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Abstract: Without early detection and treatment, chronic and excessive alcohol consumption can lead
to the development of alcoholic liver disease (ALD). With this in mind, we exploit the recent concept
of the liver–gut axis and analyze the serum profile of ALD patients for identification of microbiome-
derived metabolites that can be used as diagnostic biomarkers for onset of ALD. 1H-NMR was used
to analyze serum metabolites of 38 ALD patients that were grouped according to their Child–Turcotte–
Pugh scores (CTP): class A (CTP-A; 19), class B(CTP-B; 10), and class C (CTP-C; 9). A partial least
squares-discriminant analysis (PLS-DA) and a variable importance of projection (VIP) score were used
to identify significant metabolites. A receiver operating characteristic (ROC) curve and correlation
heatmap were used to evaluate the predictability of identified metabolites as ALD biomarkers. Among
42 identified metabolites, 6 were significantly correlated to exacerbation of ALD. As ALD progressed
in CTP-C, the levels of trimethylamine N-oxide (TMAO), malate, tyrosine, and 2-hydroxyisovalerate
increased, while isobutyrate and isocitrate decreased. Out of six metabolites, elevated levels of TMAO
and its precursors (carnitine, betaine, choline) were associated with severity of ALD. This indicates
that TMAO can be used as an effective biomarker for the diagnosis of ALD progression.

Keywords: alcohol-related liver disease; trimethylamine N-oxide; serum metabolites; multivariate
analysis; 1H-NMR

1. Introduction

Liver diseases can be caused by various risk factors such as alcohol consumption,
metabolic disorders, viral infection, abnormal immune functions, and genetic predisposi-
tion. Because of its global prevalence and high morbidity and mortality, liver disease is
considered as one of global health problems [1]. Chronic and excessive alcohol consumption
leads to alcoholic liver disease (ALD). ALD is characterized by fatty liver, inflammation,
steatosis, fibrosis, cirrhosis, alcoholic hepatitis, and hepatocellular cancer (HCC) [2]. Be-
cause the prognosis of ALD is an important factor for effective treatment, non-invasive
scoring classification systems have been developed, such as the Model for End-Stage Liver
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Disease (MELD) score, Child–Turcotte–Pugh (CTP) score, and Sequential Organ Failure
Assessment (SOFA) score [3].

Since the gut microbiome and its metabolites are strongly associated with human
health and several diseases, extensive research has been conducted to understand and
exploit this concept. Among these studies, one of the representative metabolites derived
from the gut microbiome is trimethylamine (TMA). TMA is produced in the gut from
precursors such as betaine, carnitine, and choline [4,5]. TMA is oxidized into Trimethy-
lamine N-oxide (TMAO) by flavin-dependent monooxygenases (FMOs) in the liver and
then released and circulated in the blood [6]. The increase in TMAO levels in the blood
is known to be associated with cardiovascular diseases and neurodegenerative diseases,
as well as non-alcoholic fatty liver disease (NAFLD) [7–9]. In addition, other important
microbial metabolites such as short-chain fatty acids (SCFAs) and branched-chain (BCAAs)
and aromatic (AAAs) amino acids. BCAAs have also been reported to be involved in the
development of diabetes and NAFLD [10]. Although a couple of studies have demon-
strated that the intestinal microflora plays an important role in the onset and progression of
ALD [11], the exact relationship between gut microbiome derived-metabolites and ALD is
still not fully understood. Thus, this paper focuses on the investigation of changes in serum
metabolite profile according to the progression of ALD in afflicted patients. This investi-
gation uses 1H-NMR metabolomic approach to identify significant metabolites which can
be used as biomarkers for diagnosis of ALD liver disease and help discriminate between
stages of ALD progression.

2. Materials and Methods
2.1. Patient Information and Data Collection

The present study was conducted on patients that received treatment for ALD between
September 2018 and May 2020 in International St. Mary’s Hospital of Catholic Kwandong
University in the Republic of Korea. All patients included in the study were over 19 years
old. ALD was defined as intake of chronic excessive alcohol (>50 g of alcohol per day) for
more than 6 months and having abnormal blood alanine aminotransferase (ALT), aspartate
transaminase (AST), and total bilirubin levels without other chronic liver diseases including
chronic hepatitis B, chronic hepatitis C, primary biliary cirrhosis, and Wilson’s disease [12].
Based on CTP (Child–Turcotte–Pugh) score, the baseline characteristics were sub-grouped
into CTP class A (CTP-A), CTP class B (CTP-B), and CTP class C (CTP-C). CTP was used as a
classification system for assessment of prognosis of patients with liver cirrhosis (LC) [13,14].
It incorporated five variables designed for designating the liver disease progression. The
variables include serum albumin, bilirubin, ascites, encephalopathy, and prothrombin
time. The score ranges for CTP were from 5 to 15. Patients with a score of 5 or 6 are
classified as CTP-A (well-compensated cirrhosis), those with a score of 7 to 9 have CTP-B
cirrhosis (significant functional compromise), and those with a score of 10 to 15 have CTP-C
cirrhosis (decompensated cirrhosis). The baseline characteristics were expressed as mean
± standard deviation for continuous variables or as percentages for categorical variables.
The significance of differences in continuous variables among three groups was analyzed
using ANOVA test. The significance of differences in categorical variables was determined
using a chi-square test (Table 1).

2.2. 1H Nuclear Magnetic Resonance (1H NMR)

Serum samples of a total of 38 patients were collected and preserved at −80 ◦C
until required. For 1H NMR experiment, the frozen serum samples were thawed using a
water bath and thoroughly mixed using a vortex mixer. Then, 500 µL of each sample was
transferred to a 10 kDa Amicon® Ultra-0.5 Device (Milli-pore, Burlington, MA, USA) and
centrifuged at 4 ◦C and 13,000 rpm for 15 min to eliminate proteins from the serum. Once
protein filtering was completed, 300 µL of the resulting serum was combined with 300 µL
of PBS buffer (pH 7.4) in a 1.5 mL tube, while keeping the sample on ice. The mixture
was mixed well, and then, 600 µL of the sample was transferred into a 5 mm NMR tube
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for 1H NMR measurement using a Bruker 600 MHz spectrometer. The internal standard
was used with 0.05 mM of 3-(trimethylsilyl) propionic-2,2,3,3-d4 acid sodium salt (TSP) for
calibration of the chemical shift and quantification of metabolites.

2.3. 1H NMR Data Processing and Multivariate Statistical Analysis

The raw spectral data obtained from the 1H NMR experiment was phased, and the
baselines were manually corrected using Chenomx NMR Suite software (Version 8.6,
Edmonton, AB, Canada). With reference to the internal standard at 0.00 ppm, the 1H NMR
spectrum was divided into 235 integrated regions by binning the chemical shift to a width of
0.04 ppm, covering a range of 0.0–10.0 ppm. We disregarded the regions of δ 4.60–5.20 ppm,
which represented the residual signals of water. The binned data obtained from Chenomx
was then imported into the software SIMCA-P+ (version 15.0, Umetrics, Umeå, Sweden).
To minimize variations in concentration between samples, normalization by median was
applied with auto-scaling (mean-centering and division by the standard deviation of each
variable). Once the data were preprocessed, the Principal Component Analysis (PCA) was
initially performed as an unsupervised method to identify multivariate outliers and partial
least squares discriminant analysis (PLS-DA) was applied to cluster metabolites according
to CTP classification to understand the influence of detected metabolites on the liver
function. The model’s internal cross-validation was assessed through total variance (R2)
and predictive ability value (Q2), and the permutation test was conducted as an external
validation. The statistical significance of the predicted power of the PLS-DA model is given
by comparing the R2Y and Q2Y values of the original model with randomly permutated
models of Y data. Variable importance in the projection (VIP) represents the sum of squares
of the PLS-DA weight, considering both Y, which correlates with all responses, and X,
which is its projection. The VIP scores derived from the PLS-DA analysis were used to
identify the metabolites that have a significant impact on the clustering. Metabolites that
achieved values exceeding 0.7 were regarded as highly influential metabolites. Following
the identification of these influential metabolites, the concentration of each metabolite was
determined using relative intensity (RI), which is based on the peak area relative to the
internal standard of TSP. MetaboAnalyst (Version 4.0, http://www.metaboanalyst.ca/,
accessed on 15 October 2020) was employed to carry out one-way analysis of variance
(ANOVA), which was then followed by post hoc testing using Fisher’s least significant
difference (LSD) test.

2.4. Receiver Operating Characteristic (ROC) Curve and Heatmap Analyses

Receiver operating characteristic (ROC) curve analysis was conducted to evaluate the
predictive values of metabolites for ALD diagnostic biomarkers using MetaboAnalyst (Version
4.0). Reciprocal ROC analyses with three CTP classes were conducted to further evaluate
the consistency of the predictive values of selected metabolites. Pearson correlation heatmap
was also constructed to evaluate the clustering pattern of selected metabolites based on the
interquartile range (IQR) statistical analysis of using MetaboAnalyst (Version 4.0).

3. Results
3.1. Clinical Characteristics of the Study Population

A total of 38 patients were included in the present study, including 19 patients in
CTP-A, 10 patients in CTP-B, and 9 patients in CTP-C. The baseline characteristics of CTP
classification, obtained in the present study, are described in Table 1. The levels of albumin,
bilirubin, and international normalized ratio (INR), which are considered as important
criteria in CTP classification, were statistically different among patients in CTP classes.

http://www.metaboanalyst.ca/
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Table 1. Baseline characteristics of patients classified according to CTP classification. Continuous
variables are expressed as means and standard deviations and categorical variables are expressed as
numbers and percentages.

CTP-A
(n = 19)

CTP-B
(n = 10)

CTP-C
(n = 9) p-Value

Age (years) 55.5 (45–73) 51 (34–66) 51 (41–68) 0.36500
Gender (Male) 17 (89.5) 9 (80.0) 6 (66.7) 0.34363
Hypertension 7 (36.8) 3 (30.0) 2 (22.2) 0.73352

Diabetes Mellitus 4 (21.1) 1 (9.1) 2 (5.3) 0.72398
Hyperlipidemia 3 (15.8) 1 (10.0) 1 (11.1) 0.88895

BMI (kg/m2) 23.6 (16.8–29.7) 21.9 (16.5–32) 23.1 (18.7–30.1) 0.64900
Stiffness (kPa) 11.0 (4.2–75) 48.4 (5.6–75) 44.6 (17.6–67.8) 0.06324
Total bilirubin

(mg/dL) 1.0 (0.4–4.0) 2.95 (0.8–20.6) 5.4 (1.2–38.1) 0.00017

Albumin (mg/dL) 3.6 (3.1–4.6) 2.95 (2.0–4.7) 2.5 (1.8–3.4) 0.00004
AST (IU/dL) 55 (14–3387) 76 (18–789) 89 (31–331) 0.57530
ALT (IU/dL) 46 (8–2835) 46.5 (10–2080) 26 (11–66) 0.62040

GGT (mg/dL) 218 (22–2760) 138 (22–884) 146 (16–477) 0.57350
Platelet (103/µL) 182 (54–372) 110 (55–247) 62 (20–139) 0.00203

INR 1.05 (0.89–1.55) 1.37 (0.98–1.91) 1.55 (1.31–2.26) 0.00005
Creatinine 0.92 (0.16–4.67) 0.72 (0.32–6.22) 0.77 (0.39–4.41) 0.55880

BMI: body mass index; AST: aspartate aminotransferase; ALT: alanine aminotransferase; GGT: gamma-glutamyl
transferase; INR: international normalized ratio.

3.2. Identification of Serum Metabolites in ALD Patients by 1H-NMR

In the present study, metabolites were identified by peak fitting with the Chenomx
database after the chemical shift calibration with TSP. A total of 42 metabolites were identi-
fied, with the majority belonging to primary metabolites, including one sugar, two sugar al-
cohols, two amines, 14 amino acids, and 23 organic acids, as described in Table 2. In Fisher’s
Least Significant Difference (LSD) test based on one-way analysis of variance (ANOVA),
IRs of six metabolites (TMAO, malate, isobutyrate, tyrosine, 2-hydroxyisovalerate, and
valine) of CTP-B and CTP-C were statistically different from those of CTP-A.

Table 2. Identification and quantitative comparison of serum metabolites between classes in ALD
disease progression. The chemical shift and the relative intensity (RI) representing the concentration
of each metabolite were shown as the mean and standard deviation.

HMDB Card Metabolites Chemical Shifts
(Multiplicities) (ppm)

CTP-A
Mean ± SD

CTA-B
Mean ± SD

CTA-C
Mean ± SD

HMDB0000042 Acetate 1.9 (s) 0.056 ± 0.019 0.051 ± 0.028 0.057 ± 0.026
HMDB0001310 Alanine 1.46 (q) 0.131 ± 0.033 0.137 ± 0.031 0.109 ± 0.025
HMDB0000517 Arginine 1.86 (m) 0.085 ± 0.027 0.070 ± 0.027 0.111 ± 0.057
HMDB0000168 Asparagine 2.86–2.94 (t) 0.043 ± 0.013 0.039 ± 0.013 0.041 ± 0.012
HMDB0000191 Aspartate 2.78–2.82 (dd) 0.041 ± 0.011 0.035 ± 0.010 0.038 ± 0.012
HMDB0000043 Betaine 3.26 (s), 3.90 (s) 0.527 ± 0.117 0.607 ± 0.174 0.714 ± 0.259
HMDB0000062 Carnitine 2.42–2.46 (m), 3.22 (s) 0.524 ± 0.092 0.579 ± 0.161 0.603 ± 0.227
HMDB0000619 Cholate 0.70 (s) 0.017 ± 0.007 0.015 ± 0.004 0.019 ± 0.007
HMDB0000097 Choline 3.18 (s), 3.50 (dd) 0.317 ± 0.089 0.355 ± 0.121 0.380 ± 0.169
HMDB0000134 Fumarate 6.50 (s) 0.012 ± 0.005 0.013 ± 0.003 0.013 ± 0.005

HMDB0000122 Glucose 3.38 (dd), 3.50 (dd),
3.70–3.72 (m), 3.82–3.86 (m) 2.024 ± 0.627 2.245 ± 0.781 2.501 ± 1.179

HMDB0003339 Glutamate 2.02–2.06 (m), 2.34 (m) 0.100 ± 0.033 0.087 ± 0.027 0.095 ± 0.047
HMDB0000641 Glutamine 2.14–2.18 (m), 2.42 (m) 0.188 ± 0.037 0.191 ± 0.048 0.199 ± 0.058
HMDB0000131 Glycerol 3.54 (dd), 3.66 (dd), 3.78 (m) 15.206 ± 2.789 14.336 ± 2.420 14.926 ± 2.274
HMDB0000123 Glycine 3.54 (s) 5.149 ± 0.690 4.906 ± 0.664 5.067 ± 0.487
HMDB0000138 Glycocholate 0.74 (s), 0.90(s) 0.072 ± 0.019 0.063 ± 0.016 0.075 ± 0.016
HMDB0000128 Guanidoacetate 3.78 (s) 4.355 ± 1.105 3.960 ± 0.748 4.179 ± 0.663
HMDB0000177 Histidine 7.22 (s), 8.3 (s) 0.031 ± 0.009 0.030 ± 0.005 0.029 ± 0.007
HMDB0000011 3-Hydroxybutyrate 1.18–1.22 (d), 2.3 (dd) 0.132 ± 0.100 0.079 ± 0.035 0.183 ± 0.198
HMDB0000407 2-Hydroxyisovalerate 0.82 (d) 0.020 ± 0.013 0.030 ± 0.017 a 0.036 ± 0.012 a
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Table 2. Cont.

HMDB Card Metabolites Chemical Shifts
(Multiplicities) (ppm)

CTP-A
Mean ± SD

CTA-B
Mean ± SD

CTA-C
Mean ± SD

HMDB0011631 3-Hydroxykynurenine 7.42–7.48 (dd) 0.030 ± 0.007 0.028 ± 0.008 0.037 ± 0.012
HMDB0001873 Isobutyrate 1.02–1.04 (d) 0.085 ± 0.021 0.061 ± 0.015 a 0.066 ± 0.018 a

HMDB0000193 Isocitrate 2.50–2.54 (dd), 2.96–3.06 (m) 0.084 ± 0.012 0.088 ± 0.028 0.110 ± 0.016
HMDB0000172 Isoleucine 0.90–0.93 (t), 1.26 (m) 0.074 ± 0.022 0.062 ± 0.015 0.074 ± 0.016
HMDB0000190 Lactate 1.30 (d), 4.10 (q) 0.565 ± 0.129 0.710 ± 0.229 0.622 ± 0.204
HMDB0000687 Leucine 0.94 (m), 1.66–170 (m) 0.126 ± 0.042 0.103 ± 0.031 0.108 ± 0.038

HMDB0000182 Lysine 1.7 (m), 1.86–1.94 (m),
3.02 (t) 0.211 ± 0.066 0.191 ± 0.064 0.254 ± 0.067

HMDB0000156 Malate 2.66 (dd) 0.038 ± 0.008 0.041 ± 0.009 a 0.051 ± 0.008 a

HMDB0001875 Methanol 3.34 (s) 0.062 ± 0.018 0.058 ± 0.022 0.064 ± 0.015
HMDB0000001 1-Methylhistidine 3.10 (dd), 7.78 (s) 0.045 ± 0.014 0.053 ± 0.015 0.056 ± 0.007
HMDB0000208 2-Oxoglutatate 2.43–2.46 (t), 2.98–3.0 (t) 0.082 ± 0.019 0.081 ± 0.017 0.078 ± 0.019
HMDB0000786 Oxypurinol 8.26(s) 0.016 ± 0.006 0.014 ± 0.004 0.016 ± 0.003
HMDB0000159 Phenylalanine 7.3 (m), 7.42 (m) 0.054 ± 0.010 0.055 ± 0.013 0.063 ± 0.014
HMDB0000162 Proline 2.20 (m) 0.103 ± 0.030 0.089 ± 0.021 0.118 ± 0.036
HMDB0000243 Pyruvate 2.38 (s) 0.042 ± 0.015 0.034 ± 0.008 0.049 ± 0.031
HMDB0000187 Serine 3.94–3.98 (dd) 0.078 ± 0.037 0.081 ± 0.027 0.083 ± 0.039
HMDB0000254 Succinate 2.39–2.42 (t) 0.077 ± 0.013 0.076 ± 0.020 0.081 ± 0.021
HMDB0000251 Taurine 3.26 (t), 3.42 (t) 0.582 ± 0.133 0.682 ± 0.207 0.822 ± 0.352
HMDB0000906 TMA 2.90 (s) 0.025 ± 0.007 0.022 ± 0.009 0.025 ± 0.007
HMDB0000925 TMAO 3.26 (s) 0.201 ± 0.035 0.246 ± 0.064 a 0.316 ± 0.095 a

HMDB0000158 Tyrosine 6.90 (ddd), 7.18 (ddd) 0.053 ± 0.009 0.061 ± 0.024 a 0.073 ± 0.016 a

HMDB0000883 Valine 0.98 (m), 0.99–1.02 (dd),
2.26 (m) 0.235 ± 0.076 0.163 ± 0.032 a 0.190 ± 0.093 a

HMDB: Human Metabolome Database; a statistically different from CTP-A in LSD test with p-value < 0.05.

3.3. Multivariate Analyses of Serum Metabolite Data from ALD Patients According to
CTP Classes

The multivariate statistical methods such as an unsupervised PCA and a supervised
PLS-DA analysis have been widely used in metabolomic studies for the pattern recognition
and the prediction of diagnostic biomarkers. Based on the 1H-NMR data, we performed
PCA and PLS-DA analyses to identify metabolites associated with the corresponding CTP
class. The results of PCA score plot (Supplementary Figure S1) showed the separation
of partial overlaps based on principal component 1 (PC1), which explained 27.3% of the
variance. As compared with PCA score plot, PLS-DA score plot showed a clear separation
among CTP classes (Figure 1A). In addition, PLS-DA loading plot analyses showed six
important metabolites (TMAO, 2-hydroxyisovalerate, tyrosine, malate, isocitrate, and
isobutyrate) contributing to the CTP class separation (Figure 1B). We used the VIP score
value in PLS-DA loading plot to identify these crucially important metabolites of the CTP
class separation (Supplementary Table S1). For the VIP 1.4 score value of loading plot, the
permutation test was performed 999 times, and the optimized parameters were selected by
using the R2Y (0.621) and Q2Y (0.539) values (Supplementary Table S2). Based on the results
of the separation of the CTP class in ALD liver disease progression with a VIP score cut-off
value of 1.4, six metabolites (TMAO, malate, isobutyrate, tyrosine, 2-hydroxyisovalerate,
isocitrate) were associated with the separation of metabolites among CTP classes.
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Figure 1. (A) PLS-DA score plot of serum samples of CTP-A, CTP-B, and CTP-C based on the CTP
classification of ALD disease progression. (B) PLS-DA loading plot of serum metabolites in ALD.
The two components (W*c [2]/W*c [1]) explain the separation among classes. Metabolites which are
important in separation among CTP classes are highlighted in red with VIP score cut-off value of 1.4.
The loading plot is complementary to the score plot and summarizes how the X-variables relate to
each other as well as to group belonging (Y-variable symbolized by a class dot). X-variables located
near a class dot are positively associated with that class.

To evaluate the predictive values of six influential metabolites (TMAO, malate, isobu-
tyrate, tyrosine, 2-hydroxyisovalerate, isocitrate) in the PLS-DA loading plot analyses, the
reciprocal ROC curve analyses were performed with three CTP classes in ALD disease pro-
gression. In the ROC comparison between CTP-A and CTP-C, the six metabolites identified
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in loading plot analyses with a VIP score cut-off value of 1.4 were also predicted as potential
biomarkers with the area under the ROC curve (AUC) values ranging from 0.833 to 0.871
(Figure 2 and Supplementary Table S3). As a result, the six metabolites that are identified
from both the loading plot and ROC analyses were TMAO, malate, iso-butyrate, tyrosine,
2-hydroxyisovalerate, and isocitrate, which can be considered as potential biomarkers in
ALD liver disease progression. Although these metabolites were not predictive in the ROC
comparison between CTP-B and CTP-C, they were also ranked as relatively important
in the ROC comparison between CTP-A and CTP-B (Tables S4 and S5). As a result, con-
sidering the results of both the loading plot analyses and ROC curve analyses, these six
metabolites can be considered as potential biomarker candidates of metabolic changes in
the liver disease progression of ALD.
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predicting the liver disease progression in AUC analyses between CTP-A and CTP-C. For each
metabolite, the left side is ROC curve graph, and the right side is the boxplots of log-transformed RI
of CTP-A (boxplot in green) and CTP-C (boxplot in red).
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To identify metabolites can be correlated with these six metabolites (TMAO, malate,
isobutyrate, tyrosine, 2-hydroxyisovalerate, and isocitrate) in the metabolic process of
liver disease progression, we used a correlation matrix heatmap construct by clustering
a total of 42 metabolites identified in the present study using supervised hierarchical
clustering (Figure 2). The two clusters related with TMAO and isobutyrate were found to
be statistically significant (p < 0.005 and p < 0.01, respectively). The metabolites correlated
with TMAO in Cluster 1 were carnitine, taurine, betaine, glucose, and choline. Leucine
and valine were correlated with isobutyrate in Cluster 2 in Figure 3. Like TMAO, the
concentration of TMAO precursors, including carnitine, betaine, and choline (all of them
are metabolites related with intestinal environment), also increased.
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4. Discussion

Although alcohol abuse is generally considered as a psychiatric disorder, alcoholism is
closely related to dysbiosis in the gut microbiome [11]. For example, excessive alcohol con-
sumption reduces the population of beneficial commensal bacteria such as Bifidobacterium
and Lactobacillus. Alcohol also decreases the intestinal levels of long-chain fatty acids, which
are used by commensal gut microbiota as their main energy source [15,16]. On the other
hand, several studies have suggested that the intestinal microbiome and its metabolites can
also play an important role as biomarkers for the diagnosis of liver disease progression [17].
Without early detection, chronic alcohol consumption significantly contributes to the onset
and progression of severe liver diseases such as ALD and HCC. Recently, several studies
have focused on the identification of key metabolites which can be used to diagnose the
progression of liver diseases such as NAFLD, nonalcoholic steatohepatitis (NASH), LC,
and HCC for diagnosis and treatment. However, analysis of key metabolites present at
early stages and progression of ALD has not been conducted.

Thus, in this study, we focused on the analysis of serum metabolic profiles related
to ALD liver disease progression in 38 patients. The patients were grouped into three
groups according to their respective CTP classification. Based on the PLS-DA modeling, we
calculated VIP scores for comparison of metabolite levels and identification of metabolites
that highly contribute to CTP class discrimination. Significant metabolites observed include
TMAO, malate, isobutyrate, tyrosine, 2-hydroxyisovalerate, and isocitrate. These six
metabolites were strongly associated with the progression of ALD (Figure 1). These
metabolites were also found to be important according to ROC analyses, which evaluated
whether these six metabolites can be used as diagnostic biomarkers for the progression of
ALD (Figure 2).

Among the six significant metabolites, TMAO was deemed to be of most interest
because it is representative of gut microbiome-derived metabolites. TMAO is produced
by the oxidation of TMA, which is derived from the main TMAO precursors, choline,
betaine, and carnitine. In the present study, the progression of ALD was strongly associated
with elevated levels of TMAO and its precursors. Several studies have indicated that
serum levels of TMAO are correlated to changes in the gut microflora, diet, and FMO
activity. On the other hand, elevated levels of TMAO have also been reported to indicate
the onset of diseases related to neurodegenerative, cardiovascular, and liver systems. Thus,
TMAO is considered as an important biomarker and a new therapeutic target for many
associated diseases [6,18–20]. For example, Chen et al. [19] found that increased plasma
TMAO levels were correlated with the severity of NAFLD in humans. On the other hand,
Dumas et al. [20] also showed that increased urinary excretion of methylamines, such as
TMA, TMAO, and dimethylamine, was linked to the development of NAFLD in mice. In
the case of ALD in the present study, we found that the level of serum TMAO significantly
increased as classification shifted from CTP-A to CTP-C. This suggests that TMAO levels
are highly correlated with the progression of ALD (Figure 1B and Table 1).

On the other hand, the concentration of isobutyrate dramatically decreased as classi-
fication shifted from CTP-A to CTP-C in the present study (Figures 2 and 3). Isobutyrate
is another important microbial metabolite derived from SCFAs (acetate, propionate, and
butyrate). SCFAs regulate a variety of biological functions including glucose and lipid
metabolism and immune function in the liver. These biological activities are mediated by
the activation of G-protein coupled receptors and inhibition of histone deacetylase [21].
For example, a clinical study demonstrated that the supplementation of propionate to the
colon reduced weight gain and intrahepatocellular lipid content [22]. In another study,
Zhou et al. [23] found that butyrate produced by the probiotic Clostridium butyricum B1
significantly attenuated high-fat diet-induced obesity and steatohepatitis and restored
enterohepatic immune disorder in mice. SCFAs are considered as beneficial prebiotics that
improve health. However, in contrast to previous reports, Singh et al. [24] demonstrated
that a decrease in levels of intestinal SCFAs was associated with the prevention of HCC.
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Thus, further studies are needed to confirm the relationship between levels of SCFAs and
the progression of ALD liver disease.

A heatmap analysis of the metabolite–metabolite correlation matrix identified metabo-
lites that clustered according to the CTP classification or progression of ALD. Interestingly,
Cluster 1 includes TMAO precursors (betaine, carnitine, choline), which indicates a positive
correlation with TMAO. There are conflicting opinions regarding the effect of carnitine,
betaine, and choline on liver diseases. Most studies have suggested that a higher intake or
higher plasma levels of carnitine, betaine, and choline may improve fatty liver and liver
damage, including NAFLD [25,26]. However, intake of carnitine, betaine, and choline
can elevate TMAO levels, which increases the risks of developing associated diseases [27].
Our results suggest that the elevated levels of TMAO and its precursors in the serum are
associated with the progression of ALD. This indicates that increased levels of TMAO
precursors may contribute to advanced progression of ALD (Figures 2 and 3).

Meanwhile, it was observed that isobutyrate decreased together with BCAAs valine
and leucine in Cluster 2 (Figure 3). Lower levels of isobutyrate may be attributed to
decreased abundance of SCFA-producing bacteria in the gut because of alcohol-induced
gut microbiome dysbiosis. On the other hand, BCAAs are considered as essential nutrients
because of their involvement in energy and muscle metabolism and in stress management.
Several studies assigned valine as a biomarker for Alzheimer’s disease [16], colorectal
cancer [17], and Crohn’s disease [23,28]. In this study, the lower levels of BCAAs may
be due to ammonia detoxification and increased activity of branched-chain keto acid
dehydrogenase. This phenomena has been associated with diseases such as cirrhosis, urea
cycle disorder, and chronic renal failure [29]. Lower levels of BCAAs are characteristic of
advanced liver disease, and long-term supplementation of BCAAs can be applied for an
improvement of liver function and reduction of cirrhosis in afflicted patients.

5. Conclusions

In conclusion, we used the 1H-NMR metabolomics approach to profile serum metabo-
lites of ALD patients to identify metabolites which can be used as biomarkers for the
progression of ALD. Among 42 metabolites identified, six metabolites (TMAO, malate,
isobutyrate, tyrosine, 2-hydroxyisovalerate, and isocitrate) were statistically different be-
tween CTP classes and can be used to correlate the progression of ALD from CTP-A
to CTP-C, according to PLS-DA, VIP score, and ROC curve analyses. Therefore, these
metabolites can be used as biomarkers for the diagnosis of severity of ALD. TMAO is rec-
ommended as the best candidate to use as a biomarker because of the significant correlation
observed between elevated TMAO levels and its precursors (carnitine, betaine, choline)
during progression of ALD, and further studies are necessary to validate our results with
larger sampling based on CTP classification.
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