concave down or concave up curve.
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A concave up gradient increased the retention time of almost all the compounds, while
a concave down gradient decreased the retention time. The concave down gradient was
selected for both methods because the lower retention time elution of metabolites would
allow for more compounds to be separated on the column while preserving good peak
shape and a shorter chromatographic method.

The final optimized methods are shown in Figure 1 with the extraction ion chro-
matograms of our fatty acid-like molecules and derivatives. Although the methods cap-
tured many of the lipids with great ability, there were a few lipids that were not observed
as narrow, symmetrical peaks (see Tables 7 and 8 for full list). Dodecanedioic acid and
12-aminolauric acid were well detected in both positive and negative modes. Isobutyryl-
L-carnitine was poorly analyzed in negative mode but well analyzed in positive mode.
1,11-undecanedicarboxylic acid and 10-hydroxy-2-decenoic acid were only able to be ana-
lyzed in negative mode.
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Figure 1. Final optimized methods. (a) Positive mode: dodecanedioic acid, isobutyryl-L-carnitine,
and 12-aminolauric acid. (b) Negative mode: dodecanedioic acid, 12-aminolauric acid, 1,11-
undecanedicarboxylic acid, and 10-hydroxy-2-decenoic acid.

Table 7. Standards analyzed in the final method—positive mode.

Compound Adduct m/z RT (min)

Dodecanedioic acid [M + H]+ 231.1591 7.16

Isobutyryl-L-carnitine [M + H]+ 232.1544 1.15

12-Aminolauric acid [M + H]+ 216.1958 4.97

Table 8. Standards analyzed in the final method—negative mode.

Compound Adduct m/z RT (min)

Dodecanedioic acid [M − H]− 229.1445 6.46

12-Aminolauric acid [M − H]− 214.1812 5.00

1,11-Undecanedicarboxylic acid [M − H]− 243.1602 6.93

10-Hydroxy-2-decenoic acid [M − H]− 185.1183 5.47

3.2. Method Performance

The LC-MS method developed and optimized for separating and analyzing fatty acids
and fatty acid-like molecules was subsequently applied to serum samples that were a subset
of patients with psoriatic disease from another study and were prepared using SPME. We
aimed to examine if the method could detect serum lipids and if there were any differences
in serum lipids between PsC and PsA patients.

Over the course of the analytical run, quality control standards (Table 3) were run in
triplicate every ten samples, and the relative standard deviation (RSD) of the peak area and



Metabolites 2023, 13, 963 10 of 16

the retention time were recorded. All quality control standards had a peak area RSD < 9%
and a retention time RSD < 1%. Deuterated internal standards added to each sample for
monitoring metabolite extraction and instrumental analysis had peak area RSDs < 6% and
retention time RSDs < 1%. The low variation (<9% and 1% RSD) indicates the method
performed well during serum sample instrumental acquisition over a three-day run.

Principal component analysis (PCA) was employed to produce a graphical repre-
sentation of the dataset (Figure 2). PCA is an unsupervised multivariate approach that
facilitates the identification of patterns, laying the groundwork for the construction of
subsequent supervised models. The pooled QC (a composite of all samples) was injected
throughout the analysis every 10 samples. The data indicated tight clustering of the QCs
on the PCA plot of both positive and negative mode data, which indicates instrumental
stability during acquisition.
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Figure 2. Principal component analysis of pooled QCs, represented by turquoise, and three patient
groups—healthy volunteers (Ctrl), patients with psoriatic arthritis (PsA), and patients with psoriasis
(PsC), represented by red, green, and dark blue on the plot, respectively. (a) Positive mode acquisition.
PCA—PC1: 13.5%, PC2: 12.7%, and PC3: 8.6%. (b) Negative mode acquisition. PCA—PC1: 15.3%,
PC2: 6.5%, and PC3: 5.1%.

3.3. Significant Differences between Patient Groups

The PCA plots show a clear separation between the PsA group and the PsC group
in both positive and negative modes (Figure 3). Multivariate analysis of PsA and PsC
patients via PLS-DA yielded a cross-validated model (Figure 4) with acceptable criteria of
0.89 (R2) and 0.77 (Q2) in positive mode. In negative mode, multivariate analysis of PsA
and PsC patients via OPLS-DA yielded a cross-validated model with acceptable criteria
of 0.77 (R2) and 0.61 (Q2) (Figure 4). Features with a variable of importance in projection
(VIP) score of >1 had the most significant influence on each model. Statistical analysis
via univariate analysis yielded sixteen statistically significant features in positive mode
and nine statistically significant features in negative mode between PsC and PsA patients.
Features that were significant via univariate analysis and had a VIP score of >1 in the
multivariate discriminant analysis were identified. See Tables 9 and 10 for a complete list
of confirmed and tentatively identified compounds, respectively, in positive mode. See
Table 11 for a complete list of tentatively identified compounds in negative mode.
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Figure 3. Principal component analysis of patients with psoriatic arthritis (PsA) and patients with
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Table 9. Confirmed compounds using MS/MS showing statistically significant differences between
psoriasis and psoriatic arthritis patients during positive mode acquisition.

m/z RT (min) Confirmed ID Adduct Biochemical Importance

246.1699 3.2 Valerylcarnitine [M+H]+ Short-chain acylcarnitine involved in
beta-oxidation.
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Table 10. Tentatively annotated features showing statistically significant differences between psoriasis
and psoriatic arthritis patients during positive mode acquisition.

m/z RT (min) Tentative ID Adduct Biochemical Importance

342.1558 1.5 Tryptophyl-Histidine [M+H]+ Dipeptide resulting from an incomplete
breakdown in protein catabolism.

457.2308 9.1 LPA(18:2(9Z,12Z)/0:0) [M+Na]+ Intercellular lipid mediator.

473.1933 4.2 Sofalcone [M+Na]+ Mucosal protective agent.

491.2125 4.2 Cymorcin diglucoside [M+H]+ Phenolic glycoside.

489.2246 3.5 Dolichyl b-D-glucosyl
phosphate [M+Na]+ Sesquiterpenoid.

374.147 3.8 Phenylalanyl-Tryptophan [M+Na]+ Dipeptide resulting from an incomplete
breakdown in protein catabolism.

361.2007 5.1 Aldosterone [M+H]+ Aldosterone is a hormone that regulates
sodium and potassium.

334.1588 14.3 Arginyl-Histidine [M+Na]+ Dipeptide resulting from an incomplete
breakdown in protein catabolism.

780.5307 7.6 (3′-sulfo)Galbeta-
Cer(d18:1/16:0) [M+H]+ Found in particularly high concentrations in

myelin.

815.6991 22.1 SM(d18:1/24:0) [M+H]+ Sphingolipids were found in cell membranes.
Role in signal transduction.

204.123 0.9 Acetyl-D-carnitine [M+H]+ Long-chain acylcarnitine involved in
beta-oxidation.

391.2089 4.8 19R-hydroxy-PGE2,
20-hydroxy-PGE2 [M+Na]+

PGE2 stimulates bone resorption by
osteoclasts, increases vasodilation, and

increases cAMP production.

Table 11. Tentatively annotated features showing statistically significant differences between psoriasis
and psoriatic arthritis patients during negative mode acquisition.

m/z RT (min) Tentative ID Adduct Biochemical Importance

243.1715 4.1 Isoleucyl-Isoleucine [M-H]- Dipeptide resulting from an incomplete
breakdown in protein catabolism.

935.3194 0.8 Bilirubin diglucuronide [M-H]- Glucuronidated derivative of bilirubin.

997.3346 0.8 Sialyllacto-N-tetraose a [M-H]- Oligosaccharide found in breast milk.

350.1517 4.4 Tryptophyl-Phenylalanine [M-H]- Dipeptide resulting from an incomplete
breakdown in protein catabolism.

179.0565 0.9
2,3-Dihydroxy-2-
methylbutanoic

acid
[M+Formate]- Hydroxy fatty acid.

4. Discussion

The aim of this study was to develop an SPME-LC-MS untargeted metabolomic
method focused on isolating, separating, and analyzing lipids—with a specific focus on
fatty acids and fatty acid-like molecules. These compounds were selected because they have
previously been found to be implicated in psoriatic disease and may aid in classifying PsA
patients from PsC patients [6,10]. Additionally, the high prevalence of metabolic syndrome
and cardiovascular events in PsA patients makes lipids of key interest in psoriatic disease.
SPME-LC-MS was chosen as the analytical assay due to the streamlined, semi-automated
workflow, the varying compound classes capable of being extracted, and previous research
that has shown SPME to be comparable to common lipid extraction methods such as Folch
extraction and Bligh and Dyer [43].
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Thirteen chromatographic methods in positive mode and twelve methods in negative
mode, with varying solvents, additives, and gradients, were tested on two HPLC columns.
Each method’s performance was evaluated using instrumental quality control standards.
The Accucore C30 column provided slightly narrower peaks and was thus chosen as the
most suitable column for analysis. Chromatographic methods that used methanol instead
of acetonitrile in their mobile phase B performed better. No method, however, was able
to capture all lipids perfectly. The method chosen in each acquisition mode was selected
because it was best able to separate and analyze fatty acid-like molecules, which are a
priority for further investigation in psoriatic disease. The initial conditions for solvent
B were then optimized and achieved the narrowest peaks at smaller initial percentages.
A concave downward gradient was selected because it reduced retention times while
preserving peak shape.

After developing and optimizing the final method in positive and negative modes,
the methods were applied to serum samples collected from a cohort of patients with PsC,
PsA, and healthy controls. The analytical run was evaluated using instrumental quality
control standards, deuterated internal standards, and pooled quality control samples. A
low variation in the RSD of the peak and retention time of the standards indicated a stable
run. We examined significant metabolite differences between PsC and PsA patients to
help understand how PsA patients may be able to be better detected among patients with
psoriatic disease. Tentatively annotated features classified as fatty acids, carboxylic acids,
glycerophospholipids, steroids, and sphingolipids were statistically significant between
the PsC and PsA groups using both multivariate and univariate approaches.

The short-chain acylcarnitine, valerylcarnitine, was the only compound that had
its identity confirmed using MS/MS spectra (See Figures S1–S3). Another acylcarnitine,
acetyl-D-carnitine, was found to differentiate PsA and PsC patients; however, this tenta-
tive feature was not able to be confirmed using MS/MS. Acylcarnitines are involved in
transporting fatty acids into the mitochondria to be broken down to produce energy via
beta-oxidation. Previous studies have found changes in the levels of acylcarnitines in pa-
tients with diabetes [44,45], obesity [45], and heart disease [46], which are all comorbidities
of psoriatic disease. Interestingly, a recent study by Villarreal-Martinez revealed that PsC
patients with insulin resistance had a distinct acylcarnitine profile from patients without
insulin resistance, reflecting impaired beta-oxidation [47]. It appears acylcarnitines may
be a possible connection between dysregulated fatty acid metabolism seen in previous
metabolomic studies and the high prevalence of metabolic abnormalities in patients with
psoriatic disease.

Other tentatively identified features included tryptophyl-histidine, isoleucyl-isoleucine,
phenylalanyl-tryptophan, and arginyl-histidine. These four compounds are dipeptides,
formed as a result of an incomplete breakdown in protein catabolism. No previous studies
have been published regarding these compounds. Additionally, we found that levels of both
lysophosphatidic acid (18:2(9Z,12Z)/0:0) and sphingomyelin (d18:1/24:0) distinguished
PsA and PsC patients. Lysophosphatidic acid (LPA) is an important intercellular lipid
mediator controlling wound healing and the inflammatory cascade [48]. A previous study
revealed LPA levels at significantly higher levels in psoriatic patients’ serum and suggested
LPA may mediate the pathogenesis of psoriasis by activating keratinocytes [49]. The role
of LPA in PsA has not yet been reported in the literature; however, our study points to a
possible implication in the disease. Sphingomyelin (SM) is a sphingolipid and a component
of animal cell membranes [50]. A previous metabolomic study detected an increase in
serum concentrations of sphingolipids in PsC patients with severe disease activity [51].

It is important to recognize, however, that this study and untargeted metabolomic
studies in general are not without their limitations. Identification of features remains a
roadblock in untargeted metabolomics. In this study, we employed several databases for
feature identification; however, we were only able to tentatively identify approximately
20% of significant features. Out of the 18 tentatively identified features, we were able
to confirm the identity of one compound using MS/MS spectra. This could be due to
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a few reasons, including the dearth of MS/MS fragmentation databases as well as the
sheer difficulty of identifying a very diverse and complex set of molecules like lipids.
Although we developed the SPME-LC-MS method for analyzing lipids and lipid-related
molecules, without a targeted approach, any metabolite with the appropriate physical
and chemical properties may be detected, including those with exposome-borne origins.
One of the great strengths of metabolomics for biomarker discovery is that it considers
genetic, immunologic, and environmental factors. However, given the complexity of the
metabolome, it can be difficult to determine which factors contribute largely to the disease’s
manifestation. A multitude of intrinsic and extrinsic factors, such as diet, ethnicity, exercise,
past drug use, and hormonal status, can contribute to a patient’s metabolome. In this study,
we included three patient groups of approximately the same sample size: sex-balanced,
age, and BMI-adjusted; however, we did not control these additional factors due to limited
sample availability.

5. Conclusions

The SPME-LC-MS method developed and optimized was capable of detecting lipids,
fatty acids, fatty acid-like molecules, and other compounds that may aid in differentiating
psoriasis and PsA patients. Several classes of lipids detected (acylcarnitines, lysophospho-
lipids, and sphingolipids) have previously been indicated in psoriatic disease. Specific
focus should be placed on valerylcarnitine due to its confirmed identity. This preliminary
data provides a good direction for future research in lipid biomarker discovery in psoriatic
disease. Due to this study’s relatively small sample size, a more expansive follow-up study
should be conducted to confirm the findings. This expanded study should use the same
SPME-LC-MS method but increase the number of patients examined and include rigorous
MS/MS validation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13080963/s1, Figure S1: extracted ion chromatogram for
valerylcarnitine; Figure S2: measured versus reference MS/MS spectra for valerylcarnitine. Figure S3:
proposed fragmentation pattern for valerylcarnitine.
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