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Abstract: Marine actinomycetes represent a highly favorable source of bioactive compounds and
have been the mainstay of much research in recent years. Recent reports have shown that marine
Streptomyces sp. can produce compounds with diverse and potent biological activities. Therefore, the
key objective of the study was to isolate and screen a potential actinomycete from marine ecosystems
of Devbagh and Tilmati beaches, Karwar. Streptomyces sp. KS20 was characterized and the ethyl
acetate extract (EtOAc-Ex) was screened for biomedical applications. Streptomyces sp. KS20 produced
grayish-white aerial and pale-yellow substrate mycelia and revealed an ancestral relationship with
Streptomyces violaceusniger. Optimum growth of the organism was recorded at 30 ◦C and pH 7.0. The
metabolite profiling of EtOAc-Ex expressed the existence of several bioactive metabolites, whereas the
functional groups were indicated by Fourier transform infrared (FTIR) spectroscopy. A considerable
antioxidant activity was shown for EtOAc-Ex with IC50 of 92.56 µg/mL. In addition to this, Strep-
tomyces sp. KS20 exhibited significant antimicrobial properties, particularly against Escherichia coli,
where a zone of inhibition measuring 36 ± 0.83 mm and a minimum inhibitory concentration (MIC)
of 3.12 µg/mL were observed. The EtOAc-Ex even revealed significant antimycobacterial potency
with IC50 of 6.25 µg/mL. Finally, the antiproliferative potentiality of EtOAc-Ex against A549 and PC-3
cell lines revealed a constant decline in cell viability while raising the concentration of EtOAc-Ex from
12.5 to 200 µg/mL. The IC50 values were determined as 94.73 µg/mL and 121.12 µg/mL for A549
and PC-3 cell lines, respectively. Overall, the exploration of secondary metabolites from marine Strep-
tomyces sp. KS20 represents an exciting area of further research with the potential to discover novel
bioactive compounds that could be developed into therapeutics for various medical applications.

Keywords: Streptomyces violaceusniger; GC-MS analysis; antimycobacterial efficacy; antiproliferative
activity; A549 cell line; PC-3 cell line

1. Introduction

Actinomycetes are the most vital assemblage of microorganisms and are believed
to be the most biotechnologically and economically valuable prokaryotes [1]. From 1914
to 1939, an American inventor, microbiologist, and biochemist named Selman Waksman
screened soil fungi, bacteria, and actinomycetes (Actinomyces alboflavus, Actinomyces aureus,
Actinomyces bobili, Actinomyces bovis, Actinomyces citreus, Actinomyces fradii, Actinomyces
lavendulae, etc.) to find a useful antibiotic for tuberculosis (TB) [2,3].
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The vast majority of the Earth’s surface is occupied by the oceans and they are con-
sidered an inadequately inspected habitat in terms of microbial diversity, making them
an ideal source for actinomycete isolation [4]. The relatively unexplored and underex-
plored habitats within marine ecosystems are widely regarded as promising reservoirs of
rare actinomycetes, which possess significant potential for the production of novel and
intriguing compounds. The marine actinomycetes exhibit great diversity in their habitats.
They are found in marine and estuarine sediments, seawater, intertidal zones, and in
symbiotic relationships with marine plants, invertebrates like echinoderms and sponges,
vertebrates like puffer fish, etc. although the majority of strains have been isolated from
marine sediments [5].

Actinomycetes are a class of microorganisms characterized by a complex life cycle,
which possess the characteristics of both bacteria and fungi. Their name is derived from two
Greek words, ‘aktis’ meaning ‘ray’ and ‘mukes’ meaning ‘fungi’. They are classified within
the phylum Actinobacteria, constitute a substantial taxonomic group, and are presently
acknowledged as part of the Bacteria domain [6]. The actinomycetes are Gram-positive
bacteria and their DNA is composed of a significant proportion of cytosine and guanine
(>55%). Great diversity in actinomycetes has been reported by many scientists. Some of
the actinomycetes are rod or cocci shaped and some of them produce profusely branched
mycelia to absorb nutrients and to produce spore-bearing structures [7].

Marine actinomycetes possess the capacity to generate a wide array of unique bioactive
compounds with distinct functional and structural characters. This is due to extreme
variations in availability of nutrients, high salinity, pressure, low temperature, etc. The
competitive environment prevailing in the marine ecosystem has made the actinomycetes
develop unique biochemical, physiological, and metabolic capabilities and also provides the
potential to produce novel metabolites which are absent in terrestrial microorganisms [8].

Actinomycetes have huge economic importance in the production of enzymes, enzyme
inhibitors, vitamins, novel pharmaceuticals, antitumor agents, antiparasitic agents, herbi-
cides, pesticides, etc. [9]. Secondary metabolites produced by them exhibit an enormous
number of compounds having biological activities. The order Actinomycetales is account-
able for the synthesis of these biologically active metabolites with a remarkable record of
over 10,000 antimicrobial compounds for medical uses [10]. Members of this order are
the producers of several classes of antimicrobial substances, including β-lactams, amino-
glycosides, macrolides, anthracyclines, glycopeptides, nucleosides, peptides, polyenes,
polyketides, tetracyclines, actinomycin, and others [11,12].

Antimicrobial resistance (AMR) is an inherent process that arises when microorgan-
isms come into contact with antimicrobial substances. Microbial pathogens persistently
develop resistance to the actions of antimicrobial agents. A substantial decrease in an-
timicrobial research (between 1983 and 2007) has increased the severity of AMR and its
consequences for worldwide healthcare [13]. Bacteria possessing innate resistance or those
that have developed antimicrobial resistance traits are more likely to endure and reproduce
successfully. The widespread increase in the utilization of easily accessible antibiotics has
significantly contributed to AMR and further amplifies the probability of reappearance
various diseases including TB [14,15].

Cancer encompasses a broad spectrum of diseases that have the potential to impact
several areas of the body and accounted for nearly 10 million deaths in 2020. Worldwide,
lung cancer (2.21 million cases) [16] is the second most common cancer while prostate
cancer (1.41 million cases) in males ranked fourth in the total number of cases diagnosed in
2020 [17]. These incidents demand extensive research on the development of new anticancer
compounds to decrease the occurrences and mortalities in the world.

Therefore, in the present investigation, an effort was made to screen and isolate a
potential marine actinomycete from sediments and water samples from underexplored
regions of Devbagh and Tilmati beaches, Karwar, Karnataka, India. The novelty of this work
was that a marine actinomycete, Streptomyces violaceusniger, was isolated for the first time
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from a marine environment in India. This marine actinomycete was further characterized
phenotypically and genotypically and investigated for its biological activities.

2. Materials and Methods
2.1. Pathogens and Materials Used in the Study

The pathogenic microorganisms were procured from the IMTECH, Chandigarh, In-
dia. Bacterial strains, including Shigella flexneri (MTCC 1457), Pseudomonas aeruginosa
(MTCC 9027), Escherichia coli (MTCC 40), Klebsiella pneumoniae (MTCC 9238), Bacillus sub-
tilis (MTCC 6633), Staphylococcus aureus (MTCC 6908), Bacillus cereus (MTCC 11778), and
Enterococcus faecalis (MTCC 6845) were used. All the chemicals were bought from Himedia,
laboratories, Mumbai, India.

2.2. Collection of Samples

Samples of seawater and sediments were gathered from different locations along the
coastlines of Tilmati and Devbagh beaches in Karnataka, India. The samples were obtained
randomly at a depth of 5 to 10 cm using aseptic techniques. They were then carefully stored
in sterilized containers, labeled, and preserved at 4 ◦C until the actinomycete isolation
process [18].

2.3. Isolation and Primary Screening

To isolate marine actinomycetes, the samples were diluted using sterilized physiologi-
cal saline (0.9% NaCl) solution. Then, 100 µL suspensions from every dilution were evenly
spread onto various media. These media were fortified with amphotericin-B and strepto-
mycin (25 µg/mL) to avoid the growth of uninvited fungi and bacteria. At a temperature
of 30 ± 2 ◦C, the plates were incubated for a period of 10 to 14 days, allowing actinomycete
colonies to become visible [19].

The cross-streak method was employed to assess the antimicrobial capacity of the
isolated actinomycetes. A single streak of the actinomycetes was grown on ISP-2 medium
plates and incubated at 30 ± 2 ◦C for 7 days. Different types of microorganisms, such as
Gram-negative and Gram-positive bacteria, along with yeasts, were streaked in a perpen-
dicular manner to the actinomycete streak. The plates were then incubated for 7 days and
at a temperature of 37 ◦C. Following the incubation period, the plates were assessed for
antimicrobial activity. The actinomycete isolate showing potential activity was selected for
further investigations [20].

2.4. Polyphasic Taxonomy of Streptomyces sp. KS20
2.4.1. Morphological Characterizations

Morphological characterizations of Streptomyces sp. KS20 were conducted by docu-
menting the color of aerial and substrate mycelia, staining nature, pigmentation, colony
shapes, margins, and elevations. The mycelial and spore surface morphologies were ex-
amined using a scanning electron microscope (SEM) (JSM-IT500, In Touch Scope Scanning
Electron Microscope, Tokyo, Japan) following the method of Divya and Nawani [21]. Briefly,
Streptomyces sp. KS20 was fixed with 25% glutaraldehyde for 2 h, then washed thrice with
PBS (pH 7.2 ± 0.2) and gradually dehydrated with increasing concentrations of acetone
(30% to 100%), and finally dried in a critical point drier. For SEM analysis, the organism
was subjected for 2 min to gold sputtering on conductive carbon tape and scanned using a
SEM instrument at a resolution of 6000X.

2.4.2. Molecular Characterization

Streptomyces sp. KS20 was taxonomically identified by gene sequencing of 16S rRNA.
A HipurA Streptomyces DNA purification kit (#MB527) was utilized to extract and purify the
genomic DNA following the producer’s instructions. The genomic DNA was then amplified
with a reverse primer (1492R 5′-GGTTACCTTGTTACGACTT-3′) and forward primer
(27F 5′-AGAGTTTGATCCTGGCTCAG-3′) using a PCR instrument (Applied Biosystems
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2720 Thermal Cycler) [22]. Following amplification, the 16S rRNA gene was visualized
and subsequently sequenced using a genetic analyzer. The acquired gene sequence was
analyzed by comparing it to similar sequences in the NCBI database through the BLAST
portal. Sequences with high similarity were used to construct a phylogenetic tree using
MEGA7 software.

2.4.3. Physiological Characterizations

Physiological characterizations of Streptomyces sp. KS20 involved observing its growth
under various conditions: temperatures ranging from 20 to 45 ◦C, pH levels from 5.0 to
10.0, and sodium chloride concentrations (w/v) ranging from 1 to 7% [23].

2.4.4. Biochemical Characterizations

The VITEK-2 Compact system (Biomerieux, Durham, NC, USA) with the BCL card
was utilized to perform the biochemical analyses of Streptomyces sp. KS20. A suspension
of the organism in 0.5 McFarland standards was applied to the microwell card, which
contained specific test substrates [24]. The VITEK-2 BCL card revealed alkalization, acidifi-
cation, growth inhibition, hydrolysis of enzymes, and assimilation of carbon sources for
Streptomyces sp. KS20.

2.4.5. Production and Extraction of Secondary Metabolites

Streptomyces sp. KS20 underwent submerged fermentation in starch casein (SC) broth
(pH 7.0) for 20 days at 30 ◦C. After incubation, the biomass was filtered out of the broth,
and the filtrate obtained was mixed with ethyl acetate (1:1, v/v) to facilitate the extraction
of secondary metabolites. The separation of the ethyl acetate layer was carried out in a
separating funnel after 24 h at room temperature and concentrated using a rotary evaporator
at 40 ◦C under reduced pressure [25].

2.5. Characterizations of Ethyl Acetate Extract
2.5.1. FTIR Spectroscopy

To detect the potential biological functional groups in the EtOAc-Ex of Streptomyces
sp. KS20, we conducted FTIR analysis employing a Nicolet 6700 FTIR spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). A small amount of EtOAc-Ex was ground
with potassium bromide to prepare a thin disc, which was then scanned at a resolution of
4 cm−1 and in transmittance mode over the wavelength range of 4000 to 400 cm−1 [26].

2.5.2. Gas Chromatography–Mass Spectrometry (GC-MS)

The volatile components in EtOAc-Ex of Streptomyces sp. KS20 were analyzed using
a GC-MS system coupled with an electron ionization detector (Shimadzu GC-2010 Plus).
The instrument consisted of an EC-5 column (0.25 µm film thickness, 15 m length, and
0.25 mm diameter). A 2 µL aliquot of EtOAc-Ex was introduced into a 2 mm injector
with a split injection ratio of 10:1. The sample was transported using an inert helium gas
with a consistent flow rate of 2 mL/min. Initial oven temperature was set to 35 ◦C for a
duration of 2 min, after which it was ramped up to 450 ◦C at a rate of 20 ◦C/min. The
analysis was performed for 43 min, covering a mass range of 65 m/z to 1000 m/z, in electron
ionization mode. The mass spectra obtained were cross-checked with the National Institute
of Standards and Technology (NIST) database to determine their identity [27].

2.6. Biological Activities
2.6.1. Antioxidant Activity of Streptomyces sp. KS20 EtOAc-Ex

The potential of Streptomyces sp. KS20 EtOAc-Ex to scavenge free radicals was eval-
uated in vitro using 2,2-diphenyl-1-picrylhydrazyl (DPPH). Butylated hydroxytoluene
(50 mg/mL) in methanol served as the standard, and a working solution of DPPH (0.024 g
in 100 mL) was prepared. Several concentrations (25, 50, 75, 100, and 125 µg/mL) of
BHT and EtOAc-Ex were separately pipetted, and DPPH solution (3 mL) was added to
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each. The combinations were then incubated for 30 min at room temperature in the dark.
Following incubation, the measurement of absorbance at a wavelength of 517 nm was
accomplished. The analysis was conducted in triplicate, and the findings were conveyed as
the IC50 (µg/mL) [28]. The scavenging potential percentage was determined employing
the following equation:

Radical scavenging activity = A0 − A1/A0 × 100

where A0 = absorbance of the control and A1 = absorbance of the sample.

2.6.2. Antibacterial Activity of Streptomyces sp. KS20 EtOAc-Ex

The antibacterial efficacy of Streptomyces sp. KS20 was evaluated utilizing the agar
well diffusion technique on nutrient agar (NA) (#MM012, Hi-media). EtOAc-Ex was dis-
solved in DMSO (10 mg/mL), the positive control used for bacteria was streptomycin
(10 mg/mL). Pathogens including S. aureus, B. cereus, B. subtilis, E. faecalis, E. coli, P. aerug-
inosa, S. flexneri, and K. pneumoniae were cultured and adjusted to a 0.5 McFarland con-
centration (1.5 × 108 CFU/mL). Subsequently, 100 µL of each bacterium was swabbed
onto NA, then 6 mm wells were filled with 100 µL of EtOAc-Ex. A negative control was
established using sterile distilled water, and the plates were subjected to incubation for
24 h at a temperature of 37 ◦C. The assay was performed in triplicate, and the zone of
inhibition including the 6 mm well diameter for each pathogenic bacterium was calculated.
The resultant zones of inhibition were then determined excluding the diameter (6 mm) of
wells [29].

2.6.3. Assessment of Minimum Inhibitory and Minimum Bactericidal Concentration

MIC was carried out according to CLSI microdilution guidelines. Briefly, nutrient
broth (100 µL) was distributed in columns 1 to 12 and 100 µL of Streptomyces sp. KS20
EtOAc-Ex in DMSO (1 mg/mL) was two-fold serially diluted (100, 50, 25, 12.5, 6.25, 3.12, 1.6,
0.8, 0.4, 0.2 µg/mL) up to column 10. Fifty microliters of bacterial pathogens (0.5 McFarland
concentrations, 1.5 × 108 CFU/mL) was mixed in separate rows from columns 1 to 11.
Columns 11 and 12 were considered as the bacterial growth control and sterility control,
respectively. The plates were incubated at 37 ◦C for 24 h and, following incubation, 30 µL
resazurin (0.015%) was added in each well. Incubation was carried out for 2 to 4 h for the
examination of changes in color. For the determination of MBC, NA media were swabbed
with pathogenic bacterial solutions from each well and incubated for 24 h at 37 ◦C. Plates
with no bacterial colonies were determined as MBC [30].

2.6.4. Antimycobacterial Activity

Mycobacterium tuberculosis strain H37 RV (ATCC 27294) was taken to measure antimy-
cobacterial activity utilizing the microplate alamar blue assay (MABA). The peripheral
wells of 96-well plates received 200 µL of sterile distilled water. One hundred microliters
of Middlebrook 7H9 broth was poured into wells of column 1 to column 11 and 50 µL
of the pathogen was mixed in each except column 11. In order to conduct the analysis,
5 common antimycobacterial medicines (isoniazid, ethambutol, pyrazinamide, rifampicin,
and streptomycin) were used. Drugs and EtOAc-Ex were diluted serially from 100 to
0.2 µg/mL concentrations. The microplate was then incubated at 37 ◦C with 10% Tween
80 for 5 days. After incubation, 25 µL of alamar blue reagent (1:1) was added. Bacterial
growth was indicated by a transition in color from blue to pink. The MIC was established
as the concentration at which the occurrence of a color change was prevented [31].

2.6.5. Antiproliferative Activity of Streptomyces sp. KS20 EtOAc-Ex

Human epithelial adenocarcinoma (A549), prostate adenocarcinoma (PC-3), and nor-
mal human embryonic kidney (HEK-293) cell lines were obtained from the National Centre
for Cell Science (NCCS), Pune, India. Culturing of the cell lines was carried out in DMEM
(#AL111, Himedia) supplemented with 10% FBS (#RM10432, Himedia) at 37 ◦C for 24 h in
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a 5% CO2 incubator. Once the cells reached full growth, approximately 20,000 cells/200 µL
were transferred to separate 96-well microtiter plates. The 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) technique was employed for antiproliferative assay.
The A549 cell line was employed, with the standard anticancer drug cisplatin (10 µM/mL)
serving as a positive control, doxorubicin (10 µM/mL) for the PC-3 cell line, and camp-
tothecin (10 µM/mL) for HEK-293 cell line. Cells with no treatment were designated as
negative controls. Various concentrations of Streptomyces sp. KS20 EtOAc-Ex (12.5, 25, 50,
100, and 200 µg/mL) and anticancer drugs were introduced into the designated wells, and
then the plates were incubated for 48 h at 37 ◦C in 5% atmospheric CO2. Following the
incubation period, 50 µL of MTT reagent (5 mg/mL in PBS) was introduced to every well
and incubated for 3 h. Subsequently, the produced formazan crystals were solubilized with
DMSO (100 µL). Determination of absorbance was carried out at 570 nm and reference
wavelength was set at 630 nm. The viability of cells was determined with the following
formula: % cell viability = (OD of treated cells/OD of untreated cells) × 100. The IC50 was
calculated using the following equation: Y = Mx + C [32].

3. Results
3.1. Isolation of Actinomycetes

In this study, we collected 36 marine samples from underexplored regions of Devbagh
and Tilmati beaches, resulting in the isolation of 70 distinct actinomycetes.

3.2. Primary Screening of Antimicrobial Activity

Out of 70 marine actinomycetes, Streptomyces sp. KS20 expressed a good antibacterial
activity against tested pathogens during the cross-streak method. In the case of Streptomyces
sp. KS20, the pathogen P. aeruginosa did not show any inhibition, although other tested
pathogens were susceptible.

3.3. Characterizations of Streptomyces sp. KS20
3.3.1. Morphological Characterizations

Streptomyces sp. KS20 was cultured on SA medium to carry out morphological char-
acterization. This Gram-positive strain exhibited grayish-white aerial mycelia (Figure 1a)
and pale-yellow substrate mycelia (Figure 1b). The colonies appeared dry, powdery, and
circular in shape. Moreover, the organism displayed a pale-yellow pigmentation in the
medium. The SEM analysis of the organism revealed spiral spore chains and the spores
had rugose spore surfaces (Figure 1c). These spores were slightly curved and turned moist
and black in color upon reaching maturity.

3.3.2. Molecular Phylogeny of Streptomyces sp. KS20

In the case of Streptomyces sp. KS20, the 16S rRNA gene was 744 base pairs in length
and a unique accession number, ON908964, was assigned to it in the NCBI database. BLAST
analysis was performed for the gene and it was found to share 99.87% sequence similarity
with Streptomyces violaceusniger strain NRRL B-1476 (NR114814). The evolutionary tree
constructed with the neighbor-joining method involving 16 nucleotide sequences revealed
the ancestral relationship between Streptomyces sp. KS20 and Streptomyces violaceusniger
strain NRRL B-1476 (Figure 1d). Consequently, Streptomyces sp. KS20 was identified as
Streptomyces violaceusniger strain KS20.
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Figure 1. Characterizations of Streptomyces sp. KS20 on SA medium: (a) Grayish-white aerial mycelia;
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surface; and (d) phylogenetic tree of Streptomyces sp. KS20 indicating the ancestral correlation with
Streptomyces violaceusniger strain NRRL B-1476.

3.3.3. Physiological Characterizations

Streptomyces sp. KS20 could grow best at 3 to 5% NaCl concentrations and other
concentrations showed weak or no growth. Optimum pH for the growth of Streptomyces
sp. KS20 was found at pH 7.0 and moderate to no growth was observed below and above
pH 7.0. The temperature required for optimum growth was found to be 30 ◦C, and a weak
growth was found at 25 ◦C and 35 ◦C. No growth was observed below 25 ◦C and above
35 ◦C (Table 1).

Table 1. Physiological characterizations of Streptomyces sp. KS20.

Growth in Different NaCl
Concentrations Growth at Different pH Growth at Different

Temperatures

Tests Results Tests Results Tests Results

1% − pH 5.0 − 20 ◦C −
2% w pH 6.0 + 25 ◦C w
3% ++ pH 7.0 ++ 30 ◦C ++
4% ++ pH 8.0 w 35 ◦C w
5% ++ pH 9.0 − 40 ◦C −
6% w pH 10.0 − 45 ◦C −
7% −

Key: − = no growth, w = weak growth, + = moderate growth, ++ = optimal growth.
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3.3.4. Biochemical Characterizations

Detailed qualitative biochemical characterizations of Streptomyces sp. KS20 are listed
in Table 2. The organism showed negative results for 26 tests and positive results for
20 tests. Streptomyces sp. KS20 exclusively utilized D-mannose as its carbon source. It
exhibited several positive enzyme activities but was unable to grow in the presence of 6.5%
NaCl. The organism displayed complete susceptibility to polymixin-B, oleandomycin, and
kanamycin.

Table 2. Biochemical characterizations of Streptomyces sp. KS20.

Tests Amount per
Well (mg) Results Tests Amount per

Well (mg) Results

BETA-XYLOSIDASE 0.0324 − D-MANNITOL 0.3 −
L-Lysine-ARYLAMIDASE 0.0228 + D-MANNOSE 0.3 +
L-Aspartate ARYLAMIDASE 40.024 + D-MELEZITOSE 0.3 −
Leucine ARYLAMIDASE 0.0234 + N-ACETYL-D-GLUCOSAMINE 0.3 −
Phenylalanine ARYLAMIDASE 0.0264 + PALATINOSE 0.3 −
L-Proline ARYLAMIDASE 0.0234 + L-RHAMNOSE 0.3 −
BETA-GALACTOSIDASE 0.036 + BETA-GLUCOSIDASE 0.036 +
L-Pyrrolidonyl-ARYLAMIDASE 0.018 − BETA-MANNOSIDASE 0.036 −
ALPHA-GALACTOSIDASE 0.036 + PHOSPHORYL CHOLINE 0.0366 +
Alanine ARYLAMIDASE 0.0222 + PYRUVATE 0.15 −
Tyrosine ARYLAMIDASE 0.0282 + ALPHA-GLUCOSIDASE 0.036 +
BETA-N-ACETYL-GLUCOSAMINIDASE 0.0408 + D-TAGATOSE 0.3 −
Ala-Phe-Pro ARYLAMIDASE 0.0384 + D-TREHALOSE 0.3 −
CYCLODEXTRIN 0.3 + INULIN 0.12 −
D-GALACTOSE 0.3 − D-GLUCOSE 0.3 −
GLYCOGEN 0.1875 − D-RIBOSE 0.3 −
myo-INOSITOL 0.3 − PUTRESCINE assimilation 0.201 −
METHYL-A-D-GLUCOPYRANOSIDE
acidification 0.3 − GROWTH IN 6.5% NaCl 1.95 −

ELLMAN 0.03 − KANAMYCIN RESISTANCE 0.006 −
METHYL-D-XYLOSIDE 0.3 − OLEANDOMYCIN RESISTANCE 0.003 −
ALPHA-MANNOSIDASE 0.036 + ESCULIN hydrolysis 0.0225 +
MALTOTRIOSE 0.3 − TETRAZOLIUM RED 0.0189 +
Glycine ARYLAMIDASE 0.012 + POLYMIXIN_B RESISTANCE 0.00093 −

Key: − = negative, + = positive.

3.4. Fermentation and Extraction of Metabolites

Submerged fermentation was performed with Streptomyces sp. KS20 and, using equal
volumes (1:1 v/v) of ethyl acetate, the secondary metabolites were extracted. The concen-
trated ethyl acetate yielded a yellow-colored oily extract.

3.5. Characterizations of EtOAc-Ex
3.5.1. FTIR Spectroscopy

The FTIR spectrum of Streptomyces sp. KS20 EtOAc-Ex expressed twenty vibrational
peaks corresponding to various functional groups (Figure 2a). The broad and strong
peak at 3391.97 cm−1 could be assigned to O-H stretching of alcohol, and a sharp peak at
2923.13 cm−1 was indicative of C-H stretching of alkane functional groups. The vibrational
peak at 2853.72 cm−1 appeared due to the C-H asymmetric/symmetric stretching of methy-
lene. The medium and sharp peak at 1744.07 cm−1 was assigned to C=O stretching of esters,
and the medium peak at 1614.97 cm−1 was assigned to C=C stretching of conjugated alkene.
The absorption peak at 1458.56 cm−1 was ascribed to C=C-C ring stretching of aromatic
functional groups and the weak peak at 1393.88 cm−1 was ascribed to O-H bending of car-
boxylic acids. A vibrational peak 1183.60 cm−1 was ascribed to C-O stretching of alcohols,
the peak at 1125.61 cm−1 was credited to C-O stretching of aliphatic ether, and the peak
at 1078.30 cm−1 appeared because of C-O stretching of primary alcohol. The absorption
peak at 1042.26 cm−1 was indicative of P-O-C stretch of aliphatic phosphates, and the peak
at 954.53 cm−1 coincided with trans-C-H out-of-plane bending. The absorption peak at
888.88 cm−1 was assigned to C=C bending of alkenes, and the peak at 784.03 cm−1 was
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indicative of C-H bending of alkenes. The peak at 653.06 cm−1 arose due to C-S stretching
of thioethers.
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3.5.2. GC-MS Analysis

GC-MS analysis discovered the presence of 23 compounds in the Streptomyces sp.
KS20 EtOAc-Ex (Figure 2b). A detailed list of compounds is present in Table 3, along
with retention times, area %, height %, chemical formulas, and molecular weights. The
GC-MS chromatogram displayed five major compounds, n-nonadecanol-1 (27.66%), L-(+)-
ascorbic acid 2,6-dihexadecanoate (5.84%), di-sec-butyl phthalate (4.91%), 7,9-di-tert-butyl-
1-oxaspiro[4.5]deca-6,9-diene-2,8-dione (3.35%), and octacosyl acetate (2.91%).

Table 3. GC-MS analysis of EtOAc-Ex of Streptomyces sp. KS20.

Compound Names Retention
Times Area% Chemical

Formulas
Molecular
Weights Biological Activities References

Trans-8-Methyl-1.beta.-
acetyl-hydrindan 23.158 1.35 C12H20O 180.29 - -

Tetradecanoic acid 24.666 1.26 C14H28O2 228.3 Nematicidal, antibacterial,
and larvicidal [33]

Pentadecanoic acid 25.618 1.70 C15H30O2 242.40
Anti-inflammatory,
anticancer antifibrotic, red
blood cell stabilizer

[34]

1,7-Dimethyl-4-(1-
methylethyl)cyclodecane 26.009 1.30 C15H30 210.40 - -

Heptadecanal 26.837 0.94 C17H34O 254.5 - -
7,9-Di-tert-butyl-1-
oxaspiro[4.5]deca-6,9-
diene-2,8-dione

26.903 3.35 C17H24O3 276.4 Antioxidant, antimicrobial [35]

L-(+)-Ascorbic acid
2,6-dihexadecanoate 27.555 5.84 C38H68O8 652.9

Antioxidant, antibacterial,
antiviral, antiscorbutic,
anti-inflammatory,
anticancer, antimutagenic

[36,37]
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Table 3. Cont.

Compound Names Retention
Times Area% Chemical

Formulas
Molecular
Weights Biological Activities References

Fumaric acid, isopropyl
tetradecyl ester 28.309 1.34 C21H38O4 354.5 - -

Hexadecane-1,2-diol 28.704 1.20 C16H34O2 258.44 - -
n-Nonadecanol-1 28.947 27.66 C19H40O 284.5 Antimicrobial, anticancer [38]
Nonadecyl
pentafluoropropionate 30.142 2.49 C22H39F5O2 430.5 Antioxidant [39]

Octacosyl acetate 30.310 2.91 C30H60O2 452.8 - -
Heptacosyl acetate 30.949 0.81 C29H58O2 438.8 - -

Triarachine 31.192 1.82 C63H122O6 975.63 Plays an important role in
metabolism as energy source [40]

1-Heptacosanol 32.089 1.64 C27H56O 396.73 Antimicrobial, antidiabetic,
antioxidant, nematocidal [41]

Methyl 5(Z),11(Z),14(Z)-
Eicosatrienoate 32.785 0.54 C21H36O2 320.51 - -

cis-1-Chloro-9-octadecene 32.836 1.29 C18H35Cl 286.9 - -
Hexadecanoic acid,
2-hydroxy-1-
(hydroxymethyl)ethyl
ester

33.125 1.96 C19H38O4 330.50 Antimicrobial, antioxidant,
pesticide, hemolytic [42]

Docosyl ethyl carbonate 33.307 2.37 C25H50O3 398.66 -
Phthalic acid,
di(2-propylpentyl) ester 33.450 1.50 C24H38O4 390.55 Anticancer [43]

Tetrapentacontane,
1,54-dibromo- 34.588 1.20 C54H108Br2 917.2 Can treat chronic illnesses [44]

3-Ethyl-3-
methylnonadecane 36.797 1.24 C22H46 310.6 - -

Stigmast-5-en-3-ol, oleate 37.965 1.30 C47H82O2 679.2 - -

3.6. Biological Activities
3.6.1. DPPH Radical-Scavenging Assay of Streptomyces sp. KS20 EtOAc-Ex

A significant scavenging activity against DPPH free radicals was revealed by Strep-
tomyces sp. KS20 EtOAc-Ex. The scavenging activity exhibited a positive correlation
with the concentration of EtOAc-Ex, displaying a direct and dose-dependent relation-
ship. This trend was observed as the concentration of EtOAc-Ex increased from 25 to
125 µg/mL (Figure 3). The percentage scavenging ratios were 26.39± 1.06%, 38.61± 0.81%,
42.53 ± 1.21%, 49.92 ± 1.19%, and 62.89 ± 1.26%. The IC50 of EtOAc-Ex was 92.56 µg/mL.
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3.6.2. Antibacterial Assay of Streptomyces sp. KS20 EtOAc-Ex

The EtOAc-Ex of Streptomyces sp. KS20 expressed significant activity against pathogenic
bacteria (Figure 4a–h). The zones of inhibition (including 6 mm well diameter and exclud-
ing 6 mm well diameter) are represented in Table 4 for each tested bacterial pathogen. All
tested pathogens expressed susceptibility to 100 µL EtOAc-Ex of Streptomyces sp. KS20.
The highest inhibition activity (including 6 mm well diameter) was recorded against the
bacterium E. coli (36 ± 0.83 mm) and lowest inhibition activity (including 6 mm well
diameter) was observed against K. pneumoniae(19 ± 1.14 mm) (Figure 4i). The broth mi-
crodilution method revealed the MIC of EtOAc-Ex against all tested bacteria even at very
low concentrations, which are represented in Table 5.

Table 4. Zone of inhibition (including 6 mm well diameter and excluding 6 mm well diameter) of
Streptomyces sp. KS20 EtOAc-Ex against bacterial pathogens.

Zone of Inhibition (mm)

Including 6 mm Well Diameter Excluding 6 mm Well Diameter

Pathogens Standard EtOAc-Ex Standard EtOAc-Ex

S. aureus 30 ± 0.93 23 ± 0.83 24 ± 0.93 17 ± 0.83
B. cereus 33 ± 1.24 21 ± 1.46 27 ± 1.24 15 ± 1.46
B. subtilis 34 ± 0.98 26 ± 1.05 28 ± 0.98 20 ± 1.05
E. faecalis 32 ± 0.69 27 ± 1.01 26 ± 0.69 21 ± 1.01
E. coli 33 ± 0.36 36 ± 0.83 27 ± 0.36 30 ± 0.83
P. aeruginosa 28 ± 1.25 23 ± 1.16 22 ± 1.25 17 ± 1.16
S. flexneri 33 ± 0.97 24 ± 1.16 27 ± 0.97 18 ± 1.16
K. pneumoniae 33 ± 0.39 19 ± 1.14 27 ± 0.39 13 ± 1.14

Note: The results are ± SD of three independent replicates.
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Table 5. MIC and MBC of EtOAc-Ex of Streptomyces sp. KS20 against bacterial pathogens.

Broth Dilution Assay

Pathogens MIC (µg/mL) MBC (µg/mL)

S. aureus 3.12 6.25
B. cereus 6.25 12.5
B. subtilis 3.12 3.12
E. faecalis 3.12 6.25
E. coli 12.5 25
P. aeruginosa 12.5 25
S. flexneri 3.12 6.25
K. pneumoniae 12.5 25

3.6.3. Antimycobacterial Activity

EtOAc-Ex expressed a moderate antimycobacterial activity. The common antibiotics
and EtOAc-Ex were serially diluted from 100 to 0.2 µg/mL. Streptomycin, rifampicin, pyraz-
inamide, ethambutol, and isoniazid showed MICs of 0.8 µg/mL, 3.12 µg/mL, 3.12 µg/mL,
1.6 µg/mL, and 1.6 µg/mL, respectively. The MIC of EtOAc-Ex was 6.25 µg/mL (Figure 5).
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3.6.4. Antiproliferative Activity

In this work, the EtOAc-Ex of Streptomyces sp. KS20 was evaluated for antiproliferative
potential against prostate cancer (PC-3) and lung cancer (A549) cell lines through an MTT
assay. The A549 cells were subjected to treatment with various doses of EtOAc-Ex and the
obtained result was compared with a standard chemotherapeutic drug cisplatin. Figure 6a,b
represent the negative and positive controls, respectively. A gradual increase in cytotoxicity
due to the increasing concentration of EtOAc-Ex is shown in Figure 6c–g. The cell viability
was decreased to 97.78%, 88.02%, 73.12%, 61.64%, and 40.03% with increasing concentration
of EtOAc-Ex of 12.5 to 200 µg/mL, respectively (Figure 6h). The IC50 of Streptomyces sp.
KS20 EtOAc-Ex was 94.73 µg/mL for the A549 cancer cell line. In the case of the PC-3 cell
line, the negative and positive controls are depicted in Figure 7a,b. A gradual decline in
cell viability was recorded due to increasing concentration of EtOAc-Ex of Streptomyces
sp. KS20 (Figure 7c–g). The cell viability was reduced to 96.75%, 82.64%, 65.19%, 50.44%,
and 37.23% while treating with 12.5 to 200 µg/mL of EtOAc-Ex (Figure 7h). The IC50 was
determined as 121.12 µg/mL for the PC-3 cancer cell line. The toxicity study with the
normal HEK-293 cell line divulged a low toxicity of EtOAc-Ex after treatment for 24 h. The
cell viability was determined as 98.84%, 97.29%, 95.62%, 93.59%, and 90.13% at 12.5, 25, 50,
100, and 200 µg/mL concentrations of EtOAc-Ex (Figure 8).
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Figure 7. Antiproliferative activity of EtOAc-Ex of Streptomyces sp. KS20 against PC-3 cell line:
(a) Negative control; (b) positive control; (c) 12.5 µg/mL; (d) 25 µg/mL; (e) 50 µg/mL; (f) 100 µg/mL;
(g) 200 µg/mL; and (h) comparative % cell viability at different concentrations of EtOAc-Ex.
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4. Discussion

Global health concerns in today’s world encompass the rise of uncontrolled diseases,
multidrug-resistant human pathogens, resurgences of formerly subdued ailments, and
inadequate therapeutic strategies to combat these emerging ailments [14]. Marine actino-
mycetes have surfaced as a promising reservoir of valuable substances, such as enzymes,
antibiotics, and other bioactive metabolites that are industrially significant. However,
research on actinomycetes from marine ecosystems remains limited and requires further
exploration in the Indian subcontinent [45]. In this study, 70 distinct actinomycetes were
collected from 36 marine samples of Devbagh and Tilmati beaches. The process of isolation
of actinomycetes from unexplored environments has gained popularity as a means to fulfill
the growing demand for novel antibiotics [24].

During the cross-streak method, Streptomyces sp. KS20 evidenced a potent antibacterial
activity against the pathogenic microbes. In cross-streak method, Streptomyces sp. KS20 se-
creted antimicrobial compounds during its growth, which were distributed in the medium.
It is suggested that the antimicrobial compounds are extracellular in nature and the dif-
fusion of secreted metabolites in the medium occurs after the exponential growth period.
This outcome demonstrated the synthesis of numerous antibacterial metabolites [46]. This
finding agrees with the findings of Nayaka et al. [47], where Streptomyces thermocarboxydus
isolated from the Kali River ecosystem could restrain the growth of pathogens during the
screening process.

Morphologically, the colonies of Streptomyces sp. KS20 were powdery and circular in
appearance. The substrate and aerial mycelia were pale yellow and grayish white in color,
respectively. These characteristics are commonly employed for the initial identification
of Streptomyces species [28]. It has been reported that various factors, such as carbon and
nitrogen sources, temperature, pH, and trace elements of the culture medium, influence the
color of mycelia and production of diffusible pigments [19,48]. The organism was subjected
to SEM analysis, which revealed the presence of spiral spore chains and the spores exhibited
rugose surfaces. A previous study reported a similar finding, where a soil actinomycete,
Streptomyces solisilvae, produced spiral spore chains with rugose ornamentation [48].

Sequencing of the 16S rRNA gene is a highly effective tool for accurately identifying
bacteria at the species level. It has been a mainstay of sequence-based bacterial analysis for
decades for its capacity to distinguish between closely related bacterial species [19]. The 16S
rRNA gene sequence of Streptomyces sp. KS20 disclosed 99.87% similarity with Streptomyces
violaceusniger strain NRRL B-1476. As a result, Streptomyces sp. KS20 was determined as
Streptomyces violaceusniger strain KS20. The 16S rRNA gene consists of highly conserved and
hypervariable regions, forming part of the 30S small subunit of prokaryotic ribosomes. The
hypervariable regions, due to slow rates of evolution, could retain species-specific signature
sequences, which allow for bacterial identification, whereas the conserved regions serve as
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binding sites for universal primers [49]. This finding aligns with the research by Sreenivasa
et al. [50], who identified Streptomyces sp. SN-3 as Streptomyces gancidicus through 16S rRNA
gene sequencing.

During physiological characterization, Streptomyces sp. KS20 showed optimum growth
at 30 ◦C and pH 7.0. Hence, it is reasonable to infer that the organism exhibited mesophilic
and neutrophilic characteristics. These findings are similar to those of the research con-
ducted by Nayer and Asmaa [29], who observed that Streptomyces sp. NMF6 thrived at
pH levels from 4.0 to 10.0 and a temperature range of 20 to 45 ◦C and had a maximum
tolerance of 4% NaCl concentration.

The biochemical analysis of Streptomyces sp. KS20 was carried out by VITEK2, which
was necessary for accurate characterizations. A large number of enzymes are produced
by bacteria, which allow their accurate identification through distinct enzymatic profiles.
In addition, a variety of substrate utilization tests are available for identifying bacteria.
The distinctive patterns of color changes in the substrates caused by bacteria can be used
to identify them to the species level [51]. Out of 46 tests, Streptomyces sp. KS20 was
positive in 20 tests and negative in 26 tests. It could assimilate the only carbon source,
D-mannose, and displayed susceptibility to different antibiotics. VITEK2 is equipped with
a transmittance optical system for effective interpretation of the test reactions while using
various wavelengths in the visible spectrum [22]. This finding agreed with the report of
Meghashyama et al. [52], where a Streptomyces sp. was biochemically characterized using
the VITEK2 BCL card, which revealed 20 positive results for carbon source utilization,
enzyme activities, and antibiotic susceptibility.

FTIR is a physicochemical method that provides a clear image of the metabolites by
measuring the rotation and vibration of molecules in response to an infrared wavelength.
The absorbed wavelength is the characteristic of a chemical bond, as it is reflected in the
annotated spectrum. By the interpretation of the infrared spectrum, the functional groups
and chemical bonds in a molecule can be determined [53]. The compounds present in
EtOAc-Ex contained various functional groups like alcohol esters, aliphatics, carboxylic
acids, aromatics, etc. A few other compounds were identified, having single bonds (alkanes)
and double bonds (alkenes). The result obtained aligns with the findings reported by
Chakraborty et al. [54], where FTIR spectroscopy analysis of ethyl acetate extract from S.
levis indicated the existence of different types of functional groups, including carboxylic
acids, alcohols, and esters.

The phylum Actinobacteria is widely acknowledged as a dynamic and prolific reser-
voir of diverse secondary bioactive compounds. A total of 23 compounds were reported
through GC-MS analysis. The outcome is similar to the report of Janpen et al. [28], who
used GC-MS to identify 24 compounds in ethyl acetate extract of the marine Streptomyces
achromogenes.

Antioxidants are substances that prevent or delay cell damage by disarming unstable
free radicals. In response to external and other factors, the body produces free radicals,
which can make a person more susceptible to inflammation and a number of other ill-
nesses [55]. During an antioxidant assay, BHT was used as a reference compound. It has a
low molecular weight and a non-staining hindered-phenolic structure. Hindered phenols
have a wide variety of applications, including inhibitors of free radical chain reactions.
Its antioxidant properties are primarily attributed to its chemical structure and ability to
scavenge free radicals and inhibit the propagation of oxidation reactions [56]. The EtOAc-
Ex of Streptomyces sp. KS20 displayed noteworthy scavenging activity against DPPH free
radicals through an effective dose-dependent relationship. The IC50 was determined as
92.56 µg/mL. DPPH is a stable free radical having a lone pair of electrons, which gives rise
to a deep violet color. This color turned from violet to yellow when DPPH solution was
mixed with Streptomyces sp. KS20 EtOAc-Ex containing antioxidant compounds. The accep-
tance of hydrogen atoms supplied by antioxidant compounds was the cause of this change
in color. The change caused a decrease in absorbance values, which was quantitatively
measured by recording the absorbance change [57]. This outcome was consistent with the
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conclusion of Dharaneedharan et al. [58], where ethyl acetate extract from Streptomyces
carpaticus, a marine organism, expressed DPPH-scavenging activity (IC50 = 84.5 µg/mL).

A pronounced antibacterial potency was elicited by EtOAc-Ex of Streptomyces sp. KS20.
The growth of all tested bacterial pathogens was suppressed even at low concentrations
as evidenced by MIC. This could be due to the cumulative effect of a higher number of
bioactive metabolites in the EtOAc-Ex. Resazurin sodium salt, a cell-permeable nontoxic
dye, is widely used as a redox indicator in the MIC method. Resazurin salt changes its color
based on metabolic activity of bacterial cells, which is important to determine the MIC. The
appearance of a purple color indicated inhibition of microbial growth; whereas a pink color
indicated actively growing cells, which reduce resazurin to resorufin [30]. Streptomyces spp.
have enormous potential for the discovery of bioactive compounds, which can fight against
resistant microorganisms. Streptomyces spp. possess immense possibilities for the discovery
of bioactive substances that can combat antimicrobial-resistant pathogens [10]. Bioactive
EtOAc-Ex is made up of a complex combination of ingredients, and their synergistic action
can result in an enhanced antibacterial impact. They have a broad range of antimicrobial
activity based on the location, structure, and number of substituent groups, the occurrence
of OH group alkylations, glycosidic linkages, etc. However, differences in the qualities
and quantities in the metabolites result in alterations to the effectiveness of antimicrobial
activity against various microorganisms [59].

In pathogenic microbes, the antibacterial agents possess the capacity to interfere
with the permeability of the membranes, cell wall biosynthesis, proteins, nucleic acid
synthesis, etc. When there is a disruption in the cell membrane permeability, it leads to the
alteration of a cellular ion gradient, and pathogens die as a result of cellular damage and
exo- or endosmosis. Occasionally, the antimicrobials, after entering the plasma membrane,
decimate bacterial cells. This is achieved by blocking the production of crucial substances,
hindering protein synthesis and DNA replication, preventing the attachment of small
subunits of rRNA, and repressing the efflux pumps (Figure 9) [60–62].
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Mycobacterium tuberculosis is responsible for the infectious disease known as TB,
which is a significant contributor to global mortality rates. According to a report from the
WHO, 1.6 million people worldwide passed away from TB in 2021, making it the 13th
most common cause of death globally. The primary target of the pathogen is the lungs
although it eventually affects other organs [63]. Therefore, to deal with this problem, the
antimycobacterial activity of Streptomyces sp. KS20 EtOAc-Ex was investigated by the
MABA method. A moderate antimycobacterial activity was unveiled by EtOAc-Ex with
MIC of 6.25 µg/mL. The antimycobacterial activity of the EtOAc-Ex was possibly mediated
through mechanisms like inhibition of crucial enzymes, disruption of cell wall integrity,
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modulation of the immune responses, generation of reactive oxygen species (ROS), etc.
This finding was in agreement with the study of Anuradha et al. [64], where ethyl acetate
extract of Streptomyces luridus revealed a MIC of 1000 µg/mL against M. tuberculosis.

Cancer stands out as one of the most fatal diseases on a global scale. In an effort to
find new anticancer drugs with fewer side effects, researchers are looking into natural
sources, particularly marine resources. The genus Streptomyces has produced a number
of anticancer drugs, including doxorubicin, dactinomycin, and bleomycin. Additionally,
several studies have recorded the anticancer properties of crude extracts made from various
marine Streptomyces spp. [65]. An antiproliferative assay was performed through the MTT
assay. This assay is based on an enzyme called mitochondrial lactate dehydrogenase
that reduces MTT. This enzyme exists within living cells and has the ability to transform
yellow tetrazolium MTT into purple formazan crystals, which precipitate in the presence
of healthy, unaffected cells [66]. The viability of A549 cells was reduced from 97.78 to
40.03% with various concentrations of EtOAc-Ex. For the A549 cancer cell line, the IC50
was calculated to be 94.73 µg/mL. During the treatment of PC-3 cells, the cell viability
was gradually reduced from 96.75 to 37.23% with increasing concentration of EtOAc-
Ex. The IC50 was 121.12 µg/mL for the PC-3 cancer cell line. This result indicated a
significant antiproliferative potentiality of EtOAc-Ex against cancer cells. However, during
the treatment of a normal eukaryotic cell line, the EtOAc-Ex exhibited a low toxicity and a
slight decrease in cell viability was recorded from 98.84 to 90.13%. There are many studies
that provide strong supporting evidence that Streptomycetes spp. are excellent sources for
isolating anticancer-related compounds. Here, the EtOAc-Ex from Streptomyces sp. KS20
contains a wide variety of bioactive compounds that exhibited anticancer properties.

The mechanisms by which cancer cells were killed can be diverse and multifaceted.
The compounds present in EtOAc-Ex could activate specific signal pathways, such as the
mitochondrial pathway or death receptor pathway, to trigger the apoptosis in tumor cells.
Cancer cells often exhibit uncontrolled growth and division. Sometimes the compounds
in the extract interfere with the cell cycle or inhibit the activity of proteins and various
signaling pathways involved in cell proliferation. At times some bioactive compounds can
directly damage the DNA of cancer cells, disrupting their ability to replicate and survive.
Disruption of cell membrane integrity of cancer cells can also cause subsequent cell death.
Bioactive metabolites can induce the generation of ROS within cancer cells. ROS can
cause oxidative stress and damage to cellular components, ultimately leading to cell death.
Specific signaling pathways which are involved in cancer cell growth and survival can also
be damaged (Figure 10) [67–69]. A comparable outcome was reported by Balachandran
et al. [70], where a Streptomyces sp. ethyl acetate extract revealed a dose-dependent cytotoxic
activity with an IC50 of 600 µg/mL.
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5. Conclusions

Streptomyces sp. KS20 was isolated from marine samples and selected based on an-
timicrobial potentiality against pathogens. Streptomyces sp. KS20 was described in terms
of morphological, physiological, and biochemical methods. 16S rRNA gene sequencing
of the organism disclosed 99.87% relatedness with Streptomyces violaceusniger. In addition
to this, the secondary metabolites of Streptomyces sp. KS20 were extracted and subjected
to molecular profiling and evaluated for a few biological activities. The EtOAc-Ex from
Streptomyces sp. KS20 expressed a considerable antioxidant activity and a profound an-
timicrobial activity against pathogens. A promising antiproliferative activity was also
revealed by the EtOAc-Ex of Streptomyces sp. KS20 against A549 and PC-3 cell lines. It
is important to note that the EtOAc-Ex contains a number of compounds with potential
biological properties. Additionally, it is crucial to conduct further research for purification,
identification, and structure elucidation of the compounds having potential antioxidant,
antimicrobial, and antiproliferative activities.
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