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Abstract: Metabolomic biomarkers hold promise in aiding the diagnosis and prognostication of
traumatic brain injury. In Canada, over 165,000 individuals annually suffer from a traumatic brain
injury (TBI), making it one of the most prevalent neurological conditions. In this pilot investigation,
we examined blood-derived biomarkers as proxy measures that can provide an objective approach to
TBI diagnosis and monitoring. Using a 1H nuclear magnetic resonance (NMR)-based quantitative
metabolic profiling approach, this study determined whether (1) blood-derived metabolites change
during recovery in male participants with mild to severe TBI; (2) biological pathway analysis re-
flects mechanisms that mediate neural damage/repair throughout TBI recovery; and (3) changes
in metabolites correlate to initial injury severity. Eight male participants with mild to severe TBI
(with intracranial lesions) provided morning blood samples within 1–4 days and again 6 months
post-TBI. Following NMR analysis, the samples were subjected to multivariate statistical and machine
learning-based analyses. Statistical modelling displayed metabolic changes during recovery through
group separation, and eight significant metabolic pathways were affected by TBI. Metabolic changes
were correlated to injury severity. L-alanine (R= −0.63, p < 0.01) displayed a negative relationship
with the Glasgow Coma Scale. This study provides pilot data to support the feasibility of using
blood-derived metabolites to better understand changes in biochemistry following TBI.

Keywords: metabolomics; blood; traumatic brain injury; concussion; nuclear magnetic resonance
(NMR) spectroscopy; symptom burden; severity; recovery; precision medicine; rehabilitation; biologi-
cal pathways

1. Introduction

As the leading cause of death and disability worldwide, traumatic brain injury (TBI)
is the “silent epidemic” that afflicts millions of individuals annually [1]. TBI pathology is
characterized by two distinct phases. At first, TBI results in primary injury, or the sequelae
resulting from mechanical forces at the time of impact, leading to bruising, bleeding, and
tearing of fibers within the cranial tissue [2]. The delayed secondary injury phase provides
opportunities for therapeutic intervention. This phase is characterized by disturbances in
brain metabolism, which can lead to pathophysiological changes, such as neurodegener-
ation, and persistent physical, cognitive, and somatic symptoms [3]. As a prevalent and
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rising health issue, TBI would benefit from more objective measures for its diagnosis and
treatment. An objective and quantitative blood biomarker could be an important adjunctive
tool for early diagnosis and could provide a window into the pathophysiological processes
in the body. It would also offer the ability to assist in decision-making about the mode of
intervention that would most effectively optimize the personal potential for recovery. To
the authors’ knowledge, the current investigation represents the first attempt to identify
NMR-based serum metabolite markers that could serve as indicators of diagnosis and the
extent of recovery in TBI patients using a longitudinal model and human participants.

There have been many previous efforts to identify biomarkers with diagnostic and
prognostic potential, including S100B and glial fibrillary acidic protein (GFAP), which have
led to their use in a clinical setting for TBI diagnosis [4,5]. A metabolite biomarker in addi-
tion to these protein markers may further reinforce diagnostic testing accuracy. In an effort
to expand the repository for potential biomarkers, our team has shown that metabolites
in urine samples collected from athletes with concussion resulted in significantly distinct
metabolic profiles at baseline and post-injury [6]. Furthermore, urine and serum sample
analysis provided robust metabolic biomarkers for spinal cord injury (SCI) and TBI using
1H nuclear magnetic resonance (NMR) spectroscopy [7–9]. 1H NMR spectroscopy is espe-
cially amenable to detecting metabolic changes in the blood, as it can detect 49 compounds,
with 20 of these being unique to NMR [10]. Thus, 1H NMR spectroscopy is instrumental
to the rapidly growing field of metabolomics, whereby the metabolic fingerprint of an
individual is captured using endogenous small molecules within biological fluids [11]. In
addition, metabolomics studies have successfully identified biomarkers for neurological
disorders, including Alzheimer’s disease [12], multiple sclerosis [13], and Parkinson’s
disease [14].

The aim of the present study was to establish potential biomarker profiles for traumatic
brain injury that accurately reflect clinical symptom severity. In this prospective cohort
study, blood samples from male participants with mild to severe TBI were examined to
address the following objectives: (1) to determine metabolic differences in the initial (within
1–4 days post-injury) and 6 months post-injury metabolomics profiles; (2) based on the
list of significant metabolites, to reveal the underlying biochemical pathways; and (3) to
examine how these changes correlate to the severity of the injury.

2. Materials and Methods
2.1. Participant Characteristics and Study Design

This exploratory pilot prospective cohort study was nested in a larger study called
Understanding Neurological Recovery: The Role of Resting-state fMRI, Biomarkers, and
Robotics After TBI, Stroke, and SCI (UCAN Study), supported by the Hotchkiss Brain
Institute at the University of Calgary. The UCAN Study followed participants with TBI,
SCI, and stroke throughout their recovery trajectory from one week to 6 months post-
injury. Twelve participants with TBI were recruited through the Foothills Medical Centre,
Calgary. Patient demographics and injury characteristics were collected after obtaining
consent. Out of the twelve, eight male participants (Table 1; average age 45 +/− 18.4 years)
provided fasting morning (between 6 am and 9 am) blood samples at two different time
points: initially after TBI and again at approximately 6 months post-injury. The initial
sample collection was completed within 1–4 days following TBI (median = 2.5, interquartile
range = 1.25) and the 6-month time-point samples were collected within 184–312 days
following injury (median = 200, interquartile range = 24.5). Pairing the samples for this
within-subject control study minimizes the confounding factors, thereby increasing the
validity of the analysis to attribute changes in the metabolic profiles throughout recovery.
Whole blood samples were immediately centrifuged and spun down to isolate the serum,
and the serum samples were frozen, transported to the University of Lethbridge, and
stored in a −80 degrees Celsius freezer until NMR sample preparation and data acquisition.
This study was approved by the University of Calgary’s conjoint ethics board (ethics ID:
REB14-1017).
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Table 1. Participant characteristics (n = 8 males) indicating age, TBI type, initial Glasgow Coma Scale score, co-morbidities, medication use, days between TBI
and blood and clinical assessment collection at baseline and 6 months, and both the initial and 6 months post-injury Montreal Cognitive Assessment (MoCA) and
Functional Independence Measure (FIM) scores.

Participant
Code TBI Type Glasgow Coma

Scale Score Age Co-Morbidities Medications Blood Collection
(Days Post-Injury)

Clinical
Assessments (Days

Post-Injury)
MoCA FIM

Initial 6 Month Initial 6 Month Initial 6 Month Initial 6 Month

TBI_02 Frontal 3 18
Injury to right ear, right

fracture petrous temporal
bone

Tylenol 3 218 4 218 25 30 126 126

TBI_03 Frontal 10 49 Depression, asthma, EtOH
abuse

Docusate sodium, fentanyl,
lorazepam, phenytoin,

senokot, thiomine,
tobradex, multi-vits

1 312 20 312 23 26 113 122

TBI_07 SDH 6 18 None None 4 226 59 226 26 27 124 125

TBI_13 DAI-Left 13 64
Multiple face lacerations,

nasal fracture, liver
laceration, dental injuries

Acetaminophen, docusate
sodium, heparin,

quetiapine
4 200 33 200 20 27 112 121

TBI_19 SDH/SAH
Bifrontal 8 46 None Trazadone, testosterone,

seroquel 2 197 31 197 25 26 113 124

TBI_24 SDH/SAH 15 68

Chronic lower back pain,
liver laceration, bilateral
shoulder injuries, torn

right rotator cuff

None 3 198 70 198 21 23 126 123

TBI_26 SDH/SAH 14 48 None Tylenol 2 184 29 184 27 27 124 126

TBI_29 SAH-Right
Frontal 12 48

L2, L4, L5 fracture, sciatic
nerve damage, eczema,

history of smoking
Tylenol, baclofen, panoloc 2 NaN 16 NaN 23 23 115 122

Abbreviations: SDH = subdural hematoma, SAH = subarachnoid hemorrhage, DAI = diffuse axonal injury.
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2.2. Clinical Assessment

The Glasgow Coma Scale (GCS) was used to rate each participant’s initial TBI severity
and was determined within 24 h following injury (n = 2 severe, n = 3 moderate, n = 3
mild). The GCS measured eye opening on a scale of 1–4, the verbal response was scored
from 1–5, and motor responses were recorded with scores measured from 1–6, with higher
scores marking greater function [15]. The scores for each measure were summed to obtain
a final score that indicated severity within the following ranges: severe (GCS less than 8),
moderate (GCS 8–12), and mild (GCS 13–15).

The Montreal Cognitive Assessment (MoCA) and the Functional Independence Mea-
sure (FIM) were administered to determine both the injury severity and recovery [16,17].
The MoCA was assessed within 4–70 days after TBI (median = 30, interquartile range = 20.5)
and at 6 months (184–312 days) following injury (median = 200, interquartile range = 24.5).
The MoCA assessed short-term memory, visuospatial abilities, executive functions, and
language. A MoCA score below 26 indicates an impairment, while a score greater than or
equal to 26 is considered normal. The FIM is a global assessment of physical, social, and
psychological function. This assessment evaluates self-care, continence, mobility, transfers,
communication, and cognition. Each of the 18 items was rated on a scale from 1–7, with a
score of 1 indicating total dependence and a score of 7 indicating complete independence.
The total score is a value between 18 and 126 and suggests the level of function.

2.3. NMR Sample Preparation, Data Acquisition, and Processing

All the serum samples were processed for metabolite extraction in a containment level
2 (CL2) laboratory at the University of Lethbridge. The samples were slowly thawed on ice,
and 200 µL of each serum sample and 300 µL of buffer (4:1 ratio of 0.625 M K2HPO4:KH2PO4
in dH2O–pH 7.4, 3.75 mM NaN3, and 0.375 M KF) were pipetted into a 0.5 mL 3 kDa
centrifuge filter and centrifuged at 14,000× g for 30 min at 4 ◦C. Subsequently, 380 µL of the
filtrate (which contained the small molecule metabolites), 100 µL of buffer, and 120 µL of
0.02709% weight/volume D2O with trimethylsilyl propanoic acid (TSP) were pipetted into
a new microfuge tube and centrifuged at 12,000 rpm for 5 min at 4 ◦C. A total of 550 µL of
the supernatant was then transferred to an NMR tube to be loaded into the spectrometer.
The TSP in the D2O served as a chemical shift reference for the 1H NMR spectroscopy, and
all the centrifuge filters were washed 10 times with deionized water immediately prior to
use in order to remove the glycerol preservative from the filters.

A 700 MHz Bruker Avance III HD NMR spectrometer (Bruker Ltd., Billerica, MA,
USA) and a room-temperature TBO-Z probe were used to acquire the NMR data. Three-
dimensional and one-dimensional shimming experiments were conducted prior to NMR
data acquisition on the serum samples to correct for any inhomogeneities in the static mag-
netic field. In addition, the 90-degree pulse width was calibrated for each sample prior to
data acquisition. The data were acquired using a one-dimensional 1H Nuclear Overhauser
Effect Spectroscopy experiment with gradient-based water suppression (‘noesygppr1d’
pulse sequence) with a mixing time of 10 ms. The experiment was conducted using 128 k
data points, an acquisition time of 4.56 s, a recycle delay of 1 s, a constant receiver gain
across all experiments, 128 scans, and a sample temperature of 22 degrees Celsius. The data
were processed in Bruker TopSpin software (v. 3.5 pl7) using zero filling to 256 k points,
line broadening to 0.3 Hz, and automatic phase and baseline correction. The processed
NMR spectra were then exported as ASCII files.

2.4. Statistical Analysis

The ASCII files for each processed NMR spectra were imported into MATLAB (R2015b,
MathWorks, Natick, MA, USA) where they underwent dynamic adaptive binning [18],
followed by manual inspection and correction of the bins. In total, 246 bins were created
for this analysis, and the region corresponding to the water signal was excluded from the
final spectral bins. In addition, metabolite peaks near the water signal were only included
if they were baseline resolved from the water peak for all the spectra (i.e., peaks on the
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“tails” of the suppressed water peak were not included). This exclusion minimizes or
eliminates any effects that the water suppression method has on the quantification of
metabolites. The bins corresponding to each NMR spectra were normalized to the total
metabolome (sum or all bins for each spectrum), excluding the water region, Pareto-scaled,
and log-transformed [19–22]. The metabolite regulation reported (percent regulation) is
based on the changes in the normalized concentration of each metabolite (bin) using the
following formula:

6 month spost injury − initial(
6 month spost injury+initial

2

) × 100

Multivariate statistical analysis provided insights into whether metabolite signatures
could be used to discriminate between the initial and 6 months post-injury serum samples.
The metabolites of the strongest importance were classified based on Variable Importance
Analysis based on random Variable Combination (VIAVC) [23]. This MATLAB-based
machine-learning algorithm enabled the identification of significant metabolites based on
the Receiver Operator Characteristic (ROC) test and the subsequent Area-Under-the-Curve
(AUC) analysis [24]. It also employed a binary matrix resampling method, which is a
more robust method for randomly sampling the data, and all the multivariate supervised
models were double ten-fold cross-validated and underwent permutation testing using
2000 permutations [25]. Univariate statistical tests were also conducted using either a paired
t-test or a paired Wilcoxon–Mann–Whitney test in the case of parametric or non-parametric
data, respectively. To determine the parametricity of each bin, a Shapiro–Wilk test was
used [26].

To visualize supervised between-group and within-group separation, an orthogonal
projection to latent structures discriminant analysis (OPLS-DA) was performed. The
advantage of using OPLS-DA is that the model is rotated where class separation or between-
class, correlated variation is found in the first predictive component and within-class,
uncorrelated variation is seen in the orthogonal component [22]. Additionally, Principal
Components Analysis (PCA) was conducted, which illustrated the degree of unsupervised
separation. The OPLS-DA and PCA modelling, as well as the pathway topology analysis
outlined below, were carried out using MetaboAnalystR version 2.0.4 running inside R
version 3.5.3 [27].

Pearson R correlations were computed between the concentrations of blood-derived
metabolites and the Glasgow Coma Scale (GCS) scores. The 6 months post-injury normal-
ized concentrations were subtracted from the initial normalized concentrations to generate
the change in the metabolite concentration used in the correlations. A Bonferroni corrected
p-value, obtained by dividing α < 0.05 by the number of VIAVC F-ranked bins tested
for each analysis (α < 0.005), was used to obtain a more rigorous set of clinically relevant
metabolites [26]. The metabolites corresponding to significantly altered bins were identified
using a combination of resources: Chenomx 8.2 NMR Suite (Chenomx Inc., Edmonton,
Alberta, Canada), the Human Metabolome Database (HMBD) [28], and the Human Serum
Metabolome [10] containing a list of chemical classes of blood-based metabolites. Pathway
topology analysis was conducted using a hypergeometric test for over-representation anal-
ysis and relative-betweenness centrality for topology analysis. This analysis utilized the
complete list of significant metabolites, the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database, and the HMBD libraries [28,29] to provide the metabolic pathways that
have been potentially altered following TBI.

3. Results
3.1. Clinical Demographics

The number of participants with severe (n = 2), moderate (n = 3), and mild GCS (n = 3)
are summarized in Table 1. The majority of TBI participants displayed clinical improvement
in the MoCA and FIM scores after 6 months, with an average improvement of 2.375 ± 2.504
and 4.5 ± 5.127, respectively.
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3.2. Metabolomic Profiles Significantly Change over Time following TBI

Of the 246 bins created for this analysis, 41 and 3 bins were determined to be signif-
icantly altered by univariate (Paired t-test or Wilcoxon–Mann–Whitney test) or VIAVC
best subset, respectively. The metabolites corresponding to these bins are provided in
Table 2 and are ranked in order of significance according to the p-value obtained from the
paired t-test/Wilcoxon–Mann–Whitney analysis. The metabolites that were significant by
VIAVC best subset include 2-hydroxybutyrate and L-alanine. Among the top metabolites
significant by paired t-test were L-phenylalanine, 1,9-dimethyluric acid, phosphonoacetate,
p-cresol, and glycine.

Table 2. Metabolites displaying statistical significance for n = 8 male participants with TBI, according
to the paired t-test/Wilcoxon–Mann–Whitney tests and VIAVC analysis. Blood-derived metabolites
are displayed in order of significance (p < 0.05) based on the paired t-test/Wilcoxon–Mann–Whitney
test. Significance by the VIAVC F-ranked subset is indicated by a single dagger (†), and significance
by the VIAVC best subset is indicated by the double dagger (††). Each metabolite’s corresponding
chemical shift and regulation with the percent difference is displayed. The metabolites with multiple
significant resonance peaks are reported as Metabolite.1, Metabolite.2, . . . Metabolite.n.

Metabolite Chemical Shift (ppm) Paired t/Wilcoxon p-Value Regulation
(% Difference)

L-Phenylalanine.1 7.362 0.0002 Down (−60.140%)
1,9-Dimethyluric Acid 3.290 0.0005 Up (25.651%)

Phosphonoacetate.1 2.657 0.0012 Up (42.262%)
p-Cresol.1 7.159 0.0013 Down (−84.436%)

L-Phenylalanine.2 7.379 0.0031 Down (−30.914%)
Glycine.1 3.582 0.0031 Up (18.260%)

Citric Acid 2.536 0.0040 Up (35.800%)
Phosphonoacetate.2 2.672 0.0045 Up (37.428%)

1,3-Dimethyluric Acid.1 3.295 0.0046 Up (22.159%)
p-Cresol.2 7.144 0.0050 Down (−65.625%)

2-Hydroxybutyrate †† 0.904 0.0050 Down (−79.804%)
Glycine.2 3.567 0.0061 Up (19.568%)

Trimethylamine-N-Oxide 3.285 0.0066 Up (26.092%)
3-Methyl-2-Oxovaleric Acid 0.915 0.0066 Down (−75.379%)

Creatinine.1 3.054 0.0078 (W) Up (21.179%)
Levulinate † 2.456 0.0089 Up (20.412%)

Unidentified Multiplet 0.980 0.0107 Down (−53.026%)
Citramalic Acid.1 2.478 0.0112 Up (18.255%)

4-Pyridoxate 2.445 0.0153 Up (16.975%)
1,5-Anhydrosorbitol.1 3.360 0.0156 (W) Up (27.891%)

1,3-Dimethyluric Acid.2 † 3.300 0.0156 (W) Up (20.480%)
Citramalic Acid.2 † 2.489 0.0158 Up (17.716%)

Pyruvic Acid 2.467 0.0169 Up (17.951%)
L-Alanine †† 1.493 0.0172 Up (35.621%)

1,5-Anhydrosorbitol.2 3.280 0.0178 Up (20.012%)
Guanidoacetate † 3.804 0.0209 Up (15.256%)

5-Hydroxyindole-3-acetate 3.572 0.0221 Up (20.959%)
Tyrosine 6.930 0.0234 Down (−33.767%)

Glucose.1 3.461 0.0274 Down (−14.882%)
Glucose.2 3.821 0.0322 Down (−9.187%)

Unidentified Singlet 1.212 0.0352 Down (−86.139%)
D-Mannose 5.196 0.0391 (W) Down (−76.053%)

Hydroxyphenylacetylglycine 3.600 0.0391 (W) Up (11.043%)
Theophylline 3.564 0.0421 Up (14.543%)

Lactate.1 4.109 0.0428 Up (25.843%)
Glucose.3 3.856 0.0438 Down (−7.688%)

π-methylhistidine 7.970 0.0449 Up (18.003%)
Unidentified Multiplet 2.433 0.0476 Up (15.001%)

Creatinine.2 4.065 0.0487 Up (24.941%)
Acetylphosphate 2.132 0.0490 Up (14.059%)

Methylsuccinic Acid 2.149 0.0497 Up (13.903%)
Lactate.2 † 4.135 0.0571 Up (29.606%)

1,3,7-Trimethyluric Acid †† 3.337 0.0799 Up (21.040%)
α-Ketoisovaleric Acid † 1.131 0.1389 Down (−30.615%)

Pantothenic Acid † 0.943 0.2278 Down (−26.969%)
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Unsupervised PCA multivariate modelling utilizing all the bins showed a complete
overlap of the groups when comparing the metabolome across the two time points, while
supervised OPLS-DA modelling utilizing all the bins did not pass permutation or cross-
validation testing. Subsequently, the subset of bins determined to be significantly altered
by univariate or multivariate testing was then utilized to carry out both unsupervised and
supervised multivariate modelling. The PCA scores plot demonstrated a partial degree of
unsupervised group separation (Figure 1A), while the supervised OPLS-DA scores plot
illustrated significant group separation between the initial injury and 6 months post-injury
samples (R2Y = 0.794, p < 0.01; Q2 = 0.607, p < 0.01, Figure 1B). This supervised model
indicated a change in the metabolic profiles following TBI over the course of the recovery
process. In addition, ROC curves were generated to determine the predictive accuracy of
the model, and an area under the curve equal to 0.844 was achieved with a 95% confidence
interval of 0.667-1 (Figure 2).
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Figure 1. Principal Components Analysis (PCA; (A)) and Orthogonal Projections to Latent Structures
Discriminant Analysis (OPLS-DA; (B)) scores plots. This analysis was carried out using a list of
blood-derived metabolites found to be statistically significant by paired t-test and VIAVC best subset
testing. Red color and squares indicate participants at the initial time-point, and blue color and
triangles indicate participants at the 6-month time-point. The participant code (as seen in Table 1) is
labelled beside their corresponding square or triangle. The 95% confidence interval is indicated by
the shaded ellipses. In the case of the PCA scores plot, the x-axis and y-axis show the data variance
explained by principal components 1 and 2, respectively. In the case of the OPLS-DA scores plot
the x-axis and y-axis show the predictive (between-group) and orthogonal (within-group) variation,
respectively. The following are the cross-validation and permutation measures for the OPLS-DA
figure: R2Y = 0.794 (p < 0.01), Q2 = 0.607 (p < 0.01).

Pathway topology analysis was used to uncover the underlying biochemical pathways
potentially altered due to TBI severity and recovery. The pathway analysis in Figure 3
illustrates the potential pathway impact based on changes to the participants’ blood-derived
metabolic profiles, presented in increasing order of impact. The metabolic pathways
significantly affected were phenylalanine, tyrosine, and tryptophan biosynthesis (p < 0.01),
pyruvate metabolism (p < 0.01), aminoacyl-tRNA biosynthesis (p < 0.01), alanine, aspartate,
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and glutamate metabolism (p = 0.01), phenylalanine metabolism (p < 0.05), glyoxylate and
dicarboxylate metabolism (p < 0.05), glycine, serine, and threonine metabolism (p < 0.05),
and the citrate cycle (p < 0.05). The pathway analysis was based on bins significant by the
VIAVC best subset and the paired t-test/or the Wilcoxon–Mann–Whitney test.
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3.3. Metabolomic Signatures Correlate with Injury Severity

Pearson R correlation tests were performed to compare the change in the concentration
of each VIAVC F-ranked metabolite (6 months post-injury concentration–initial concen-
tration) to the GCS, FIM, and MoCA scores. There were ten metabolites that achieved
significance according to the VIAVC F-ranked test. Of the ten metabolites tested, only one
metabolite, L-Alanine (R = −0.63, p < 0.01), had a negative correlation to injury severity
using GCS but was not below the Bonferroni corrected threshold (α < 0.005). There were
no significant correlations observed between the metabolite concentrations and both the
FIM and MoCA scores.
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Figure 3. Metabolic Pathway Topology Analysis. A higher value on the y-axis and a darker circle color
indicate a lower p-value for the pathway. A higher value on the x-axis and larger circle size indicates
greater pathway impact, which is a measure of how affected each pathway is by the metabolites
identified as significantly altered. Only pathways with a p-value less than 0.05 are labelled, with the
cut-off indicated by the dotted line. This analysis was carried out using the list of metabolites that
were identified to be significantly altered by the paired t-test/Mann–Whitney test and the VIAVC
best subset. The numbering corresponds to significantly altered pathways: 1. Phenylalanine, tyrosine,
and tryptophan biosynthesis (p = 0.0016), 2. Pyruvate metabolism (p = 0.005), 3. Aminoacyl-tRNA
biosynthesis (p = 0.007), 4. Alanine, aspartate, and glutamate metabolism (p = 0.01), 5. Phenylalanine
metabolism (p = 0.011), 6. Glyoxylate and dicarboxylate metabolism (p = 0.015), 7. Glycine, serine,
and threonine metabolism (p = 0.016), and 8. Citrate Cycle/TCA cycle (p = 0.043).

4. Discussion
4.1. General Discussion

The present study revealed specific blood-derived metabolites that significantly change
during recovery following TBI. The metabolic changes were potentially associated with
eight biochemical pathways: phenylalanine, tyrosine, and tryptophan biosynthesis; pyru-
vate metabolism; aminoacyl-tRNA biosynthesis; alanine, aspartate, and glutamate
metabolism; phenylalanine metabolism; glyoxylate and dicarboxylate metabolism; glycine,
serine, and threonine metabolism; and the citrate cycle. When correlating the changes in the
metabolites throughout recovery, L-alanine significantly negatively correlated with injury
severity using the GCS. These findings provide preliminary evidence that a metabolomics
approach of blood samples combined with machine learning analysis has the potential to
provide metabolic profiles associated with injury severity using the GCS.

As shown in Table 2, several metabolites showed changes in concentration when
comparing the initial and 6 months post-injury samples. L-alanine, 1,3,7-trimethyluric acid,
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and 2-hydroxybutyrate were significant via VIAVC best subset. L-alanine is a non-essential
amino acid that is discussed below because it was the single metabolite significantly
correlated to GCS scores. 1,3,7-trimethyluric acid is a breakdown product of purines that
may be neuroprotective [30]. 2-hydroxybutyrate is a ketone body, which is an alternate
energy source in states of increased energetic demand, such as TBI. Thus, ketone bodies
have been posited as a prospective therapeutic intervention in TBI [31].

Biochemical pathways were derived based on metabolites significant by VIAVC best
subset and the paired t-test/Wilcoxon–Mann–Whitney test, of which phenylalanine, ty-
rosine, and tryptophan biosynthesis was the most significantly altered. The metabolites
phenylalanine and tyrosine implicated in this pathway indicated disruptions to neuro-
transmitter signaling, as these amino acids are known precursors to catecholamine neuro-
transmitters, including dopamine and epinephrine. The large neutral amino acid transport
(LNAA) system found at the blood–brain barrier (BBB) is the gateway for the uptake of
these amino acids into the brain [32]. A TBI leads to disruption of the vessels within the
BBB which can lead to ischemia in the surrounding areas [33]. Thus, it is plausible that
BBB disruption and the ensuing changes in amino acid levels precipitate abnormalities in
neurotransmitter production.

Pathway analysis also indicated that pyruvate metabolism was potentially altered,
which is in agreement with a parallel study examining blood-derived biomarkers amongst
male SCI participants, where it was found that pyruvate metabolism was the most signifi-
cantly altered pathway [9]. Pyruvate is generated from the metabolism of glucose, and the
lactate/pyruvate ratio is a clinically informative measure indicative of cerebral metabolic
state [34]. An increase in this metric is a known indicator of TBI, signaling a switch from
aerobic to anaerobic respiration, and can predict the outcomes [35]. This overlapping
characteristic of SCI and TBI warrants further investigation as a potential clinical feature
for central nervous system trauma in general.

Aminoacyl tRNA biosynthesis was potentially altered following TBI and plays a
key role in protein biosynthesis, as aminoacyl tRNA synthetases are programmed in the
genetic code throughout the cells of the body. tRNAs undergo modifications in response
to cellular stress to regulate protein synthesis [36]. These modifications may involve the
cleavage of tRNAs to generate fragments derived from them. Recently, several tRNA-
derived fragments have been identified as biomarkers for brain injury diagnosis [37,38]
and impaired outcomes following TBI [39]. Because the comprehension of the involvement
of tRNAs in brain injury is still in the nascent stages, more research is imperative to deduce
the role of aminoacyl tRNA and its synthesis in TBI.

Another pathway found to be potentially affected post-TBI was alanine, aspartate, and
glutamate metabolism. In our parallel study examining blood-derived biomarkers amongst
SCI subjects, this pathway also presented as potentially altered, as evidenced by pathway
analysis [9]. It is known that the excitatory amino acids aspartate and glutamate are
upregulated following insult to the spinal cord [40,41], and this may also be extrapolated to
include TBI. Alanine is an inhibitory amino acid released in response to ischemia, oxidative
stress, and free radical formation, as evidenced in the hippocampus [42]. Thus, we argue
that, similar to SCI, TBI may induce changes along this physiological pathway, but more
studies are needed to develop a thorough understanding.

Phenylalanine metabolism is implicated in neurotransmitter production and brain
signaling, and the repeated significance of this pathway in the analysis strongly suggests
that the disruption of neurotransmitters is a pathological process in the wake of TBI.
Phenylalanine is a precursor to tyrosine [43], which gives rise to the neurotransmitters
dopamine, epinephrine, and norepinephrine. Previous studies have also indicated that the
levels of these neurotransmitters are associated with the severity of injury [44].

The present study revealed that the tricarboxylic acid (TCA) cycle and glyoxylate
and dicarboxylate metabolism were both potentially altered following TBI. A parallel
study conducted by our group found the metabolism of glyoxylate and dicarboxylate
to be affected based on blood-derived metabolites amongst SCI participants [9], and we
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postulated that this change may be indicative of the glyoxylate shunt, which is activated
during oxidative stress to provide an alternate metabolic route to the citric acid cycle [45].
Oxidative stress following TBI may initiate this metabolic pathway. Interestingly, the citrate
or TCA cycle itself was also found to be significantly altered, as evidenced by a significant
change in the concentration of the pathway intermediates citrate and pyruvate in the
participants’ serum. A similar disruption was also seen in the serum of our SCI study
discussed above [9]. This alteration suggests a metabolic switch from aerobic respiration to
anaerobic respiration due to ischemia following injury [46]. This shift in metabolic mode
may also indicate secondary tissue damage following TBI.

Finally, TBI potentially altered the glycine, serine, and threonine metabolic pathway.
Evidence suggests that plasma amino acids tend to be higher in individuals with skeletal
muscle degeneration due to higher protein requirements [47]. In a previous study using a
mouse model, it was shown that TBI induced atrophy in the lower limb muscles, such as
the soleus and tibialis anterior [48]. Thus, changes in body composition following brain
trauma, likely due to immobility from paresis, may underlie these inferred changes in
blood amino acid levels.

The single metabolite that showed an association with the GCS was L-alanine, demon-
strating a negative correlation. This observation indicates that an increase in serum L-
alanine levels is associated with poorer GCS scores. L-alanine is a non-essential amino acid
and is formed from pyruvate via the enzyme alanine transaminase and is then shuttled to
the liver where its carbon skeleton is converted to glucose [49]. Ischemia following TBI may
provoke increased demand for glucose and, therefore, conversion from its precursors, such
as L-alanine. Furthermore, the ratio of alanine to glutamate has been shown to serve as
an index to predict tissue survival following cerebral ischemia, whereby a decrease in this
ratio predicts a less severe injury in a gerbil model [50]. Potentially, a similar mechanism
exists within the human brain. Hence, more research on L-alanine and its involvement in
TBI severity is warranted.

4.2. Limitations

Although the sample size in the present study was limited, the within-subject design
ensured that the regulation of metabolite concentrations provided a more robust indicator
of change. Further validation will be needed to ascertain the prognostic potential of the
identified metabolites in clinical practice. Given that the present investigation focused
only on males, a more diverse cohort including females and individuals of diverse ethnic
backgrounds is needed. Future studies should also consider the potential confounds of diet,
exercise, body mass index, medical history, and acute versus chronic drug treatment when
developing the study design. To account for injury in general, similar studies would also
benefit from a musculoskeletal injury control group. Nevertheless, these preliminary find-
ings indicate that specific metabolic profiles can be associated with symptom severity. Thus,
this exploratory pilot study provides substantiated evidence for the potential of metabolites
in clinically available biofluids for prognosticating outcomes in males following TBI.

5. Conclusions

The goal of the present exploratory pilot prospective cohort study was to create
biomarker profiles indicative of clinical severity in TBI by detecting variances in metabolomic
profiles across two time points, unveiling biochemical pathways derived from significant
metabolites and exploring connections between metabolic alterations and the severity of
the injury. While striving to meet these aims, we identified endogenous blood-derived
metabolites that changed throughout recovery following TBI and identified eight poten-
tially associated biochemical pathways. We also found that L-alanine was significantly
negatively correlated with the severity of TBI injury (GCS), suggesting it may be a metabo-
lite to explore in further studies. Although the sample size in the present study was small,
the within-subject design ensured the regulation of metabolite concentrations over time.
Metabolite profiling and pathway analysis should be further explored in subsequent studies
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related to the measurement of injury severity in participants with TBI. Further validation
will ascertain the potential of the identified metabolites as proxy measures for clinical
use. By unveiling pathological processes in the brain, a metabolomics perspective has
the potential to complement standard clinical outcome measures and improve clinical
decision-making.
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