Supplemental Methods

General chemistry methods

LC/MS method section. Reagents and solvents were purchased from commercial vendors and were of
the highest purity available and used without further purification unless otherwise noted.
Qualitative/quantitative analysis was performed by reverse phase UHPLC using a Prominence 20 UFLCXR
system (Shimadzu, Columbia, MD) with a Waters (Milford, MA) ACQUITY UPLC BEH C18 column

(2.1 x 100 mm, 1.7 um particle size) maintained at 55 °C and a 20 min aqueous acetonitrile gradient, at a
flow rate of 250 puL/min. Solvent A was water with 0.1% formic acid and Solvent B was acetonitrile with
0.1% formic acid. The initial condition were 97% A and 3 % B, increasing to 45% B at 10 min, 75% B at 12
min where it was held at 75% B until 17.5 min before returning to the initial conditions. The eluate was
delivered into an AB SCIEX TripleTOF™ 5600 System (QTOF) using a Duospray™ ion source (AB SCIEX,
Framingham, MA). Purities of assayed compounds were in all cases greater than 95%, as determined by
a Waters 2695 HPLC system (Waters, Milford, MA, U.S.A) with a Restek (Bellefonte, PA, U.S.A) HPLC C18
column (4.6 x 150 mm, 5 um particle size) and a Viva C18 guard cartridge (10 x 4.0 mm, 5 um particle
size) with a 10 pL of injection volume. The mobile phase solvent A was 0.1% formic acid in water, and
solvent B was 0.1% formic acid in acetonitrile. The gradient program was: 0-18 min, 5-45% B in A; 18-22
min, 45-90% B in A; 22-27 min, 90% B in A; 27-27.5 min, 90-5% B in A; 27.5-35 min, 5% B in A at a flow of
1 mL/min.

NMR method section. Each compound was dissolved in methanol-d4 or DMSO-d6. All NMR data
were acquired at 298 K on Bruker Avance NEO 600 MHz spectrometer (Bruker Biospin,
Rheinstetten, Germany) equipped with a 5 mm TCl cryoprobe. 1D H NMR spectra and a series
of 2D NMR spectra, including *H -*H TOCSY, *H -*H COSY, H -'H JRes, H -13C HSQC, and H -13C
HMBC, were recorded and processed as previously described with some modifications.>® The H
and 13C chemical shifts were referenced to deuterated solvent residual proton signal at 3.31 ppm
and 13C signal at 49.5 ppm in methanol-d4, respectively and at 2.50 ppm and 39.5 ppm in DMSO-
d6, respectively. Coupling constants (J value) are reported in Hz. Spin multiplicities are described
as s (singlet), br (broad singlet), d (doublet), t (triplet), and m (multiplet).
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Scheme 1. Synthesis of indolimines

Indolimine-200, indolimine-214, and indolimine-248 were synthesized as shown in Scheme 1.

Synthesis of (E)-1-(1H-indol-3-yl)-N-isobutylmethanimine (Indolimine-200) (3):
Indol-3-carboxaldehyde 1 (500 mg, 3.44 mmol) and isobutylamine 2 (1.5 eq, 377 mg, 5.16
mmol) were dissolved in anhydrous ethanol (50 mL). Molecular sieves (5 g) were added, and
the reaction mixture was refluxed for 7-8 hrs until the aldehyde completely disappeared (TLC).
The reaction mixture was filtered through celite, and the excess isobutylamine was removed by
rotavaporation, and the product was dried in a high vacuum pump to obtain (indolimine-200) 3
(660 mg, yield 95%) as a brown viscous oil. The identity of indolimine-200 was confirmed by
nuclear magnetic resonance (NMR) and mass spectra analysis. *H-NMR (600 MHz, MeOD, 25
2C): 6 8.46 (s, 1H, N=CH), 8.08 (m, 1H, =CH), 7.70 (s, 1H, =CH-N), 7.41 (m, 1H, =CH), 7.19 (m, 1H,
=CH), 7.14 (m, 1H, =CH), 3.40 (dd, J = 6.72 Hz, 1.16 Hz, 2H, CH2), 1.99 (m, 1H, CH), 0.99 (d, J =
6.72 Hz, 6H, CH3); 3C-NMR (150 MHz, MeOD, 25 °C): § 158.78, 139.2, 131.45, 127.07, 124.03,
121.97, 121.68, 115.5, 113.01, 70.7, 31.16, 21.1.

Synthesis of (E)-1-(1H-indol-3-yl)-N-isopentylmethanimine (Indolimine-214) (5):

Compound 5 was synthesized by following a similar experimental procedure as used above for
compound 3, starting from indol-3-carboxaldehyde 1 (500 mg, 3.44 mmol) and isopentylamine
4 (1.5 eq, 450 mg, 5.16 mmol). Indolimine-214 was characterized by NMR and mass spectra
analysis (brown viscous oil, 690 mg, yield 93%). 'H-NMR (600 MHz, DMSO-d6, 25 2C): § 11.43



(br, 1H, NH), 8.45 (s, 1H, N=CH), 8.19 (m, 1H, =CH), 7.72 (s, 1H, =CH-N), 7.41 (m, 1H, =CH), 7.15
(m, 1H, =CH), 7.08 (m, 1H, =CH), 3.52 (dt, J = 7.15 Hz, 1.1 Hz, 2H, CH2), 1.71 (m, 2H, CH2), 1.51
(g, J = 7.05 Hz, 1H, CH), 0.93 (d, J = 6.66 Hz, 6H, CH3); 3C-NMR (150 MHz, DMSO-d6, 25 2C): &
154.95, 136.83, 130.26, 124.94, 122.06, 121.4, 119.93, 114.4, 111.36, 59.24, 40.04, 25.09,
22.26.

Synthesis of (E)-1-(1H-indol-3-yl)-N-phenethylmethanimine (Indolimine-248) (7):

The experimental procedure used for synthesizing compound 7 was also the same as 3.
Compound 7 was prepared from indol-3-carboxaldehyde 1 (500 mg, 3.44 mmol) and
phenethylamine 6 (1.5 eq, 625 mg, 5.16 mmol) in ethanol. The excess phenethylamine was
removed by repeatedly washing the product with hexane and dried using a high vacuum pump
to afford indolimine-248 as a brown viscous oil, and it was characterized by NMR and mass
spectra analysis (760 mg, yield 88%). *H-NMR (600 MHz, MeOD, 25 2C): § 8.33 (s, 1H, N=CH),
8.05 (m, 1H, =CH), 7.64 (s, 1H, =CH-N), 7.4 (m, 1H, =CH), 7.248 (m, 2H, =CH), 7.247 (m, 2H, =CH),
7.19 (m, 1H, =CH), 7.157 (m, 1H, =CH), 7.13 (m, 1H, =CH), 3.80 (dt, J = 7.3 Hz, 1.1Hz, 2H, CH2),
2.99 (t, J = 7.3 Hz, 2H, CH2); 13C-NMR (150 MHz, MeOD, 25 C): § 159.16, 141.36, 139.03,
131.39,130.3,129.47, 127.2, 126.96, 123.9, 121.9, 121.61, 115.44, 112.89, 64.15, 39.01.



Compound name Formula lonization mode Exact mass LOD (nM)
Indolimine-200 C13H16N2 Positive 200.1313 1
Indolimine-214 C14H18N2 Positive 214.1469 1
Indolimine-248 C17H16N2 Positive 248.1313 1
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Figure S1. Identification of synthetic indolimines by LC-MS/MS. A, Overview of LC-MS/MS parameters of
indolimines. B, Extracted ion chromatograms (EICs) of indolimines. C, Fragmentation annotations of the

indolimines.
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Figure S2. Conformation of the structure of indolimine-200 by NMR. (A) 1D *H spectrum of indolimine-
200 with assignments. (B) *H-'H TOCSY spectrum of indolimine-200 with signal assighments. (C) *H-H
COSY spectrum of indolimine-200 with signal assignments. (D) *H-'H JREs spectrum of indolimine-200
showing J-coupling patterns. (E) *H-3C HSQC spectrum of indolimine-200 and signal assignments. (F) *H-
13C HMBC (blue) and HSQC (red) spectrum of indolimine-200 and signal assignments.
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Figure S3. Conformation of the structure of indolimine-214 by NMR. (A) 1D *H spectrum of indolimine-
214 with assignments. (B) *H-'H TOCSY spectrum of indolimine-214 with signal assighments. (C) *H-H
COSY spectrum of indolimine-214 with signal assignments. (D) *H-'H JREs spectrum of indolimine-214
showing J-coupling patterns. (E) *H-13C HSQC spectrum of indolimine-214 and signal assignments. (F) *H-
13C HMBC (blue) and HSQC (red) spectrum of indolimine-214 and signal assignments.
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Figure S4. Conformation of the structure of indolimine-248 by NMR. (A) 1D *H spectrum of indolimine-
248 with assignments. (B) *H-'H TOCSY spectrum of indolimine-248 with signal assighments. (C) *H-H
COSY spectrum of indolimine-248 with signal assignments. (D) *H-'H JREs spectrum of indolimine-248
showing J-coupling patterns. (E) *H-3C HSQC spectrum of indolimine-248 and signal assignments. (F) *H-

13C HMBC (blue) and HSQC (red) spectrum of indolimine-248 and signal assignments.



Supplemental Table S1. Primer sequences utilized in qRT-PCR analysis.

Gene Forward sequence (5" —3°) Reverse sequence (5" —3°)
ACTB caccattggcaatgagcgattc aggtctttacggatatccacat
CYP1A1 acctcagcagccacctccaagat gaggtcttgaggccctgat
AHRR gtgcgaatcggaactgcatggaaa tcagtctgttccctgagcaccaaa
PARP7 gattctcaggagcacttggaaag tggtgtggacagccttgctagt
e agacagccactcaggtcttca ttctgccagtgcctctttactg

Supplemental Table S2. Computational Validation of the human AHR PAS-B domain model.

Active Site ANF Binding ANF Re-Docking
Model Cavity Test Ligand Energy Error
Volume (A3) (kcal/mol) ® RMSD (A)¢
Human AHR
PAS B domain 830 Indirubin 12.8 0.498
model
PDB: 7ZUB

a
Active site volume or cavity size (in angstroms) as calculated using the program Caver Web 1.0.

b o
Autodock Vina Binding Energy for Indirubin in a 30 A3grid centered on the PAS-B domain of the AHR (7SUB).

“ RMSD deviation for Indirubin re-docking solutions in structure-based models in Autodock Vina, as calculated
using LigRMSD. Models with a ligand re-docking RMSD error of less than 2.0 A are generally considered acceptable

for our docking protocol.




