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Abstract: Resurrection plant species are a group of higher plants whose vegetative tissues are able to
withstand long periods of almost full desiccation and recover quickly upon rewatering. Apart from
being a model system for studying desiccation tolerance, resurrection plant species appear to be a
valuable source of metabolites, with various areas of application. A significant number of papers have
been published in recent years with respect to the extraction and application of bioactive compounds
from higher resurrection plant species in various test systems. Promising results have been obtained
with respect to antioxidative and antiaging effects in various test systems, particularly regarding
valuable anticancer effects in human cell lines. Here, we review the latest advances in the field and
propose potential mechanisms of action of myconoside—a predominant secondary compound in the
European members of the Gesneriaceae family. In addition, we shed light on the possibilities for the
sustainable use of natural products derived from resurrection plants.

Keywords: resurrection plants; secondary metabolites; bioactive compounds; myconoside; Haberlea
rhodopensis

1. Introduction

Plants have been the main source of food, feed, and energy since the very establishment
of human civilizations. At the same time, the use of plants’ parts, derivatives, or infusions
for other aspects of human welfare also dates back to the roots of human history. Despite
the enormous recent progress in natural science, there is still not enough knowledge about
extracted plant metabolites and their mode of action when applied to various biological
objects. However, positive correlations between the antioxidant properties of numerous
plant extracts and infusions and their beneficial potential for human welfare, including
medicine, cosmetics, food additives, etc., could be easily made [1]. It is widely accepted that
plants’ survival under unfavorable environments is based on, or at least involves, tolerance
to oxidative stress [2].

Studies on the mechanisms of environmental stress tolerance of plants could be a good
prerequisite and a reason for parallel or consecutive testing of their metabolites as potential
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bioactive compounds for human benefits. In this respect, the so-called resurrection plants
appear to be a very useful model.

Resurrection plants or plants with vegetative desiccation tolerance are a group of
higher species able to withstand the drastic decrease in their vegetative tissues’ water
content to an almost dry state, and, after long periods of dryness, to recover fast (within
hours or 1–2 days) and fully when water is available again [3]. Despite the fact that
angiosperm resurrection plants account for less than 0.1% of all higher plant species
worldwide, they belong to several botanical families and can be found on every continent,
except Antarctica, with habitats in different climate zones and at various altitudes. As
could be expected, most of them live under desert or semi-desert conditions. However,
there are also species that belong in humid tropical regions in Africa and South America or
survive winters with freezing temperatures in Europe [3–11]. Their strategies to withstand
desiccation are predetermined, constitutive (e.g., in-advance high-abundance of protective
compounds, including metabolites), and/or inducible, leading to reprogramming at the
transcriptome and metabolome levels upon stress establishment [4,12–17].

To survive and recover after extreme water deficit, resurrection plants have evolved
complex strategies, including dynamic changes of primary and secondary metabolites [18].
In parallel, the metabolism of these plants attracts additional attention to them as potential
sources of compounds with various applications [19–21]. Moreover, in comparison with
typical medicinal plants, the resurrection species accumulate and/or maintain valuable
bioactive compounds in the highest concentrations under desiccation. The accumulated
metabolites persist for long periods, which is a good prerequisite for using long-term stored
dried samples as sources for further extractions [22].

There is no sound scientific evidence for the ethnobotanical word-of-mouth data
related to the potential use of resurrection plants in folk medicine in Eastern Europe or the
Pyrenees against human bronchitis, diarrhea, liver diseases, pneumonia, and infectious
diseases, or foot-and-mouth disease in livestock [23–25].

It appears that probably the only direct connection between indigenous people’s
knowledge about resurrection behavior of some local plant species and well-established
traditions for using them in folk medicine and religious rituals and current attempts
for utilization occurs in southern Africa [26,27]. There are examples of the traditional
use of Myrothamnus flabellifolius aqueous extracts or tea infusions against life-threatening
conditions or cases of depression and mental disorders [28], as well as in the treatment of a
wide range of various other diseases [26,29].

The review, published about ten years ago [30], paved the way towards the potential
of resurrection plants as sources of natural products with eventual valuable applications.
In the meantime, numerous intensive studies in this field have been performed. Our aim
in this article is to review the recent advances in the application and mode of action of
bioactive compounds isolated from resurrection species and to shed light on the possibilities
for their sustainable use.

2. Metabolite Profiling and Application of Resurrection Plant Extracts as
Bioactive Compounds

Metabolic profiling of resurrection plants is performed by applying contemporary
extraction procedures and analytical methods and machinery [21]. With respect to primary
metabolism, it is widely accepted that sugars are among the major players in the plant
desiccation tolerance complex [18,21]. The dynamics of both sucrose and raffinose family
oligosaccharides (RFOs) is well-outlined [31,32], and the specific key role in some resur-
rection species of relatively rare molecules—e.g., octolose, stachyose, and trehalose—is
also discussed [33–35]. The high amounts of sugars explain the proposed inclusion of
Myrothamnus flabellifolius, the most studied African resurrection species, as a still underesti-
mated but potential source of nutraceuticals [26]. Due to the high amounts of carbohydrates,
particularly trehalose, raffinose, and stachyose, along with sucrose, the inclusion of crude
extracts in poultry diets has been suggested. Future studies should be performed with a
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focus on the doses of crude extracts that are added to the feed, since negative effects, such
as DNA and chromosomal damage, cell damage, and mutagenic activity, may possibly be
observed [36,37].

The data on secondary metabolism in resurrection plants are much more limited, at
least in part due to the fact that these plants are still not regarded as sources of valuable
natural compounds [21]. The few exceptions available—M. flabellifolius, and the members
of the Gesneriaceae (Haberlea rhodopensis, Ramonda ssp., Boea hydrometrica) and of the
Linderniaceae (Craterostigma plantagineum, Lindernia brevidens) [32,38–44]—outline the high
abundance and diversity of phenolics, flavonoids, etc.

Unique polyphenols from resurrection plant extracts were identified in high abun-
dance (Figure 1). The 3,4,5-tri-O-galloylquinic acid was identified as a predominant
polyphenol in M. flabellifolius. It is accumulated in almost twice the concentration in
dry leaves in comparison with fresh [38]. The caffeoyl phenylethanoid glycoside mycono-
side [β-(3,4-dihydroxyphenyl)-ethyl-3,6-di-O-β-D-apifuranosyl-4-O-α,β-dihydrocaffeoyl-
O-β-D-glucopyranoside] was isolated as the most abundant polyphenol in all members of
the Gesneriaceae found in Europe, being at the same time resurrection plant species [45,46].
Hispidulin 8-C-(6-O-acetyl-2-O-syringoyl-β-glucopyranoside) was isolated for the first time
recently [47] from leaves of H. rhodopensis as acylated hispidoline C-glicoside, possessing
some unique features like 2-O-syringoyl and 6-O-acetyl moieties.
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Figure 1. Structural formulas of 3,4,5-tri-O-galloylquinic acid (most abundant in M. flabellifolius),
myconoside, and hispidulin 8-C-(6-O-acetyl-2-O-syringoyl-β-glucopyranoside) (most abundant in H.
rhodopensis).

The secondary compounds play a significant role in ROS scavenging, thus underlying
the desiccation tolerance of the plants [21,30]. The strong antioxidant activity of phenolic
compounds also predetermines the interest in using the extracts of resurrection plants for
various applications.

Studies on potential utilization of resurrection plants have predominantly been per-
formed with crude total extracts or with their polar/apolar fractions obtained via various
solvents. Such experiments are sometimes performed in parallel or hand-in-hand with
characterization of the metabolic compounds and evaluation of their antioxidant activities,
and efforts have been made to establish a positive correlation with the respective data
available (Table 1).
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Table 1. Biological activities of plant extracts and compounds from resurrection species.

Extract or Compound Resurrection Species Biological Effect Ref

Crude ethanol extracts Xerophyta spp. For traditional ethnomedicine; antibacterial
activity—S. typhi, B. subtilis, S. aureus, E. coli [48]

Crude ethanol extracts Xerophyta spp. Pharmacological application for antioxidant activity [49]

Crude ethanol, methanol
and water extracts Myrothamnus flabellifolius Source of nutraceuticals [26]

Crude methanol and
petroleum ether extracts Myrothamnus flabellifolius Methanol extract suppresses human leukemic HL-60,

but not non-leukemic TK6 line [50]

Crude methanol extracts Haberlea rhodopensis Proliferative, anti-aging, and protective effect on
model yeast S. cerevisiae cell line. [51]

Crude ethanol extract Haberlea rhodopensis Radioprotective effects [52–57]

Crude methanol extracts Haberlea rhodopensis
Influence on cell periphery, permeabilization of the
membrane, and disruption of HaCaT keratinocyte

tight junctions.
[58]

Crude ethanol,
methanol, water extracts,
polar/apolar fractions of

methanol extracts

Haberlea rhodopensis
Crude methanol extract was the most active in MTT

assay modified for HSV. No direct virus
inactivating effect.

[59]

Crude methanol extracts Haberlea rhodopensis Phythophtora spp. isolates were stimulated to grow
under in vitro conditions. [60]

Crude methanol extracts Haberlea rhodopensis
Antioxidative effect in cancer vs. normal cell lines, and
differentially modulate distinct cell lines in genotoxic

and inflammatory stress.
[61]

Crude ethanol and water
extracts Haberlea rhodopensis

The human cancer cell lines A549, HepG2, HT29, and
Caco-2 and PC3 and DU145 were treated. Water
extracts—no effect. Ethanol extracts—effective to

HepG2 and A459 cell lines.

[62]

Crude ethanol extracts Haberlea rhodopensis
Lack of effect on E. coli, S. enterica subsp. enterica,

P. aeruginosa, S. aureus, B. subtilis, S. cerevisiae, A. niger,
Rhizopus sp., K. pneumonia, L. monocytogenes

[63]

Polar/apolar fractions of
methanol extracts Haberlea rhodopensis

The growth of Botrytis cinerea was strongly inhibited,
in particular by apolar fractions. Same fraction had

stimulating effect on Phytophthora citricola. No effect
was found against Alternaria alternata and

Fusarium oxysporum.

[64]

Polar and apolar
fractions of methanol

extracts
Haberlea rhodopensis

Polar fractions possessed strong free radical
scavenging activity. No effect on HL-60, HL-60/Dox,

SKW-3 (KE-37), and MDA-MB-231
[65]

Fractions of methanol
extract, novel compound Myrothamnus flabellifolia Anti-triple negative breast cancer effect [66]

Fractions rich of
myconoside and
hispidulin from

methanol extracts

Haberlea rhodopensis

Significant influence on the proliferation rate of the
hormone receptor expressing MCF7 and the triple
negative MDA-MB231 breast cancer cell lines. No
significant effects on the benign MCF10A cell line.

[67]

Myconoside and
hispidulin Haberlea rhodopensis Cytoprotective, radical scavenging potential, and lipid

peroxidation inhibition in rat hepatocytes. [68]

Myconoside and
Calceolarioside E Haberlea rhodopensis Increased Nrf2 expression in bone

marrow neutrophils. [69]

Myconoside-enriched
fraction Haberlea rhodopensis Increases skin elasticity. Protection of human dermal

fibroblasts against H2O2 damage [70]
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Table 1. Cont.

Extract or Compound Resurrection Species Biological Effect Ref

3,4,5 tri-O-galloylquinic
acid Myrothamnus flabellifolius Inhibition of HIV-1 and M-MLV reverse transcriptases [71]

Myconoside Haberlea rhodopensis
At low concentrations—increased MDCKII cell

viability by enhancing membrane lipid order and
adherent junctions. Higher doses—the opposite effect.

[72]

Myconoside Haberlea rhodopensis

Low concentration has no influence on human lung
adenocarcinoma A549 cell viability but increases
plasma membrane lipid order of the treated cells.

Higher concentration inhibits cell viability.

[73]

Metabolic profiling and antioxidant activity studies confirm the potential of Xerophyta
spp. as a source of crude extracts for traditional ethnomedicine [48] and pharmacological
application [49]. M. flabellifolius is also rich in polyphenols, especially flavonoids, and
its extracts effectively suppress the growth of the leukemic cell line HL-60, but not the
non-leukemic lymphocytes of the TK6 line [50]. Fractionation of the same plant species’
extracts resulted in active growth suppressing of the triple negative breast cancer cells
(TNBCs) from two cell lines, BT-549 and MDA-MB-231, compared to the normal MCF10-A
cell line. The main component of the efficient fraction was identified as a derivative of
galloyl glucose hexahydroxydiphenic acid called strictinin (chemical name: 3-O-galloyl-
4,6-[(S)-hexahydroxydiphenoyl]-b-glucopyranose). Later, strictinin was shown to suppress
the activity of Receptor Tyrosine Kinase Orphan-like 1 (ROR1), which is highly active
during embryonic development but is not found in growing tissues except in some tumors.
In this case, the likely antitumor action is associated with reduced phosphorylation of
the AKT kinase and increased apoptosis [66,74]. In another study, the main polyphenol
isolated from M. flabellifolius, 3,4,5 tri-O-galloylquinic acid, was found to inhibit HIV-1 and
M-MLV reverse transcriptases and could be used as a potent antiviral drug that blocks viral
replication [71].

So far, our review of the available literature shows that the potential applications of
bioactive compounds isolated from resurrection plants have been predominantly studied
in the Balkan endemic plant H. rhodopensis (Table 1). Data for the biological activity of total
extracts or purified compounds are summarized in Figure 2.

There was very weak or even no biological activity found in some experimental sys-
tems, e.g., no direct virus inactivating effect was found in HSV (Herpes simplex virus) [59],
and there was a lack of anticancer effect in some cell lines [65] or very poor antimicrobial
activity [63]. On the other hand, promising results were reported when H. rhodopensis
extracts were tested as protectors to minimize the harmful effects of radiotherapy [75]. The
use of ionizing radiation is one of the widely used approaches in treating various cancers.
However, quite often, negative side effects appear during such treatments as a result of
the oxidative stress that irradiation has on genomic DNA, lipids, proteins, enzymes, and
membranes of living organisms. In this respect, the search for nontoxic and efficient radio-
protectors, particularly of plant origin, is very intensive, since a high positive correlation
was reported between phenolic compound contents and their antioxidant capacity. An
interesting and still not sufficiently investigated issue is the potential use of extracts from
resurrection plants’ tissues to manipulate the reaction of higher living organisms to ioniz-
ing radiation [75]. Several investigations have been performed in the last 15 years where
New Zealand rabbit lines were used as a platform to study the radioprotective properties
of H. rhodopensis leaf extracts. Pre-treatment of lymphocyte cultures with such extracts
reduced the numbers of aberrant cells and chromosome aberrations in a dose-dependent
manner [52–55] and resulted in a reduction in induced cellular DNA damage [56]. The
pre-treatment significantly increased the activity of some antioxidant enzymes and had
an anti-lipid peroxidative effect by reducing MDA levels in the blood. Furthermore, a
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significant reduction in MN events in peripheral lymphocytes was observed. Recently [57],
the preincubation of cells with H. rhodopensis extracts was shown to modulate HeLa cancer
cells’ early response to gamma IR (γ-IR) and oxidative stress. The response modulation ap-
peared almost immediately after exposure in a dose-dependent manner, thus reducing the
severity of genotoxic and oxidative stress. A strong antioxidant effect of methanol extracts
of H. rhodopensis was shown in both non-neoplastic and prostate cancer cells, where the
extracts reduced H2O2-generated oxidative stress [61]. The pretreatment of non-malignant
cell line HEK 293 was apoptosis-protective and cell death-reducing when H2O2-induced
oxidative stress was applied. NFκB was activated in p53+/+ cells and suppressed in p53−/−

cells. Leaf water and ethanol extracts were applied to a range of other human cancer
cell lines [62]. Water extracts were reported not to be antiproliferative, while ethanol ex-
tracts were particularly effective to hepatocellular carcinoma (HepG2) and non-small cell
lung adenocarcinoma (A549) cell lines and were found to exert significant antimigratory
concentration-dependent effects in both cell lines.
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Figure 2. Bioactivity of extracts (A) and compounds (B) purified from H. rhodopensis. (A) Per-
centage of relative contribution of published studies on the various biological activities of extracts.
(B) Myconoside, hispidulin 8-C, and calceolarioside E have been enriched or purified from different
fractions. Fractions containing pure myconoside or myconoside in combination with the other two
compounds have significant effects on various cell lines.

Total methanol extracts and polar and apolar fractions were tested in a completely
different system—important plant pathogens to search for potential sustainable and eco-
friendly plant protection approaches [60,64]. No fungitoxic effect on Alternaria alternata and
Fusarium oxysporum was found. Strong inhibition of Botrytis cinerea was achieved, in partic-
ular by apolar fractions. The same fractions stimulated the growth of Phytophthora citricola
and can be potentially used as an effector. Other Phythophtora spp. isolates were stimulated
significantly to grow under in vitro conditions, which could be a good prerequisite for the
development of culture media for further tests on these obligate pathogens.

The significant amount of myconoside in plant extracts from European Gesneriads
along with the strong scavenging activity gave ground for potential application in various
human welfare areas. There is a significant interest in the application of myconoside as a
single compound or in well-characterized combination with other secondary metabolites
in various medicinal test systems.

An extract rich in myconoside isolated from H. rhodopensis was reported to increase
mRNA synthesis of collagen and elastin genes in human dermal fibroblasts stressed with
H2O2 [70]. The extracts were proven to protect against UV-induced dermis oxidation and
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even increased skin elasticity of human volunteers. It was suggested that H. rhodopensis
extracts can be used for anti-aging treatments, protecting the skin from oxidation, increas-
ing skin elasticity, and enhancing skin radiance. The anti-aging potential of such extracts
was further confirmed. Influence on cell periphery, permeabilization of the membrane, and
disruption of HaCaT keratinocyte tight junctions were observed—more pronounced in
actively dividing cells [58]. In a very different experimental system, the strong and specific
proliferative, anti-aging, and protective effect was found in the model yeast Saccharomyces
cerevisiae cell line to revitalize and ameliorate cellular growth as well as to balance intracel-
lular metabolic states [51]. Myconoside, isolated from H. rhodopensis extracts, was shown
to have strong antioxidative potential along with a significant hepatoprotective effect on
isolated rat hepatocytes [68]. H. rhodopensis extract fractions, containing myconoside or
enriched with Calceolarioside E, were found to be very effective in promoting the expres-
sion of nuclear factor erythroid 2 p45-related factor 2 (Nrf2), a transcriptional regulator of
the cellular redox balance and a suppressor of the pathological manifestation of various
diseases, in bone marrow neutrophils [69].

3. Potential Mechanisms of Action of the Phenolic Glycoside Myconoside

Many studies in in vitro model systems have shown pronounced anticancer activity
of H. rhodopensis extracts, but the molecular mechanisms of this action are largely un-
clear. Recent studies gave ground to the proposal of potential mechanisms of action for
myconoside—the predominant polyphenol in H. rhodopensis and Ramonda spp.

Investigations on model lipid membranes confirm that polyphenols can penetrate
the lipid bilayer to different depths, depending on their structure and physicochemi-
cal properties [76,77]. The hydrophobicity of polyphenols decreases with the increasing
number of hydroxyl groups and the presence of glycosidic substituent [78]. Myconoside
possesses 11 hydroxyl groups and a glycosidic residue, suggesting that it exhibits an am-
phiphilic affinity and will have different effects on cellular membranes with various overall
fluidity. The action of myconoside was investigated in two cell lines with pronounced
differences in membrane fluidity—the alveolar carcinoma line A549, which is characterized
by more fluid membranes, and the non-cancerous renal epithelial line MDCK II, which
is characterized by a high degree of order of membrane lipids, the presence of stable in-
tercellular contacts, and the ability to polarize in the epithelial monolayer. The results of
the cell studies were compared with experiments on biomimetic membranes [72,73]. A
selective cytotoxic effect was observed for A549 at high concentrations of myconoside, in
comparison to the absence of such in the MDCKII cell line. This is probably due to a dual
effect on cancer cells depending on the applied concentration: a strong inhibitory effect by
reducing the lipid order of the plasma membrane and damage to the actin cytoskeleton by
affecting its connection with the plasmalemma. In biomimetic membranes, myconoside acts
as a molecule stimulating or destroying raft-type domains, depending on its concentration.
Such a dependence is logical given the effect that myconoside exerts on the arrangement of
lipids in the membrane depending on its concentration. At low concentrations, mycono-
side probably acts as a molecular filler, occupying the vacant interlipid spaces between
the glycerol residue and the polar head, reducing the number of water molecules in this
region. This mode of interaction of myconoside with lipids leads to a higher order of the
membranes, which stimulates the formation of more ordered raft domains. At high concen-
trations, when the interlipid spaces around the glycerol are filled, myconoside accumulates
increasingly, primarily between and above the polar heads, forming myconoside clusters.
Thus, it reduces the interaction between lipids, playing the role of a molecular separator,
reducing the order of lipids in the membrane, and preventing the formation of ordered raft
domains [72,73]. A similar mechanism was observed for different types of flavonoids, but
not for a given type of flavonoid and as a function of its concentration [79].

In addition to lipids, flavonoids and glycoside flavonoids can also interact with certain
membrane proteins, especially those that have significant hydrophobic regions. Recently, a
possible interaction of myconoside with the GLUT1 glucose membrane transporter, which is
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overexpressed in several cancer cell lines, and the estrogen receptor was proposed [67]. This
transmembrane protein belongs to a family of facilitative transporters that transport hexose
molecules down the concentration gradient in a tissue- and substrate-specific manner [80].

Applying molecular docking analysis, it was proposed that myconoside is inserted
into the central part of the transporter, probably with the simultaneous participation of
hydrophobic and hydrophilic interactions [67]. The binding of myconoside probably blocks
or at least reduces the uptake of glucose into cancer cells, thereby significantly inhibiting
their growth in vitro. The amphiphilic nature of myconoside makes a similar interaction
with other membrane receptors specific for steroid hormones possible, thus influencing the
signaling pathways associated with them. Simultaneously, affecting the organization of
membrane lipids and the activity of the associated membrane proteins can lead to drastic
changes in membrane organization and functions.

Lipid rafts are dynamic nanoscale molecular platforms enriched in cholesterol and
sphingolipids in cell membranes’ inner and outer bilayers. They form functional platforms
for the regulation of cellular processes. Secondary plant metabolites have been suggested
to be capable of interacting with lipid rafts in two ways. First, they can disrupt the integrity
of lipid rafts by altering their structure and organization, which leads to rearrangement (ag-
gregation) of the raft domains. It was shown that myconoside isolated from H. rhodopensis
can increase or decrease the fraction of raft domains in a concentration-dependent manner
in biomimetic systems [72,73]. A second molecular mechanism by which plant metabolites
can modulate downstream signaling pathways mediated by lipid rafts is by binding to
receptor proteins localized to lipid rafts such as the 67 kDa laminin receptor (67LR), the epi-
dermal growth factor receptor (EGFR), disruption of cytoskeleton integrity, and others [79].
In cancer cells, increased amounts of laminin receptors are found in the raft domains of the
plasma membrane, which is associated with the spread of tumor metastases. Secondary
plant metabolites may reduce the likelihood of carcinogenesis by blocking the interaction of
the epithelial growth factor (EGF) with the corresponding receptor (EGFR), which localizes
precisely in the raft domains [81].

Interestingly, secondary plant metabolites can interact directly with actin. Despite the
similar values of binding constants of structurally related flavonoid molecules to actin, it
has been demonstrated, for example, that flavonols inhibit actin functions while the flavan
epigallocatechin stimulates its activity [79]. Other cellular raft domains, such as caveolae,
are involved in caveolar endocytosis processes and are considered a special group of raft
domains in the plasma membrane of various cell types. Caveolae are also rich in cholesterol
and sphingomyelin and contain caveolin proteins responsible for invaginations of the
plasma membrane during endocytosis [82]. It is known that some plant metabolites, such
as flavonoids, can influence cell signaling and reduce inflammatory processes in endothelial
cells by reducing the expression of caveolin-1 and cyclooxygenase COX-2 and inhibiting
ERK ½ and Akt kinases of the MAPK signaling pathway [83]. A similar ability to reduce
caveolin-1 expression and activate signaling through PI3K and Akt kinases, responsible for
regulating apoptosis and carcinogenesis, was also found when cells were treated with the
flavonoid daidzein [84].

Recently, it was clearly shown that treatment of two cell lines (MDCKII and cancer
A549 cells) with myconoside leads to substantial changes in the F-actin and Zonula oc-
cludens (ZO-1) network associated with the accumulation of granular aggregates in the
plasma membrane and in intracellular structures. However, the linear structure of F-actin
and ZO-1 of MDCKII cells is much more conserved than that of A549. Higher myconoside
concentration induced lower cell density, more round-shaped cells, more diffuse F-actin
and ZO-1 network, and reduced cell–cell contacts in the cancer cell line [72,73].

4. Conclusions

At present, the data obtained after application of extracts or purified compounds
derived from resurrection plants’ tissues for various purposes are still relatively limited
and most of them are related to H. rhodopensis. However, the knowledge obtained could
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serve as a good background for further studies and developing strategies. Despite the low
biological activity in some studies, the application of total or relatively less fractionated
extracts should continue because such experiments are relatively simple and of low cost.
When promising results are achieved, further efforts to isolate almost pure fractions or even
compounds should be made. This means developing projects that will convince potential
investors to fund the application of more sophisticated equipment and experimental design.

At this point, the issue of sustainability and biodiversity preservation should be taken
into account. The standard practices for obtaining valuable compounds from medicinal
plants are based predominantly on extractions from fresh samples when they are the richest
of valuable compounds. With the recent climate changes, causing drought stress to become
more and more frequent, the yield, regularity, and quality of raw material supply drops
significantly [1]. In this respect, the increased attention to plant cell cultures as future
potential biofactories of environmentally independent production of bioactive compounds
highlights the achievements, problems, and challenges that are still to be solved [85]. One
of the advantages of resurrection plants as sources of valuable bioactive compounds is
related to the fact that these compounds are accumulated and/or maintained in high
concentrations under desiccation, playing an important role in the protection of the plants.
These high concentrations persist for long periods, which is a good prerequisite to use
long-term stored dried samples as sources for further extractions.

In addition, some of the resurrection plants, e.g., M. flabellifolius and Xerophyta spp.,
are widespread and easy to access in their habitats. This also makes them a relatively cheap
and sustainable source of valuable bioactive compounds. Others, like, e.g., H. rhodopensis
and Ramonda spp., are endemic and belong to zones with restricted access for natural con-
servation. At the same time, the increasing open access to scientific data could sometimes
result in inappropriate activities of some members of the society, leading to damage or even
destruction of the restricted plant populations. In this respect, examples of a sustainable
scientific approach, like the establishment of protocols and systems for in vitro culture, e.g.,
for the European Gesneriads [22,69,86–88], are very promising and need to be encouraged.

Resurrection plant species possess stress tolerance abilities that are almost of no match
among other higher organisms. There is a broad horizon for the potential application of
useful natural products, isolated from them in various areas of human welfare.
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