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Abstract: Cancer cachexia, a multifactorial metabolic syndrome developed during malignant tumor
growth, is characterized by an accelerated loss of body weight accompanied by the depletion of
skeletal muscle mass. This debilitating condition is associated with muscle degradation, impaired
immune function, reduced functional capacity, compromised quality of life, and diminished survival
in cancer patients. Despite the lack of the known capability of fully reversing or ameliorating this
condition, ongoing research is shedding light on promising preclinical approaches that target the
disrupted mechanisms in the pathophysiology of cancer cachexia. This comprehensive review delves
into critical aspects of cancer cachexia, including its underlying pathophysiological mechanisms,
preclinical models for studying the progression of cancer cachexia, methods for clinical assessment,
relevant biomarkers, and potential therapeutic strategies. These discussions collectively aim to
contribute to the evolving foundation for effective, multifaceted counteractive strategies against this
challenging condition.

Keywords: cachexia; proteolysis; inflammation; mitochondrial dysfunction; metabolic reprogramming;
exercise

1. Introduction

Cancer cachexia, an irreversible, multifactorial syndrome, instigates alterations within
various metabolic pathways across multiple organs and tissues [1,2]. It manifests in can-
cer patients, culminating in significant weight loss, accompanied by remarkable muscle
wasting that is closely linked to tumor growth and inversely correlated with lifespan. This
syndrome encompasses an array of symptoms, including anorexia, anemia, compromised
immune function, and impaired physical function [3]. The repercussions of cancer cachexia
are profound and far-reaching, impacting the clinical outcomes of cancer patients in nu-
merous ways, such as impaired qualify of life, increased treatment failure risk, increased
susceptibility to treatment side effects, and elevated mortality rates [4]. Approximately 20%
of cancer-related deaths are attributed to cancer cachexia [1]. Although typically perceived
as an end-of-life manifestation during the advanced stages of cancer, cachexia can also
emerge at the initial phases of disease. Therefore, early identification and implementation
of effective strategies to counteract cancer cachexia could yield myriad benefits, enabling
patients to complete potentially curative chemotherapy, radiotherapy, immunotherapy,
or surgery. A comprehensive evaluation of data from diverse institutions, comprising
a retrospective analysis of 3047 cancer patients under clinical protocols by the Eastern
Cooperative Oncology Group, unveiled a significant insight. Specifically, weight loss
exceeding 5% of patient’s premorbid weight prior to commencing chemotherapy served
as a predictive marker for early mortality, a prognostic indicator independent of disease
stage and tumor histology [5]. Additionally, a discernible pattern of reduced response
rates to chemotherapy emerged among patients who experienced weight loss. Hence, it is
of paramount importance that investigations into the underlying mechanisms of cancer
cachexia are channeled toward pioneering therapeutic strategies that adopt a multidisci-
plinary approach in search of an effective intervention for this challenging condition. This
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comprehensive review aims to delve into the existing body of literature elucidating the
intricate mechanisms underpinning cancer cachexia while exploring potential therapeutic
avenues for tackling this multifactorial syndrome.

2. Preclinical Models of Cancer Cachexia

This section delves into the synergistic utilization of rodent models in conjunction
with emerging therapies to forge substantive advancements in the quest for efficacious
treatments for cancer cachexia. By elucidating the intricate underpinnings of both
cancer cachexia and cancer-related animal models, this section seeks to enhance com-
prehension. The arsenal of previous cancer cachexia animal models is characterized by
diverse strategies, encompassing the introduction of cancer cells to the rodent through
ectopic or orthotopic injections, utilization of human cancer cells or patient-derived
xenograft, and creation of genetically modified mice prone to spontaneous tumor
formation. These diverse models have laid the groundwork, propelling progress in
unraveling the intricate mechanisms of cancer cachexia, with selected animal models
standing out as primary contributors to this advancement [6]. The chosen animal mod-
els are often distinguished by their model-specific attributes that effectively isolate
cachexia from other uncertain cancer-progressing phenomena. This deliberate isolation
facilitates a focused exploration of the connections between alleviating cancer cachexia
and extending survival time in the rodent models. As research continues to evolve, an
array of emerging models is poised to enrich our understanding of cancer cachexia.
Notable among these models are the APCMin/+ mouse, the colon-26 carcinoma mouse,
the Lewis lung carcinoma mouse model, and various other genetically engineered
counterparts. These models hold the potential to offer fresh insights into the complex
landscape of cancer cachexia (Table 1).

2.1. APCMin/+ Mouse Model

The APCMin/+ mouse model, known in the research as a mouse model bearing multiple
intestinal neoplasia that develops numerous adenomas is an established tool for studying
intestinal and mammary tumorigenesis, has been extensively explored in the realm of
colorectal cancer research [2,7–11]. This rodent model stands as a robust platform for
comprehending both molecular intricacies and practical implications in cancer studies.
Multiple intestinal neoplasia (Min) is a mutation of the murine adenomatous polyposis
coli gene [12]. Min encodes a stop codon at codon 850 resulting in premature truncation of
the polypeptide. This phenomenon is observed in germline mutations in certain cancer
syndromes such as the Apc gene in humans with familial adenomatous polyposis (FAP)
or Gardner syndrome (GS) [12]. The ApcMin/+ mouse model, a noteworthy exemplar,
manifests cancer cachexia hinges on systemic interleukin-6 (IL-6) and has been meticulously
employed to emulate the progression of colorectal tumor development akin to human
familial adenomatous polyposis (a condition affecting the colon and rectum). A highlight
of this model is the mutation of the Apc gene, a tumor-suppressor gene intricately linked
to the Wnt signaling pathway that plays a pivotal role in regulating cellular proliferation,
differentiation, and renewal [7,13].

Remarkably, ApcMin/+ mice follow a trajectory that mirrors their non-tumor-bearing
counterparts (e.g., C57BL/6) until they reach approximately 12 weeks of age, at which
point they begin to lose body weight [2]. By the time these mice reach 20 weeks of age,
they experience a substantial loss of body mass, typically amounting to 20–25% compared
to their peak weight or that of non-tumor-bearing counterparts. This model successfully
replicates critical aspects of human cancer, including the progression of tumor burden,
chronic inflammation, and the development of anemia [2]. Consequently, the ApcMin/+

mouse model closely replicates the course of cachexia observed in human cancer patients,
rendering it a promising candidate as a preclinical model of cancer cachexia.
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2.2. C26 Colon Carcinoma Model

The colon-26 (C26) colon carcinoma mouse model stands out as the most extensively
examined animal model for cancer-induced cachexia [14–19]. The formation of tumors
occurs as a result of subcutaneous injection or grafting of C26 carcinoma cells into the flank
of BALB/c mice [14] or of CD2F1 mice [18]. Nevertheless, it is important to acknowledge a
crucial limitation of this rodent model when investigating cancer cachexia—the manner
in which C26 carcinoma cells are introduced extraneously might not faithfully replicate
or simulate the intricate progression of cancer cachexia observed in humans [20,21]. Thus,
this aspect warrants prudent consideration in the design of forthcoming studies on cancer
cachexia. Additionally, the timeframe of inoculation in this model may not be optimally
aligned with the desired experimental period for studying cancer cachexia in humans.
Diverse conditions or distinct protocols can introduce variability, potentially compromising
the reproducibility and robustness of research findings. These divergences are notably
contingent on the timing of implementation. Previous research underscores that the
divergent outcomes associated with the C26 rodent model are possibly linked to the
strain of the mice—BALB/c or CD2F1 [14]—the sex of the mice [22], the specific implanted
tumor type [14], the source of tumor, the dosage of C26 cells injected, and the precise site
of injection [22].

2.3. Lewis Lung Carcinoma Model

The Lewis lung carcinoma (LLC) model represents a highly aggressive rodent carci-
noma with a propensity for spontaneous metastasis in immunocompetent mice [23]. This
model has emerged as a cornerstone for the exploration of metastatic progression [24,25],
angiogenesis [25], and notably, cachexia [19]. A defining attribute of the LLC model is
its innate capacity for cellular metastasis [19]. Additionally, this model demonstrates a
swift and progressive decline in body and tissue mass, coupled with anorexia manifesting
predominantly in the advanced phases of cancer progression [18]. A notable study by Kerr
and colleagues delved into an intervention involving long-acting ghrelin, called EXT418, in
the context of LLC-induced cachexia. The outcomes of their investigation revealed promis-
ing effects, including the mitigation of tumor-induced elevation of muscle IL-6 transcript
levels and downregulation of Bcl-2/adenovirus E1B 19-kDa-interacting protein (BNIP3), a
marker associated with mitophagy [26]. These findings underscored a reduction in skeletal
muscle inflammation, proteolysis, and mitophagy, shedding light on potential avenues
for intervention [26].

2.4. Other Genetically Engineered Models

In the realm of prospective genetically engineered models, Luan and colleagues
developed a novel mouse model by utilizing transgenic female mice bearing ovarian
tumors to enrich the understanding of cancer cachexia [27]. Their investigative focus en-
compassed a suite of biomarkers—activin A, growth differentiation factor 15 (GDF-15),
IL-6, interleukin-1 beta (IL-1β), and tumor necrosis factor alpha (TNF-α)—which pro-
vided a comprehensive view of cancer cachexia’s unfolding. In an insightful revelation,
the researchers established that their inventive mouse model effectively mimics the
trajectory of human cancer-induced cachexia. Evident markers of this mimicry in-
cluded muscle proteolysis, adipose tissue wasting, elevation of serum activin A and
GDF-15, and the atrophy of both the pancreas and liver. Particularly noteworthy were
the significant elevations in serum activin A and GDF-15—amounting to 76-fold and
10-fold increase, respectively—relative to baseline values as cancer-induced cachexia
progressed [27]. Given that this mouse model recapitulated cardinal hallmarks of
cancer cachexia, such as rapid loss of body weight, skeletal muscle atrophy, and adi-
pose tissue depletion, these findings hold promise for steering future research into
unraveling the intricate mechanisms underpinning cancer cachexia. Correspondingly,
in the pursuit of a more faithful representation of human cancer cachexia, Talbert et al.
engineered a mouse model of pancreatic ductal adenocarcinoma (PDA) termed KPP.
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This inventive model emulates the depletion of muscle and adipose tissues that paral-
lels the advancement of tumor progression, presenting an opportunity to gain deeper
insights into the intricate landscape of cancer cachexia [28].

Table 1. Preclinical Models of Cancer Cachexia.

Model Name Notable Features Reference

APCMin/+

Mouse Model

• A highlight of this model is the mutation of
the Apc gene, a tumor-suppressor gene
intricately linked to the Wnt signaling
pathway that plays a pivotal role in
regulating cellular proliferation,
differentiation, and renewal.

• This model successfully replicates critical
aspects of human cancer, including the
progression of tumor burden, chronic
inflammation, and the development
of anemia.

[7,13]

Colon-26
Carcinoma Model

• The formation of tumors occurs because of
the subcutaneous injection or grafting of C26
carcinoma cells into the flank of the rodent.

• The divergent outcomes associated with the
C26 rodent model are possibly linked to the
strain of the mice, the sex of the mice, the
implanted tumor type, the source of the
tumor, the dosage of the C26 cells injected,
and the site of injection.

[14,18,22]

Lewis Lung
Carcinoma Model

• A defining attribute of this model is its innate
capacity for cellular metastasis.

• This model demonstrates a swift and
progressive decline in body and tissue mass,
coupled with anorexia manifesting
predominantly in the advanced phases of
cancer progression.

[19]

Luan and Colleagues
Mouse Model

• A novel mouse model that utilizes transgenic
female mice bearing ovarian tumors to study
cancer cachexia.

• Notable biomarkers of this model are, growth
differentiating factor 15, interleukin-6,
interleukin-1 beta, and tumor necrosis
factor alpha.

[27]

KPP Mouse Model

• This inventive model emulates the depletion
of muscle and adipose tissues that parallels
the advancement of tumor progression of
cancer cachexia.

[28]

3. Metabolic Reprogramming in Cancer Cachexia

Cancer cells may undergo metabolic reprogramming to meet their heightened en-
ergy demand and foster proliferation and metastasis. Simultaneously, they orchestrate
significant molecular, cellular, and physical transformations within their host tissues to
facilitate tumor advancement. Within the tumor microenvironment, a complex interplay
of the following elements shapes tumor growth: (1) immune cells that play dual roles of
either suppressing the tumor or promoting tumorigenesis; (2) stromal cells that secrete
mediators that influence angiogenesis, proliferation, invasion, and metastasis; (3) blood
vessel formation that supplies blood to the tumor cells; and (4) an extracellular ma-
trix to support tumor growth, progression, and dissemination [29]. These components
within the tumor microenvironment work in concert to promote tumor growth and
concurrently contribute to cancer-induced muscle wasting. However, cancer cells must
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adapt to the microenvironment, particularly in response to hypoxic or hyponutrient
conditions. Under hypoxic conditions, the tumor cell may continue to utilize glucose to
generate adenosine triphosphate (ATP) through a phenomenon known as the Warburg
Effect [30]. This phenomenon involves the production of ATP through aerobic glycolysis
per unit of glucose, which is in contrast to the more efficient ATP production involv-
ing mitochondrial respiration [31,32]. Despite the lower ATP yield, the rate of glucose
metabolism through aerobic glycolysis leads to rapid lactate production [33], which fur-
ther contributes to the hypoxic microenvironment. The preference for aerobic glycolysis
in cancer cells is attributed to its ability to support tumor growth even in hyponutrient
environments [34]. Although less efficient in terms of ATP production, aerobic glycolysis
generates ATP at a higher rate, which may be advantageous for sustaining tumor growth
under nutrient-depleted conditions. Additionally, the hypoxic microenvironment in-
duces changes that increases the demand for ATP-dependent membrane pumps, further
promoting rapid aerobic glycolysis while maintaining relatively unchanged oxidative
phosphorylation [35].

In nutrient-scarce conditions, the tumor cells may resort to utilizing alternative
substrates such as amino acids (e.g., glutamine, serine, arginine), fatty acids, and lipids
to fuel their own proliferation [36]. Specifically, branched-chain amino acids (BCAAs:
leucine, isoleucine, valine) are oxidized in skeletal muscle, accounting for as much
as 20% during the course of cancer cachexia [37]. One avenue through which BCAAs
contribute to tumor growth is their transportation into the tumor cell where they can
directly activate mammalian target of rapamycin (mTOR) signaling for the tumor’s
growth [38]. These amino acids can be converted to branched-chain α-keto acids via
cytosolic branched-chain amino acid transaminase-1 (BCAT1) or mitochondrial BCAT2
in a reversible reaction. BCAT1 overexpression results in increased BCAA catabolism
in cancer and is upregulated by several molecules (e.g., hypoxia-inducible factor 1,
SMAD5, cMyc, Musashi2) although some cancers favor the reverse reaction [38,39].
Certain cancers reprogram the BCAA metabolism, altering the expression and activity
of certain transporters and enzymes. This reprogramming favors the direct utiliza-
tion of BCAAs while suppressing their catabolism, resulting in an accumulation of
BCAAs within cancer cells [38]. This metabolic shift is likely due to changes in the
expression and function of BCAA transporters and enzymes that participate in the
BCAA metabolic pathway [39]. The buildup of BCAAs in these cancer cells is asso-
ciated with the promotion of tumor growth via the activation of mTORC1 and the
mTOR downstream signaling pathway [38–40]. The transformation of BCAAs into
branched-chain a-keto acids generates glutamate as an additional energy source. Fur-
thermore, these branched-chain a-keto acids can find utility within the mitochondria
through their conversion into acetyl CoA and succinyl CoA, vital components that
fuel the tricarboxylic acid (TCA) cycle, which ultimately contributes to the energy
demands necessary for tumor growth [38]. Considering the aforementioned hypoxic
and nutrient-deprived conditions present in the tumor microenvironment, it becomes
evident that this metabolic reprogramming plays a crucial role in propelling the tu-
mor cells into a hypermetabolic state. This hypermetabolic state not only supports
tumor growth but also contributes to the complex interactions that foster both muscle
wasting and tumor progression (Figure 1). By unraveling these intricate metabolic
adaptations, we gain insights into potential therapeutic strategies that target the unique
vulnerabilities of cancer cells and the associated complications they bring about.
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Figure 1. Diagram illustrating the underlying mechanisms of cancer cachexia. To sustain its 
growth, cancer calls release procachexic factors in the blood stream, thereby facilitating the pro-
gression of cancer cachexia. The procachexic factors trigger heightened protein degradation, re-
duced protein synthesis, and impaired mitochondrial function that all contribute to cancer ca-
chexia. The escalated protein degradation in skeletal muscle boosts the availability of BCAAs. The 
tumor cells then harness this increased reservoir of BCAAs as a substrate to fuel their growth. The 
increased cellular growth of the tumor subsequently instigates the metastasis of the cancer cells, 
prompting their dissemination to various regions of the body. 

  

Figure 1. Diagram illustrating the underlying mechanisms of cancer cachexia. To sustain its growth,
cancer calls release procachexic factors in the blood stream, thereby facilitating the progression of
cancer cachexia. The procachexic factors trigger heightened protein degradation, reduced protein
synthesis, and impaired mitochondrial function that all contribute to cancer cachexia. The escalated
protein degradation in skeletal muscle boosts the availability of BCAAs. The tumor cells then harness
this increased reservoir of BCAAs as a substrate to fuel their growth. The increased cellular growth
of the tumor subsequently instigates the metastasis of the cancer cells, prompting their dissemination
to various regions of the body.

4. Inflammatory Mediators in Cancer Cachexia

Under healthy physiological conditions, the immune systems serve as a defense mech-
anism, identifying potential threats such as pathogens or harmful agents and triggering an
immune response. This response involves the release of proinflammatory cytokines that act
upon the affected tissues, contributing to their repair and protection. In a similar fashion,
tumor cells can release cytokines that support various aspects of tumor growth, such as
those encompassing initiation, proliferation, angiogenesis, immunosuppression, metastasis,
resistance to anticancer drugs, and energy supply within the tumor microenvironment [41].
Cytokines operate within the tumor microenvironment and can also interact with other
body tissues, leading to systemic effects [42]. A considerable amount of evidence supports
the role of cytokines in driving cellular processes that facilitate the initiation, promotion, in-
vasion, and metastasis of cancer cells and consequently, the development of cancer-induced
cachexia [43,44]. The production rate of several cytokines is closely linked to the occurrence
of cachexia across multiple types of cancer [44].

Certain inflammatory mediators, such as C-reactive protein (CRP), IL-6, IL-1β, and
TNF-α, play a pivotal role in initiating cachexia-induced muscle wasting [1,45–48]. Elevated
systemic levels of IL-6, IL-1, and TNF-α in cancer patients seem to correlate with the progres-
sion of tumors [49–52]. These cytokines contribute to increased skeletal muscle protein degra-
dation through the activation of three pathways: the ubiquitin-proteasome system (UPS) [53],
the autophagy/lysosomal pathway [54], and the Ca2+-activated degradation pathway [55].

IL-6 is a widely recognized cytokine with significant implications for various bio-
logical functions. It plays a multifaceted role in tumor growth and metastasis by acting
as a bridge between chronic inflammation and tumorigenesis and by contributing to
muscle atrophy [56–58] and protein breakdown [59,60]. In the context of gastric can-
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cer, a prognostic model identified as an RNA-binding protein called RNA-binding motif,
single-stranded-interacting protein (RBMS1), was found to potentially serve as a potential
promoter gene for metastasis in one study [61]. This study identified IL-6 as a crucial
cytokine in RBMS1 overexpression, demonstrating its involvement in promoting migration
and invasion of cancer cells through IL-6 transactivation and JAK2/STAT3 downstream
signaling pathway activation. These findings shed light on the intricate molecular mecha-
nisms underlying gastric cancer metastasis and its connection to IL-6 signaling. Further
research in the field of colorectal cancer has unveiled insights into the influence of IL-6 on
cancer cells. Specifically, in the microenvironment of early colorectal cancer tumors, cancer
stem cells released by myofibroblasts contribute to the expansion of these cells. This process
is mediated by IL-6 and IL-8, which induce hairy and enhancer of split (HES1) activation (a
Notch signaling target) and activate the STAT3 pathway. These results suggest a significant
interaction between cancer stem cells and the tumor microenvironment, offering potential
avenues for targeted prevention and treatment strategies for colorectal cancers [62].

IL-1β is a notable biomarker related to muscle wasting in cancer cachexia [48]. This
inflammatory mediator is closely linked to clinical manifestations of cachexia conditions
in advanced cancer patients, such as weakness, loss of appetite, weight loss, and sarcope-
nia [48]. Elevated levels of IL-1β are particularly evident in patients with cancer-related
anorexia, with its severity being closely correlated to the levels of IL-1β [63]. Moreover, the
presence of increased IL-1β is connected to the loss of muscle mass, exacerbating anorexia
and escalating energy expenditure [64]. In animal research, IL-1β has demonstrated a
propensity to foster tumor growth through its promotion of angiogenesis, potentially has-
tening the progression of muscular weakness and weight loss. For instance, Voronov et al.
demonstrated that elevated levels of IL-1β induce cancer cells to initiate and complete
the processes of angiogenesis in mice with high levels of IL-1β and IL-1α inoculated with
B16 melanoma cells and DA/3 mammary adenocarcinoma [65]. Similarly, Jung et al.
demonstrated that IL-1β triggers upregulation of hypoxia-inducible factor-1α protein via a
nuclear factor kappa B/cyclooxygenase-2 pathway, which subsequently enhances vascular
endothelial growth factor (VEGF), a potent angiogenic factor required for tumor growth
and metastasis [66]. These findings collectively underline the significance of IL-1β as a
potential critical biomarker for diagnosing increased proteolysis and lipolysis in cancer
cachexia. This notion is reinforced by additional research demonstrating the role of IL-1β
and its strong association with cancer cachexia [48,67–69].

Tumor necrosis factor-alpha (TNF-α) is recognized for its multifaceted role as a growth
factor, stimulating cellular growth and differentiation for various normal cells [70]. This
molecule exhibits a broad range of biological activities, and clinical application has focused
on inhibiting its effects to manage autoimmunity [71]. In instances of damage or infection,
acute inflammation triggers a cascade of cytokines and chemokines, initiating an immune
response to combat disrupted and harmed tissue. In the context of cancer cachexia, TNF-α
serves as a proinflammatory cytokine and mediator of tumor-induced adipose and skeletal
muscle wasting [72–74].

The role of TNF-α in cancer cachexia is twofold: directly inducing catabolism in
skeletal muscle through the activation of the Nuclear Factor Kappa B (NF-kB) pathway
and promoting ubiquitin-mediated proteasome degradation of muscle protein [47,75,76].
Beyond this, TNF-α contributes to cancer cachexia by fostering increased gluconeogenesis,
adipose tissue loss, proteolysis, and reductions in protein and fat metabolism [75,76]. The
catabolic effect of TNF-α was evidenced in a murine model, where tumor-bearing mice
displayed substantially higher levels of TNF-α, atrogin-1, and muscle ring finger protein 1
(MuRF1) compared to healthy cohorts [77]. The increased atrogin-1 expression and activa-
tion of p38 MAPK pathway instigate muscle protein degradation and muscle atrophy [78].
Distinctions within the tumor microenvironment hold the potential to influence the pro-
gression of cancer cachexia by altering the array of circulating catabolic factors derived
from the tumor milieu [77].
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There is growing evidence that underscores the pivotal role of CRP in inflammatory
processes and hosts’ response to pathways associated with infection. These pathways
encompass apoptosis, phagocytosis, nitric oxide (NO) release, and the production of
specific cytokines, such as IL-6 and TNF-α [79]. CRP stands as one of the most extensively
studied inflammatory biomarkers linked to cancer cachexia, even serving as a proposed
diagnostic criterion [80]. Its elevation is closely associated with weight loss, diminished
quality of life, and shortened survival time among advanced cancer patients [81].

CRP is subject to regulation by key molecular triggers of cachexia, such as IL-6, IL-1β,
and TNF-α, which not only promote cancer cell growth and safeguard cancer cells against
apoptosis but also stimulate angiogenesis and metastasis [82,83]. Within this context, these
proinflammatory cytokines stimulate the liver to synthesize CRP, further contributing to
muscle wasting in cancer cachexia [82,84]. Elevated CRP levels are also correlated with
an increased risk of cancer types such as liver, lung, colorectal, and breast cancer [85].
Among different cancer types, the highest mCRP levels have been observed in patients
with esophageal, rectal, colon, bladder, or pancreatic cancer [86]. Emerging research
demonstrates that elevated CRP levels can serve as an early indicator of severe lean tissue
loss [86,87]. This evidence positions CRP as a promising early biomarker for cachexia and
as a means to monitor the progress of anticachexia therapeutic interventions [87]. However,
the significant limitation in the application of CRP as a biomarker for assessing cancer
cachexia is the variability in cutoff values employed in previous research studies and the
lack of standardization of recognizable cutoff values of CRP [46,86–88].

The existing body of evidence supporting the correlation between IL-8 and cancer
cachexia is currently limited in its scope. To our knowledge, there were only two stud-
ies that reported an association between IL-8 and cancer cachexia. In the first study, a
comparison of serum samples from normal healthy donors and pancreatic cancer donors
revealed a positive correlation between serum IL-8 levels and catabolic conditions of cancer
cachexia status, weight loss, and sarcopenia [89]. Similarly, Fogelman et al. proposed a
regression model to predict cachexia levels based on inflammatory markers in pancreatic
cancer patients, and IL-8 was among the markers considered [90]. IL-8, functioning as
a chemokine (CXCL8), may hold potential as an element in antitumor treatment strate-
gies. A review study exploring the efficacy of CXCL8 blockade and immune checkpoint
inhibition therapy suggested that this combined intervention could serve as a possible
antitumor strategy [91]. Despite the current limitations in research, the emerging connec-
tions between IL-8 and cachexia may offer intriguing avenues for future investigation and
therapeutic interventions.

GDF-15, a member of the transforming growth factor beta (TGF-β) superfamily, was
previously named as macrophage inhibitory cytokine-1 [92]. Under normal physiological
conditions, GDF-15 expression is minimal; however, its expression varies across different
health or disease states. For instance, lower plasma levels of GDF-15 have been associated
with healthy aging, while elevated plasma levels of GDF-15 have been linked to poor over-
all health [93,94]. The introduction of GDF-15 expression mirrors events often observed in
cancer cachexia, such as mitochondrial dysfunction, cellular stress, inflammation, aging,
and other pathological conditions triggered by stress response cytokines [95]. GDF-15 is
also known to affect inflammatory and apoptotic pathways [96,97]. Previous research has
demonstrated that high circulating levels of GDF-15 are correlated with chronic inflamma-
tory conditions including renal, lung, and cardiovascular diseases, as well as cancer [98].
Moreover, exosomes released by tumor cells have been implicated in the process of muscle
wasting and fat lipolysis induced by cachexia [99–101]. These tumor-derived exosomes con-
vey messages that facilitate tumor metastasis by influencing healthy or abnormal cells [102].
This suggests that increased levels of GDF-15 may be linked to elevated tumor exosome
production, leading to proteolysis and lipolysis in cancer patients.

In the context of colorectal cancer, Wang et al. conducted a review analysis and noted
that higher GDF-15 expression was associated with a low survival rate in NOD/SCID
mice, strongly implicating GDF-15 as a prometastatic gene in colorectal cancer [103]. In
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support of this contention, Brown et al. reported that patients with high preintervention
prostate cancer GDF-15 serum levels showed an eight-fold higher death rate than do
those with lower levels [104]. Animal models investigating the association of GDF-15 and
cancer-induced cachexia further underscore its significance. Wu et al. demonstrated that
inhibiting GDF-15 in tumor-bearing mice (TOV21G) reversed body weight loss, muscle
mass loss, and fat mass loss while degrading muscle function and impairing physical
performance [105]. Similarly, Zhang et al. reported increased GDF-15 levels in C26 tumor-
bearing mice, suggesting the potential role that GDF-15 in tumor-derived exosomes have
in facilitating muscle atrophy and pointing to the possibility of targeting GDF-15 for cancer
cachexia treatment [99].

5. Skeletal Muscle Alteration in Cancer Cachexia
5.1. Protein Synthesis

Protein synthesis plays a crucial role in addressing the wasting of skeletal muscle
during the progression of cancer. The process of protein synthesis is primarily regulated
by the initiation phase of protein translation and has two important control points [106].
The first control point is the binding of initiator methionyl-tRNA or met-tRNA to the 40S
ribosomal subunit that is regulated by the eukaryotic initiation factor 2 (elF2) [106]. The
second control point of translation initiation is the recruitment of 40S ribosomal subunit to
mRNA that is mediated by the eukaryotic initiation factor 4 (elF4) complex [106]. Muscles
possess the ability to synthesize protein in response to certain stimuli, including energy sta-
tus, anabolic hormones, catabolic hormones, and loading of the musculature [107]. A major
player in regulating these growth-related stimuli and myofiber size is the PI3K/Akt/mTOR
pathway, known for its influence on the interaction between insulin-like growth factor-1
(IGF-1) and the forementioned pathway [8]. However, protein synthesis in muscle is sup-
pressed, contributing to the progression of muscle wasting under cancer-induced catabolic
environments. For instance, as cancer cachexia advances, both circulating IGF-1 and muscle
IGF-1 gene expression tend to decrease [108], thereby contributing to the decrement of
protein synthesis. This contention has been studied in various human and animal models
evidenced elsewhere in this review, yielding varying degrees of efficacy. The ongoing
pursuit to manage cancer cachexia revolves around identifying interventions capable of
addressing the alterations in protein synthesis that transpire in the advanced stages of
cancer cachexia.

5.2. Muscle Proteolysis

The acceleration of skeletal muscle loss in cancer cachexia stems from the upreg-
ulation of catabolic factors, such as the ubiquitin-proteasome system, myostatin, and
apoptosis-inducing factors [109], coupled with the downregulation of anabolic factors,
including IGF-1 and its activation of the PI3K/Akt/mTOR signaling pathway [110]. This
interplay between catabolic and anabolic signaling disrupts the delicate balance in skeletal
muscle, ultimately leading to muscle wasting in cancer cachexia. Central to this pro-
cess, the ubiquitin–proteasomal system (UPS) stands as the main degradative pathway
mediating the progressive protein loss in cachexia [111]. The UPS involves a series of en-
zymes that modify specific protein substrates through ubiquitin tagging, which is followed
by the proteolysis of these ubiquitin-labeled substrates by 26S proteasomes [112]. This
ubiquitin conjugation to the substrate is facilitated by a multistep cascade reaction of the
ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzyme (E2), and a ubiquitin
ligase (E3) [112]. In the context of muscle atrophy in cancer cachexia, two muscle-specific
E3 ubiquitin ligases, atrogin-1/MAFbx and muscle ring finger protein 1 (MuRF-1), play
pivotal roles in driving muscle proteolysis and wastage. The activation of forkhead box
O (FOXO) family transcription factors further enhances the expression of MuRF-1 and
atrogin-1, thus intensifying protein proteolysis and muscle degradation [1,75,113]. FOXO
activation is mediated by cytokines such as TNF-α, IL-1, and proteolysis-inducing fac-
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tor (PIF) [1,6,75]. These cytokines also contribute to the p38 and JAK/mitogen-activated
protein kinase (MAPK) cascade that plays a key role in apoptosis [1].

Apoptosis, also known as “programmed cellular death”, is a vital process essential for
both normal developmental processes and the homeostasis of multicellular organisms. A
group of proapoptotic caspases, including caspase-2, -3, -6, -7, -8, -9, and -10, play a crucial
role in transmitting signals for cellular death. In parallel, proinflammatory caspases, such
as caspase-1, -4, -5, -11, and -12, are responsible for regulating cytokine maturation during
inflammatory responses [114,115]. Activation of initiator caspases initiates a cascade of
downstream caspase activities that ultimately lead to cellular death.

In cancer cachexia, there is a significant increase in the activity of caspase-1, -3, -8,
and -9 in the cachectic skeletal muscle of tumor-bearing mice [116]. Upregulation of
caspase-8 and -9 has been observed in cancer cachexia patients, promoting the activation of
the final executioner of the apoptotic signaling pathway, caspase-3 [117]. This activation
of caspase-3 subsequently triggers protein loss, thereby contributing to the progression
of cancer cachexia [118]. Additionally, muscle atrophy and disease are associated with
the loss of myonuclei, as indicated by Allen and colleagues, which further exacerbates
the advancement of cancer cachexia [119]. Supporting this notion, D’Emilio et al., who
conducted electron microscopy studies on skeletal muscle samples from cancer patients,
demonstrated apoptosis-related morphological changes in myonuclei [120].

Maintaining skeletal muscle homeostasis relies on autophagy to clear damaged pro-
teins and organelles. This process involves the formation of autophagosomes, which are
double-layered vesicles that eventually fuse with lysosomes, where intracellular materials
are broken down [121]. In the context of cancer cachexia, cytokine release from cancer
and inflammatory cells can disrupt autophagy balance, mitophagy, and related signaling
pathways that contribute to disease progression [122]. The modulation of autophagy genes
can stimulate autophagy pathways, resulting in increased skeletal muscle breakdown [123].
One study reported that altered autophagy, whether excessive or defective, played a role
in muscle atrophy in cancer cachexia across different cachexia models [124]. Elevated
autophagy also affects the mitochondria, leading to reduced mitochondrial content, and
ultimately resulting in reduced capacity in atrophied muscle [123]. This is attributed
to the damaged mitochondria that are unable to execute oxidative phosphorylation effi-
ciently [125]. Damaged mitochondria are isolated from healthy mitochondrial networks
via fusion or fission and are then targeted for degradation through autophagy [125]. Fur-
thermore, mitochondrial dysfunction can arise from disrupted coordination between mito-
chondrial fusion and fission as observed in cancer cachexia patients with altered indices of
mitochondrial fission and fusion [126] as well as in tumor-bearing mice [127].

6. Altered Mitochondrial Metabolism in Cancer Cachexia

Five potential mechanisms may impair mitochondria function, thereby contributing
to cancer cachexia. First, cancer is linked to DNA mutations that impact mitochondria,
stemming from modifications to subunits within the electron transport chain [128]. This
connection was demonstrated in tumor-bearing mice, revealing alterations in all four
complexes of the electron transport system [129]. These alterations contribute to impaired
mitochondria exhibiting diminished oxidative phosphorylation capabilities.

Second, the generation and progression of cancer toward malignancy are primarily
triggered by oxidative stress induced by reactive oxygen species (ROS) [130]. ROS are pro-
duced by mitochondria that release superoxide as a byproduct of oxidative respiration [131].
Additionally, mitochondrial ROS (mROS) can be generated either in the citric acid cycle or
in the electron transport chain [132]. Increased levels of ROS are often found in cancer cells
due to increased metabolic activities and altered antioxidant capacities [133–135]. While
ROS promotes tumorigenesis, elevated ROS can also be cytotoxic [136]. In particular, the
hyperproliferation of tumor cells is associated with heightened ROS generation; however,
these cells can adapt to flourish even when oxidative stress disrupts the redox balance,
pushing it away from a reduced state. Tumor cells achieve this by bolstering their antioxi-
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dant defenses, thereby optimizing ROS-driven proliferation while simultaneously avoiding
ROS thresholds that would induce senescence, apoptosis, or ferroptosis [137,138].

A third potential characteristic of dysfunctional mitochondria is increased glycolytic ac-
tivity with impaired mitochondrial oxidative phosphorylation, characteristics seen similarly
in cancer cachexia [100]. This has previously been termed “metabolic flexibility”, wherein
individual cancer cells may exhibit variability in their metabolic phenotype [139,140]. The
alterations in the metabolic phenotype within cancer cells grant them the capability to
swiftly modify their energy production mechanisms from mitochondrial oxidative phos-
phorylation to accelerated glycolysis to support tumor cell growth, particularly when the
tumor microenvironment shifts from normoxia to hypoxia [140]. However, it is worth
noting that the overall ATP production in cancer cells is not exclusively ascribed to ac-
celerated glycolysis (approximately up to 50–60%) but also coincides with mitochondrial
oxidative phosphorylation [141]. Thus, a combination of glycolysis and mitochondrial
oxidative phosphorylation contributes to overall ATP generation in cancer cells to sustain
their growth [140]. This phenomenon was substantiated by Herst et al., who elucidated the
transformation of energy production for tumor cell growth changes from oxidative phos-
phorylation to expedited glycolysis, which resulted in diminished overall ATP production
within the hypoxic environment [142]. It may be inferred that excess ROS may contribute to
this glycolysis dysregulation and vice versa [143]. Moderate and transient elevation of ROS
levels can prompt glucose uptake [143]. However, if ROS concentrations surge excessively
and/or persist over extended periods, a vicious circle of ROS-stimulated glucose uptake
and glucose-stimulated ROS production can be triggered [143]. Within cancer cells, the
increased ROS production arising from metabolic dysregulation, and swift proliferation
may induce an amplification of an antioxidant capacity, enabling both heightened ROS
production and effective elimination to retain the ROS levels below the threshold for cell
demise. This orchestrated interplay aids in sustaining cancer cell survival [140].

Fourth, mitochondria are directly involved in the regulation of cellular death, including
apoptosis and necrosis processes [144]. Mitochondria also control necroptosis, a regulated
form of necrosis that needs ROS generation and depends on mitochondrial permeability
transition [145]. Mitochondria may also undergo certain processes in order to maintain
cellular homeostasis. One such process, called autophagy, is the catabolic action of recycling
or removing dysfunctional or decaying cells. The process of maintaining mitochondrial
homeostasis in which mitochondria are specifically targeted for degradation is called
mitophagy [146]. Mitophagy occurs to alleviate oxidative stress and prevent carcinogenesis.
However, in low oxygen conditions or low nutrient availability, mitophagy can protect cells
from apoptosis and support tumor cell survival [146]. Thus, by inhibiting the mitophagy of
mitochondria that leads to the resulting decrease in mitochondrial metabolism, tumor cell
death may be promoted and further augmented by ROS [146]. Additionally, this pathway
may provide insight into future therapies for promoting tumor cell death.

Fifth, metabolic reprogramming is also linked to mutations in several genes that
encode enzymes of the citric acid cycle, which facilitate malignant transformation [147].
Regarding heightened glycolytic activity in cancer cachexia, specific oncogenes contribute
to the regulation and modulation of its metabolism. For instance, oncogenes such as
phosphatidylinositol 3-kinase (PI3K) [148–150] and hypoxic inducing factor (HIF) [151,152]
foster increased glycolytic activity in cancer cachexia are also linked to tumor progression
and resistance to cancer therapies [146]. Moreover, a distinctive trait of all tumors is
continuous cellular proliferation driven by numerous molecular alterations [153], which in
turn contributes to compromised mitochondrial function.

The process of mitochondrial biogenesis which occurs mainly in healthy cells is reg-
ulated by peroxisome proliferator-activated receptor gamma (PPARγ) coactivators [154].
Peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α), a mas-
ter regulator of mitochondrial biogenesis and oxidative mechanism, is highly expressed
in skeletal muscle during exercise, stimulating IGF-1 activation [155] while repressing
myostatin signaling [156]. The PGC-1α isoform is expressed in metabolically active tis-
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sues, such as those of the liver, kidneys, and brain, and responds to energy-demanding
situations (e.g., exercise). The overexpression of PGC-1α increases the amount of mito-
chondrial DNA, which encodes several protein subunits of the mitochondrial respiratory
chain [154]. PGC-1α protects against ROS-induced cellular death through the upregulation
of antioxidant enzymes [157].

Animal studies demonstrated that skeletal muscle-specific transgenic expression of
PGC-1α4 exhibited increased muscle mass and strength and dramatic resistance to the
muscle wasting in cancer cachexia [158]. A study revealed that aerobic exercise such as
swimming and treadmill running raised PGC-1α content in the muscle by 75% after the dis-
continuation of aerobic exercise and 95% 6 h after swimming [159]. The increase of PGC-1α
in response to exercise was also evidenced in humans. In addition, A 4-week regimen of
knee extensor exercise led to an increase in PGC-1α transcription and mRNA content in
the skeletal muscle of healthy individuals [160]. The utilization of PGC-1α knockout mice
to explore its impact on organelle function revealed diminished mitochondrial content in
both white and red muscles, alongside disrupted mitochondrial function and heightened
susceptibility to apoptosis as evidenced by apoptotic signaling and cytochrome-c oxidase
activity [161]. Further, PGC-1α upregulation with exercise appears to enhance muscle
mass and quality while counteracting cancer-induced muscle wasting [44]. In a murine
model of ApcMin/+ mice, it was discovered that the progression of cancer cachexia led to
the suppression of PGC-1α expression in the gastrocnemius and soleus muscles at 20 weeks
of age [60]. On the other hand, significant increases in both protein and gene expression
levels of PGC-1α were observed in C26 mice and LLC tumor-bearing mice when treadmill
running was combined with erythropoietin treatment [162]. The alterations in the PGC-1α
expression levels could potentially impact the prognosis of cancer cachexia. Thus, the
expression levels of PGC-1α might serve as a feasible biomarker for diagnosing the severity
or stage of cachexia.

7. Myokines as Potential Therapeutic Agents for Cancer Cachexia
7.1. Myostatin

Myostatin is a highly conserved member of the transforming growth factor-beta family
in skeletal muscle [163]. Myostatin has been identified as a negative regulator of myogenesis
that inhibits myoblast proliferation, leading to a decrease in muscle growth [164]. Once
myostatin binds to its type I receptors, Activin-4 (ALK-4) or Activin-5 (ALK-5), and type II
receptors, Activin Receptor II A (ActRIIA) or Activin Receptor II B (ActRIIB), intracellular
signaling is initiated via phosphorylation and activation of the transcription factors Smad2
and Smad3, the primary transcription factors in the myostatin pathway, leading to the loss
of muscle mass [165–167]. Furthermore, myostatin-Smad2/3 signaling has been shown
to inhibit the effect on the IGF1–Akt–mTOR signaling pathway, further alluding to the
possibility that communication between myostatin and the IGF1–Akt–mTOR signaling
pathway can control the degree of muscle fiber hypertrophy [168].

In regard to cancer cachexia, myostatin plays an integral role in muscle mass regula-
tion, potentially contributing to accelerated muscle loss in this catabolic condition. Notably,
previous research has demonstrated that mutations or absence of myostatin leads to sig-
nificant muscle growth in humans and vertebrate animals [169–173]. Moreover, several
studies have indicated that inhibition of myostatin could potentially help preserve skeletal
muscle in tumor-bearing animal models [174–177] as well as in cancer patients [178]. A
recent study demonstrated the protective effect of myostatin inhibition by attenuating
soluble ActRIIB, which prevented not only skeletal muscle loss but also cancer-induced
cardiac muscle atrophy [179]. Winbanks exhibited this phenomenon through the delivery
of Smad7 gene therapy in mouse models of cachexia, as Smad7 functions as an intracellu-
lar negative regulator, curbing the activation of Smad2 and Smad3 while promoting the
degradation of ActRIIB complexes [180]. Additionally, the administration of Smad7 was
shown to effectively suppress Smad2/3 signaling downstream of ActRIIB and hinder the
expression of atrophy-related ubiquitin ligases such as MuRF1 and F-box (MAFbx) [180].
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Given these research findings, the implementation of myostatin inhibitor strategy aimed
at reducing myostatin levels may hold promise for enhancing muscle mass in those with
cancer-induced muscle wasting.

Previous research has shown that the implementation of a myostatin inhibitor in
conjunction with aerobic exercise implemented via treadmill running in healthy mice
exhibited improved physical function as seen in increased treadmill running time and
distance to exhaustion, improved metabolic rates, and significantly improved insulin
sensitivity [173]. Additionally, the inhibition of myostatin from this study was associated
with a decrease of Smad3 phosphorylation and increased PGC-1α expression as well
as decreased MuRF-1 [173]. When administered in mice inoculated with LLC cells, the
treated mice show significantly improved muscular atrophy through the inhibition of the
myostatin and Smad signaling pathway resulting in lowered muscle atrophy mediators
such as MuRF1, F-box only protein 31, and MAFbx/atrogin-1 [176]. Further work has been
documented in both human and rodent models in individuals with advanced stage cancer
and healthy individuals [181]. Although investigating myostatin as a potential avenue
for intervening in the preservation of muscle mass in cancer cachexia holds promise, its
translation to human applications remains uncertain due to the lack of specificity and
potential toxicities in clinical patients [182]. Despite these challenges, it is crucial that future
formulations of anticancer therapies persist in examining myostatin as an encouraging
molecular target for addressing muscle waste.

7.2. Fibroblast Growth Factor 21

Fibroblast Growth Factor 21 (FGF-21) is a signaling protein with diverse biological
functions in development and metabolism. FGF-21 levels increase with hunger, stress,
mitochondrial dysfunction, obesity, mitochondrial myopathies, and aging [183,184]. Holm
and colleagues found that FGF-21 levels, independently associated with IL-6 and lower
muscle mass, were significantly higher in patients with cardiac cachexia than in healthy
cohorts [185], suggesting that the increased plasma levels of FGF-21 in patients with cardiac
cachexia correlate with inflammation and muscle wasting [185]. Thus, it can be speculated
that elevated systemic FGF-21 levels may contribute to the increased inflammation seen
in cancer cachexia. In further support of FGF-21 as a potential contributor to cancer
cachexia, Franz and colleagues reported that cachectic patients had significantly higher total
FGF-21 levels than did their healthy control counterparts, indicating an association between
cachexia and FGF-21 that was independent of sex, age, and body mass index [186]. Further,
Oost et al. discovered that the ablation of the FGF-21 gene protected mice from muscle loss
and weakness during fasting. These mice exhibited maintained protein synthesis rates and
a reduction in the mitochondrial protein BNIP3 that plays a crucial role in mitochondrial
autophagy [187]. They also highlighted the overexpression of FGF-21 prompted autophagy
and led to a 15% reduction in muscle mass, which underscored the significance of BNIP3
inhibition in shielding against FGF21-dependent muscle wasting in adult animals [187].

7.3. Interleukin-15

Interleukin-15 (IL-15) is a myokine abundant in skeletal muscle and is known for its
anabolic effect on muscle protein metabolism. IL-15 accumulation in skeletal muscle in
response to exercise training solidifies its classification as a myokine [188–190]. A strategy to
increase IL-15 levels has emerged as a potential anticachectic therapy, owing to its anabolic
effect on muscle protein metabolism. Notably, previous research indicated that IL-15 fosters
the proliferation of T, B, and natural killer cells, stimulating the expression of stem, central,
and effector memory CD8 T cells [191]. These cells play a pivotal role in protecting the
host from autoimmune diseases by suppressing self-reactive cells (T cells) [192]. They also
positively influence immune response and inflammation through antibody production and
promote T-cell activation and proliferation through antigen presentation (B cells) [193].
Furthermore, they direct their attention toward infected or cancerous cells [194]. Although
IL-15 does not directly contribute to cancer cachexia pathogenesis, the increase in these
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cells may lead to an augmented immune response associated with IL-15 and potentially
serve as a promising biomarker in the treatment of cancer cachexia.

In terms of cancer cachexia progression, research into the relationship between IL-15
and cancer cachexia is still in its early stages. Studies involving cancer patients undergoing
anticancer therapies revealed that those patients who gained weight exhibited increased
IL-15 values at 4 and 8 weeks during treatment, compared to both their baseline levels
and patients who lost weight [195]. This rise in IL-15 values among patients who gained
weight, along with its correlation with body weight and muscle mass, suggests a possible
connection between IL-15 and body composition in cancer cachexia patients. In one study,
IL-15 administration on male Wistar rats with intraperitoneal inoculation of 108 AH-130
Yoshida ascites hepatoma cells led to a decrease in protein degradation rates compared to
non-tumor-bearing mice [196]. Additionally, aerobic exercise and an antioxidant treatment
(selenium nanoparticle supplementation) in 4T1 breast cancer cachectic mice resulted in
increased food intake and preservation of muscle mass in the tumor-bearing mice. These
results may be attributed to the modifications in the balance of anti-inflammatory mediators
such as interleukin 10 (IL-10) and TNF-α ratios, along with IL-15 expression within skeletal
muscle [197]. These studies collectively enhance our understanding of the mechanisms
underlying IL-15’s preventive influence and its potential role as a biomarker for body
composition in individuals with cancer cachexia. Furthermore, they shed light on its
potential application in strategies aimed at mitigating accelerated muscle waste during
cancer treatment.

8. Dysfunction of Adipose Tissue in Cancer Cachexia

The progression of cancer cachexia is driven by the simultaneous depletion of skeletal
muscle and adipose tissue. Although the evidence of muscle wasting in cancer cachexia is
well documented, the intricate mechanisms behind the loss of adipose tissue in this context
remain limited. In certain cancers that progress toward cachexia, the release of various
cytokines, such as TNF-α, IL-6, and interferon gamma (IFN-γ), plays a significant role [198].
Notably, adipose wasting often occurs prior to the loss of muscle mass in the early stages of
cancer cachexia [198,199].

The heightened inflammatory response targeting adipose tissue can be attributed to
the transformation of white adipose tissue into brown adipose tissue or the dysregulation
of white adipose tissue. Studies in animal models demonstrated that chronic inflammation
leads to increased expression of uncoupling protein 1 (UCP1), a protein that facilitates
nonshivering thermogenesis in mammals and promotes the transition from white adipose
tissue to brown adipose tissue [200,201]. As the conversion of white adipose tissue to brown
adipose tissue progresses, the brown adipose tissue becomes a significant contributor to
increased lipid mobilization and energy expenditure [200,202,203]. This heightened energy
expenditure results from the increased thermogenesis of brown adipose tissue, which
redirects energy from food toward heat generation rather than toward ATP synthesis. [204].
Supporting this, Petruzelli et al. found that increased UCP1 expression led to greater lipid
mobilization and energy expenditure in cachectic mice [201]. Similarly, in a study involving
human cancer patients, those with cancer cachexia exhibited a higher expression of UCP1 in
their adipose tissue compared to cancer patients without cachexia [201]. Therefore, research
focused on understanding abnormal lipid metabolism and preserving adipose tissue and
its function in cancer cachexia patients could be a promising avenue to mitigate the loss of
body weight as cancer cachexia progresses.

9. Potential Therapeutic Interventions for Cancer Cachexia
9.1. Clinical Care in Cancer Cachexia

The overarching objective in the management of cancer cachexia is to achieve a cure or
reversal of skeletal muscle loss and body weight decline. Nonetheless, the intricate nature
of cancer-induced cachexia introduces formidable challenges to both its diagnosis and
treatment. Consequently, the task of addressing cancer cachexia necessitates multifaceted
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approaches that can effectively target the loss of skeletal muscle and body weight, thereby
enhancing the overall quality of life and survival prospects for cancer patients. The con-
stellation of attributes associated with cancer cachexia encompasses a spectrum of issues,
including insufficient food intake, weight reduction, depletion of muscle mass, diminished
muscular strength, escalated catabolism, premature satiety, alterations in taste perception,
nausea, bodily discomfort, diminished concentration, and chronic fatigue [75]. A compre-
hensive strategy for treating cancer cachexia should encompass a range of interventions,
integrating pharmacological, nutritional, and exercise-based approaches to address the
unmet medical requirements posed by this complex condition [205–207]. Initial efforts
to counteract cancer cachexia focused on preventing body weight loss and were based
on the premise that preserving body weight could impede the progression of cachexia.
However, this approach proved challenging to implement in clinical settings due to the lack
of standardized protocols for assessing, treating, and monitoring the progression of cancer
cachexia. To the best of our knowledge, a universally accepted and singularly standardized
treatment for cancer cachexia that effectively stabilizes or reverses its impacts has yet to
be established. Despite this, the subsequent sections will delve into potential therapeutic
avenues that warrant exploration and consideration as viable strategies in the battle against
cancer cachexia (Figure 2).
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9.2. Nutritional Interventions
9.2.1. Omega-3 Polyunsaturated Fatty Acids

Omega-3 Polyunsaturated fatty acids (n-3), consisting of a mixture of two vital com-
ponents, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), represent a class
of anti-inflammatory supplements renowned for their anticatabolic properties. The Food
and Nutrition Board of the Institute of Medicine (IOM) recommends a daily n-3 intake
of 1.6 g for men and 1.1 g for women to ensure nutritional adequacy [208]. The Dietary
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Guidelines for Americans (DGA) advocate a dietary incorporation of 8 oz of seafood/week
equating to approximately 250 mg of EPA and DHA per day [209]. Regarding alternative
formulations and dosages that highlight the positive health benefits of omega-3 fatty acid
supplementation, previous research indicated that an intake of 3.9 g/day over 16 weeks
amplifies rates of mixed muscle, mitochondria, and sarcoplasmic protein synthesis in older
adults pre- and postexercise [210]. Moreover, fish oil supplementation enriched with n-3
(approximately 2.2 g of EPA and 1.4 g of DHA) has demonstrated potential in mitigating
the loss of body weight among advanced pancreatic cancer patients who have experienced
severe weight loss [211]. Similarly, the administration of pure EPA (6 g per day) for 4 weeks
was shown to contribute to weight stabilization over a 3-month period in pancreatic can-
cer patients [212]. Additionally, EPA supplements (3 g/day) have been associated with
prolonged survival time in patients across various cancer conditions [213].

9.2.2. Creatine

Creatine is a nitrogenous organic acid that is naturally present in common dietary
sources, such as red meat, seafood, and poultry. The majority of creatine, approximately
95%, is stored within skeletal muscle, with the remaining 5% dispersed among the brain,
liver, kidney, and the testes [214]. Intramuscular creatine serves a pivotal role in the
phosphocreatine system. The benefits of creatine supplementation lie in its capacity to
facilitate gain in muscle mass and thereby enhance muscular strength. This effect could
potentially be attributed to its influence on high-energy phosphate metabolism, muscle
protein kinetics, and growth factors [215,216]. According to the official stance of the
International Society of Sports Nutrition (ISSN), creatine supplementation might contribute
to minimizing the severity of injury, facilitating rehabilitation postinjury, and aiding athletes
in enduring rigorous training regimens [217].

In the context of cancer cachexia, creatine supplementation has emerged as a plausible
intervention. This is grounded in its potential to counteract the effects of impaired muscle
protein synthesis and muscle degradation [215]. A study involving stage III or IV colorectal
cancer patients demonstrated that those who received a creatine supplement regimen,
consisting of 4 administrations of 5 g for the first week followed by 2 administrations of
2.5 g for 7 weeks, exhibited higher grip strength compared to a control cohort [218]. In
a rodent model conducted by Wei and colleagues, creatine was found to shield against
body weight loss and muscle wasting, leading to substantial improvements in grip strength
among tumor-bearing mice [219]. Notably, the creatine treatment presented an ability to
rectify mitochondrial dysfunction and morphological abnormalities, thereby safeguarding
against cachectic muscle wasting, which could be achieved by inhibiting the aberrant
overactivation of the ubiquitin proteasome system and autophagic lysosomal system [219].

9.2.3. Branched-chain Amino Acids

It has been demonstrated that branched-chain amino acids (BCAAs), composed of
leucine, isoleucine, and valine, have an ability to stimulate muscle protein synthesis while
mitigating muscle wasting even in aging-induced muscle decline (i.e., sarcopenia) [220].
Circulating BCAAs can trigger protein synthesis, thus promoting muscle hypertrophy [213].
The enhancement of muscle protein synthesis can be attributed to the ability of BCAAs to
upregulate the mTOR signaling pathway, which in turn fosters mitochondrial ATP produc-
tion [221]. Additionally, the mTOR pathway collaborates with insulin and IGF-1 to increase
intracellular BCAA uptake, promote protein synthesis, diminish protein degradation, and
amplify cellular growth [222]. Furthermore, BCAA supplementation promotes the acti-
vation of PGC-1α activation and facilitates mitochondrial biogenesis and physiological
function in cardiac and skeletal muscles through the mTOR pathway [223].

In contrast, BCAAs are normally oxidized as an energy source to generate ATP, which
can potentially facilitate tumor growth under cancer-related catabolic environments [224].
Thus, it may be beneficial to administer BCAA supplementation to counteract the oxida-
tion of BCAA observed in cancer cachexia. These beneficial outcomes linked to BCAA
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supplementation could be particularly relevant for patients undergoing cancer treatment
or those in the precachexia phase. Previous studies demonstrated that patients with ad-
vanced intra-abdominal metastatic adenocarcinoma exhibited elevated whole-body protein
synthesis and leucine balance after receiving a parenteral nutrition infusion of 50% BCAAs
as compared with a formula of 19% BCAAs [225,226]. Additionally, a leucine-enriched diet
amplified protein synthesis in skeletal muscle in walker 256 tumor-bearing mice through
the activation of elF factors and/or the S6 kinase [227]. Another study utilizing a murine
model to the explore impacts of leucine and valine discovered a significant reduction in
body weight loss in tumor-bearing mice [228]. Although, the relationship between BCAA
supplementation and cancer cachexia treatment is limited in terms of existing evidence, this
avenue of research may warrant further exploration by virtue of its potential to enhance
protein synthesis and combat the loss of muscle mass and muscle strength associated with
cachexia. Further studies may be necessary to determine its efficacy when integrated with
multiple treatments as part of a multimodal approach to cancer cachexia.

9.2.4. Hydroxymethylbuterate

Another notable supplement that has demonstrated potential to ameliorate protein
degradation under catabolic conditions is hydroxymethylbuterate (HMB), a bioactive
metabolite formed from the decomposition of leucine, an essential BCAA [229]. The
efficacy of HMB supplementation lies in its capacity to upregulate the mTOR signaling
pathway in bolstering protein synthesis and concurrently dampen the proteasome signaling
pathway, effectively counteracting muscle protein breakdown [230,231]. An illuminating
study by Courel-Ibanez et al. revealed that HMB supplementation in sarcopenic individu-
als not only restrained muscle protein degradation but also augmented lean body mass
and muscular power during a hospital-based rehabilitation and recovery program [232].
The prevailing recommendations for HMB dosage in sarcopenic individuals typically fall
around 2–3 g/day (or 38 mg/kg/day), with no notable adverse effects [232,233]. It is worth
noting that achieving the optimal dosage of HMB through a standard diet is challenging
due to the limited presence of HMB in foods and the relatively low conversion rate of
leucine to HMB [233,234].

In a study that examined the anticachectic effects of HMB, a combination of 3 g HMB,
yielded a significantly higher lean mass in advanced cancer patients compared to a control
cohort [235]. Notably, the anticachectic effect persisted for up to 24 weeks following the
supplementation period. In a similar manner, HMB supplementation administered twice
daily for 8 weeks produced positive outcomes in both body composition and clinical
outcomes, including a lower incidence of overall health complications and reduced hospital
readmission rates although statistical significance was not consistently achieved despite
these favorable outcomes [236]. Additionally, HMB supplementation was found to lower
serum CRP levels in malnourished elderly cancer patients [237]. Although the body
of evidence regarding the efficacy of HMB supplementation in cancer cachexia remains
relatively modest, the potential benefit it offers could complement the effects of other
nutritional supplements in addressing muscle wasting. This synergy may hold promise for
individuals undergoing cancer treatment.

9.3. Dietary Intake Interventions
9.3.1. High-Fat Diets

High-fat diets, commonly referred to as ketogenic diets, are characterized by
their extremely low carbohydrate content, moderate protein intake, and reliance on
high-fat exogenous sources designed to increase blood free fatty acids and ketone
bodies as alternative sources of energy to glucose. The primary proposed advantage of
high-fat diets is in reducing the energy supply available to tumors while increasing the
concentration of ketone bodies in the bloodstream. Tumor cells are unable to effectively
utilize ketone bodies as a viable energy source [238–241] in contrast to healthy cells,
which can utilize them to provide energy to skeletal muscle. A phenomenon known as
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“The Warburg Effect” involves the preference of tumor cells to predominantly rely on
glucose for anaerobic energy production, reinforcing the adaptability of tumor cells in
seeking alternative substrate sources [33].

By limiting the availability of glucose in an effort to starve tumors, the tumor cell
growth might be constrained, potentially attenuating the progression of cancer cachexia
and host catabolism [238,242,243]. A ketogenic diet implemented in C26 tumor-bearing
mice resulted in preserved body, muscle, and carcass weight and markedly lowered
tumor weight and plasma IL-6 levels, indicating a negative correlation between blood
ketone bodies and tumor weight [242]. In addition, high-fat diets have been asso-
ciated with increased survival time [244], reduced tumor burden with lower tumor
growth [244,245], lowered tumor size [245], and a decrease in metastatic spread to
various organs in tumor-bearing mice [245]. Among human cancer patients, high-fat
diets produced similar outcomes, including a decrease in weight loss throughout can-
cer progression [243,246] and preserved muscle mass, ultimately improving quality of
life [243]. These benefits of high-fat diets hold promise in regard to their integration
into anticancer therapeutic strategies.

In cancer patients characterized with elevated systemic inflammation and im-
paired glucose oxidation and uptake, fat utilization may remain normal or even in-
crease. This underscores the potential importance of maintaining a higher dietary
fat-to-carbohydrate ratio in cancer patients [247–249]. However, it should be noted
that a concern has been raised regarding the potential for this type of diet to trigger
or worsen cachexia development due to the significant increases in plasma levels of
total cholesterol and triglycerides [250–253]. Elevated plasma levels of these lipids
are often detected in patients experiencing cancer cachexia as a result of heightened
lipolysis [254]. A study by Clements et al. demonstrated metabolic improvements and
reduced inflammation in tumor-bearing mice fed a high-fat diet, yet this diet also led to
increased fat accumulation, exacerbated tumor progression, elevated metastasis, and
reduced survival compared to a low-fat diet [253]. The potential benefits of high-fat
diets might hinge on their application in cancer patients who are malnourished or strug-
gle to maintain body weight. However, careful consideration must be given to avoid
worsening the symptoms of cancer cachexia. Further research is necessary to establish
the clinical efficacy of this dietary intervention as an anticancer cachexia strategy.

9.3.2. Carbohydrate Diets

Research into the relationship between carbohydrate consumption and cancer progres-
sion has primarily revolved around manipulating dietary carbohydrate levels to potentially
impede the proliferation of existing tumor cells. Since cancer cells have a greater reliance
on substrate availability of glucose than do normal cells, investigations into a carbohy-
drate diet have predominantly concentrated on the impact of low-carbohydrate diets in
ameliorating the tumor growth and progression of cancer cachexia. One study reported
slower growth of carcinomas in murine and human models with a low-carbohydrate
and high-protein diet compared to an isocaloric matched Western diet characterized by
high-carbohydrate and low-protein content [255]. A subsequent study by the same group
that employed an isocaloric diet comprised of low-carbohydrate (10%), high-protein (64%),
and fat (26%) presented remarkable reductions in tumor growth while minimizing weight
loss in tumor-bearing mice [255]. Encouragingly, this low-carbohydrate diet exhibited
synergistic effects with established cancer therapeutic agents, such as Celebrex, in reduc-
ing tumor growth and incidence in a spontaneous mouse model of breast cancer [255].
These findings collectively underscore the safety and effectiveness of the low-carbohydrate
diet in preserving body weight and curtailing tumor growth. Similar positive outcomes
have emerged from studies that employed a diet with relatively low carbohydrate and
moderately higher fat content. This diet has been linked to decreased tumor growth and
attenuated cachexia in various experimental settings [238,242,256–258]. Additionally, while
a ketogenic diet may not necessarily promote muscle mass hypertrophy, it could potentially
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counteract the loss of muscle mass by preserving existing muscle mass [259]. The trajectory
of research regarding the incorporation of low-carbohydrate diets as part of an anticancer
strategies should continue to explore the intricate balance among different macronutrients,
with the goal of optimizing outcomes.

9.3.3. Protein Diets

Adequate protein sources in one’s diet or through supplements are essential for main-
taining positive protein balance, thus aiding in the enhancement of skeletal muscle mass. A
potent catalyst for promoting muscular growth involves elevated plasma levels of amino
acids derived from dietary protein sources. However, the information regarding protein
intake in cancer cachexia is limited. A landmark study conducted by Muscaritoli et al.
has laid the foundation for the practical clinical nutrition guidelines aimed at physicians,
dieticians, nutritionists, and nurses caring for cancer patients. These guidelines advocate
for a protein intake exceeding 1 g/kg/day and ideally reaching up to 1.5g/kg/day [260].
The rationale behind these protein recommendation stems from the fact that muscle protein
synthesis remains responsive in cancer patients, and slightly higher provision of amino
acids has demonstrated effectiveness [260]. Although the present clinical directives might
suggest aligning protein regimens with the European Society for Clinical Nutrition and
Metabolism (ESPEN) guidelines, as underscored by Muscaritoli and colleagues, additional
evidence might be necessary to further support the significance of maintaining a positive
protein balance in curtailing muscle mass loss in patients with cancer cachexia.

9.4. Pharmacological Interventions
Ghrelin Supplementation

Anamorelin is another potential pharmacological option capable of enhancing ap-
petite and mitigating the unfavorable outcomes of cancer cachexia [261]. Functioning as
a ghrelin receptor agonist, anamorelin operates within the domain of ghrelin, a hormone
responsible for influencing growth hormone secretion, appetite stimulation, and weight
gain [262–264]. Notably, anamorelin’s oral formulation boasts a longer half-life of nearly
7–12 h compared to native ghrelin [265]. Although ghrelin participates in diverse biological
processes, it is most recognized as the hunger hormone due to its role in sensing nutrients,
triggering appetite, and initiating meals [266]. Research conducted by Pietra and colleagues
unveiled compelling findings regarding anamorelin’s effect. Their investigation indicated
that anamorelin administration at various dose levels (3, 10, or 30 mg/kg) led to signif-
icant increases in food intake and body weight in healthy rats compared to the control
group [267]. Moreover, doses of 10 or 30 mg/kg correlated with notable elevations in
growth hormone levels [267]. A follow-up study extended these observations, demonstrat-
ing heightened growth hormone levels in pigs following the oral administration of a single
3.5 mg/kg dose of anamorelin, along with increased IGF-1 levels following 7 days of daily
anamorelin administration at 1 mg/kg/day [267]. In human studies, 12 weeks of anamore-
lin administration (100 mg) exhibited noteworthy outcomes. Specifically, this intervention
led to a significant increase in lean body mass among patients grappling with late-stage
non-small-cell lung cancer and cachexia as compared to the placebo group [268]. Further, a
dosage of 100 mg of anamorelin administered for 24 weeks yielded improvements in body
weight and alleviated anorexia symptoms in patients with non-small-cell lung cancer or
gastrointestinal cancer associated with cancer cachexia [269]. Although anamorelin exhibits
promise as a therapeutic agent in combating cancer cachexia, its application and efficacy in
this context remain relatively limited. Further comprehensive research is indispensable to
uncovering the full spectrum of its effects as an anticancer therapy. A depiction of these
interventions was provided in Figure 3.
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Figure 3. Diagram illustrating potential dietary, nutritional, and pharmacological interventions to
combat cancer cachexia. BCAAs = Branched-chain amino acids, HMB = Hydroxymethylbutyrate, n-3
PUFAs = Omega-3 polyunsaturated fatty acids.

9.5. Gene Therapy

Gene therapy interventions have been collectively considered as a valuable approach
in treating or preventing diseases by modifying genes to correct genetic defects. In the
context of potential gene therapy for cancer cachexia, the aim is to modify the genes or
genetic mutations within cancer cells to ameliorate their growth. One noteworthy study
explored the use of recombinant adeno-associated viral vectors in a mouse model of cancer
cachexia. The approach led to a reduction in Smad2/3 signaling downstream of ActRIIB
and inhibited the expression of ubiquitin ligases MuRF1 and MAFbx [180]. Similarly en-
couraging results were observed from the introduction of a novel prototypic peptide called
Pen-X-ACIP. The systemic delivery of Pen-X-ACIP into C26 mice resulted in a preservation
of body weight and adipose tissue mass of the tumor-bearing mice [270]. Moreover, when
Pen-X-ACIP was administered to human adipocytes, it decreased lipolysis, further support-
ing its potential as a gene therapy agent for cancer cachexia [270]. An innovative strategy
for future gene therapy research could involve targeting the ectodysplasin A2 receptor
(EDA2R). The activation of EDA2R signaling in tumor-bearing mice was found to promote
skeletal muscle atrophy, while its deletion protected mice from muscle loss and functional
decline [271]. Thus, targeting EDA2R may hold promise in the prevention of muscle loss in
the progression of cancer cachexia. The potential gene therapy interventions in treating
cancer cachexia discussed in this section may provide valuable insights for future research
to delve deeper into promising approaches for addressing the issues of body weight and
muscle mass loss associated with the progression of cancer cachexia.

9.6. Anti-Inflammatory Treatment

Within the realm of multimodal strategies for combating cancer cachexia, notable
anti-inflammatory agents that target pro-inflammatory mediators hold promise in ame-
liorating this catabolic condition. These strategies work by inhibiting the production of
pro-inflammatory cytokines, specifically TNF-α and IL-6 [272]. One such anti-inflammatory
agent is the administration of thalidomide [273], which has demonstrated positive effects
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on body weight and appetite enhancement. In a previous study, the administration of
200 mg of thalidomide resulted in an average weight gain of 0.37 kg and an increase of
1.0 cm3 in arm muscle mass compared to the placebo group [274]. Similarly, oral adminis-
tration of thalidomide (50 mg) in conjunction with megestrol acetate (160 mg) produced a
significant improvement in body weight, quality of life, appetite, grip strength, and fatigue
resistance, while substantially decreasing systemic TNF-α levels [272]. Notably, these im-
provements were more pronounced when both treatments were combined as compared to
megestrol acetate administration alone [272,275]. Also, when anti-IL-6-antibody drugs were
implemented in non-small cell lung cancer patients, there were significant improvements
in anemia, cancer-associated cachexia, and fatigue resistance [276]. One such anti-IL-6
treatment, celecoxib, evaluated in clinical trials for cancer cachexia, produced remarkable
improvements in lean body mass and grip strength [277]. While these anti-inflammatory
agents targeting TNF-α and IL-6 have shown some positive results, further research is
needed to fully understand their clinical efficacy in treating cancer cachexia.

9.7. Exercise Interventions
9.7.1. Endurance Exercise Training

Exercise interventions have emerged as a pivotal strategy to counteract the detrimental
impacts of cancer-induced muscle wasting. The empirical body of evidence on the efficacy
of exercise interventions on cancer cachexia encompasses diverse approaches involving
varying exercise types, intensities, and durations. A prevalent mode of low-intensity skele-
tal muscle engagement is aerobic exercise training, which has demonstrated a capacity to
protect muscle mass in tumor-bearing mice [162,278–282]. Notably, in one study, even a
solitary session of aerobic exercise through a treadmill exercise regimen triggered improved
metabolic signaling, consequently contributing to improved muscle mass and physical func-
tionality in tumor-bearing mice [283]. This principle extends to longer-term interventions,
such as an 8-week treadmill running protocol conducted thrice weekly for 44 min at a range
of 55–65% of VO2 max. This regimen was shown to result in noteworthy enhancements in
VO2 max, maximal running speed, and a reduction in tumor cell proliferation and tumor
growth in Walker 256 tumor-bearing mice compared to a sedentary control group [284].

Parallel findings underscore the ability of moderate-intensity treadmill running to
counteract the deleterious effects of IL-6-induced mitochondrial remodeling and proteolysis
even amidst high systemic IL-6 levels [285]. Translating these insights to human exercise
protocols, the American College of Sports Medicine (ACSM) recommends that cancer
patients should participate in at least 150 min of moderate or 75 min of vigorous exercise
each week [286]. Although this recommendation serves as a foundational guideline for
implementing aerobic exercise in cancer cachexia patients, it should be adapted to individ-
ual circumstances. However, the current exercise framework for cancer cachexia patients
remains relatively constrained due to the scarcity of human randomized controlled trials
and controlled trials specifically targeting cachectic symptoms [287]. This dearth of trials
might be attributed to the relatively recent establishment of the international consensus
framework for cancer cachexia [20] or the rapid progression of the condition that hinders
well-designed studies. In exploring the link between inflammation and cachexia-induced
muscle wasting, studies have shown that moderate-intensity endurance exercise can down-
regulate TNF-α, which plays pivotal roles in inflammation onset and regulation [288].
Similar results have been observed in cancerous mice, indicating the potential of aerobic
exercise to decrease TNF-α expression in cachexic mice [289,290].

Research by Re Cecconi et al. explored the prospect that aerobic exercise prompts
skeletal muscle to secrete myokines that could serve to combat cachexia. Their microarray
analysis identified myokines including amphiregulin (AREG), natriuretic peptide precursor
B (NppB), musclin, and fibroblast growth factor 18 (FGF18) as prominently induced by
PGC-1α, which play a role in maintaining skeletal muscle and body fat [291]. Particularly,
musclin demonstrated a significant correlation with PGC-1α expression in C26-bearing
mice, suggesting its potential role in ameliorating muscle loss among patients unable to
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exercise [291]. In vivo research models have consistently demonstrated that aerobic exercise
can help preserve muscle mass and function while reducing inflammation [291–294]. This
was corroborated by a study that utilized aerobic training, which not only attenuated muscle
wasting but also decreased tumor volume, mitigating levels of inflammatory markers such
as the IL-10 and TNF-α ratio, along with IL-15 expression in skeletal muscle, in 4T1 cachectic
breast cancer mice [197]. The culmination of these studies underscores the potential of
aerobic exercise to counteract the progression of muscle wasting and weight loss in cachexia.
Collectively, exercise interventions present a compelling avenue to address the challenges
posed by cancer-induced muscle wasting, particularly through modes such as aerobic
training, which hold promise in maintaining muscle mass, curbing inflammation, and
fostering improved clinical outcomes in cancer cachexia.

9.7.2. Resistance Exercise Training

Resistance exercise training has been established as a potent anabolic stimulus and
could be considered a promising interventional strategy to combat cancer cachexia although
the results from previous studies have been somewhat inconclusive. Investigations into
resistance exercise protocols have utilized methods such as ladder climbs or electrical
stimulation in rodent models [295,296] to replicate the effects of mechanical loading in
humans. Notably, research by Testa and colleagues demonstrated that a ladder climbing
protocol for resistance training led to decreased muscle atrophy in both the extensor
digitorum longus and soleus muscles in tumor-bearing mice, which was attributed to the
prevention of STAT3 phosphorylation, a reduction in IL-6, and decreased muscle lipid
peroxidation mitigating loss of muscle strength, locomotion, and exploration capacity [297].
Similarly, electrical stimulation mimicking anabolic adaptations to resistance exercise in
skeletal muscle was shown to attenuate cachexia-induced muscle wasting and protein
depletion in tumor-bearing mice [298]. Despite these findings, the use of resistance exercise
training as a countermeasure for cancer cachexia both in human and murine models
remains limited. Alternative approaches, such as electric stimulation, have shown some
promise in addressing muscle load and weakness associated with cachexia. Therefore,
further research is needed to explore the potential of resistance exercise training, including
methods such as weighted ladder climbs and electrical stimulation to mitigate the effects of
muscle wasting associated with cancer cachexia.

During the progression of cancer cachexia, crucial signaling and metabolic pathways
responsible for protein synthesis tend to be downregulated, leading to muscle loss [299].
Resistance exercise training can potentially counteract this decline by boosting protein
synthesis and activating the mTORC1 pathway in patients with pancreatic cancer-induced
cachexia [300]. Interestingly, when mTORC1 signaling is impaired due to cancer cachexia, a
significant reduction (57%) in the protein synthesis rate occurs [301]. However, reactivation
of the mTORC1 pathway in cachectic animals has been shown to partially reverse the loss
of muscle mass and strength by 15–20% [301]. These findings underline the potential of
resistance exercise training to counteract impaired protein synthesis and muscular strength
in cancer cachexia patients.

9.7.3. Concurrent Exercise Training

In terms of protein degradation in cancer cachexia, certain exercise programs have
shown promise. For example, a treadmill-running protocol inhibited muscle mass loss
in tumor-bearing mice through the suppression of the ubiquitin-proteasome pathway,
enhancing hypoxia-inducible factor-1 alpha (HIF-1α) and phosphorylated 5′ adenosine
monophosphate-activated protein kinase (AMPK), and prevented the deactivation of the
mTOR pathway in the soleus muscle [302]. Comparable adaptations were noted in another
study in which motorized wheel running led to the downregulation of distinct muscle pro-
teolysis markers [F-box only protein 32 (Fbxo32), Trim63, MuRF1 and beclin-1] and partially
restored autophagy with improved mitochondrial function, which in turn counteracted the
decline in muscle mass and strength in C26 tumor-bearing mice [279].
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Concurrent exercise training, which combines both aerobic and resistance training, is
recommended as a safe and effective intervention to improve the quality of life for cancer
patients throughout their treatment journey and even after cancer treatment [299,303–305].
Accumulating evidence suggests that the integration of both training modalities can yield
notable benefits, fostering improvements in muscle mass and function. This may be
achieved through mechanisms such as autophagy modulation and enhanced mitochondrial
function, as evidenced in animal models [282]. Indeed, Wood et al., demonstrated that
the combination of aerobic exercise and resistance exercise training can lead to significant
reductions in systemic inflammation as indicated by lower spleen mass and plasma IL-6
levels in BALB/c mice [306]. In human cancer patients, a combination exercise protocol
enhanced type II muscle fibers and the strength of the knee and elbow muscles while regu-
lating the markers related to autophagy, the UPS system (FOXO3, MuRF1, Atrogin-1), and
protein synthesis (mTOR, 3EBP1, S6rp) during chemotherapy and cancer cachexia [307].
It can be surmised that different exercise modalities seem to be effective in addressing
protein degradation and the accelerated muscle wasting in cancer cachexia. In addition,
Herrero and colleagues demonstrated that an 8-week program involving combined car-
diorespiratory and resistance exercise training produced substantial enhancements in peak
oxygen uptake (VO2 peak), strength, sit–stand test performance, and overall quality of life
in breast cancer survivors [308]. Although the existing literature on the synergistic effects
of concurrent aerobic exercise and resistance training remains limited, their potential is
evident. Future research endeavors are necessary to delve deeper into this approach and
establish its robustness in addressing key concerns associated with cancer cachexia.

10. Conclusions

Defining the profile of cachectic patients on both the molecular and clinical levels is
an essential endeavor for delivering optimal and tailored treatment. Despite the elusive
nature of the factors that impede progress in cancer cachexia improvement, adopting mul-
tifactorial treatment approaches holds the potential for significant clinical advancements
in managing this metabolic syndrome among cancer patients. In the realm of clinical
care, the effective implementation of a multimodal treatment hinges upon identifying the
specific phase or stage in which a patient may be categorized during the cancer progres-
sion. This identification can serve as a catalyst for crafting a comprehensive treatment
regimen encompassing exercise routines, nutritional support, and targeted administration
of pharmacological agents. These interventions must be accompanied by clearly defined
timepoints for periodic reassessment and evaluation, ensuring the continuous provision
of cancer cachexia care. Integrating the aforementioned nutritional supplements and
pharmacological agents with exercise interventions holds good prospects for countering
catabolic processes by either preventing or ameliorating the actions of cachexia-inducing
mediators. Future investigations are imperative for establishing the clinical efficacy of
these proposed countermeasure tactics and engineering a readily applicable therapeutic
intervention poised for seamless translation into clinical practice, thereby addressing the
pressing unmet medical necessity in cancer cachexia treatment.
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