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Abstract: Urinary tract cancers, including those of the bladder, the kidneys, and the prostate, represent
over 12% of all cancers, with significant global incidence and mortality rates. The continuous challenge
that these cancers present necessitates the development of innovative diagnostic and prognostic methods,
such as identifying specific biomarkers indicative of cancer. Biomarkers, which can be genes, proteins,
metabolites, or lipids, are vital for various clinical purposes including early detection and prognosis.
Mass spectrometry (MS), particularly soft ionization techniques such as electrospray ionization (ESI)
and laser desorption/ionization (LDI), has emerged as a key tool in metabolic profiling for biomarker
discovery, due to its high resolution, sensitivity, and ability to analyze complex biological samples.
Among the LDI techniques, matrix-assisted laser desorption/ionization (MALDI) and surface-assisted
laser desorption/ionization (SALDI) should be mentioned. While MALDI methodology, which uses
organic compounds as matrices, is effective for larger molecules, SALDI, based on the various types of
nanoparticles and nanostructures, is preferred for smaller metabolites and lipids due to its reduced spec-
tral interference. This study highlights the application of LDI techniques, along with mass spectrometry
imaging (MSI), in identifying potential metabolic and lipid biomarkers for urological cancers, focusing
on the most common bladder, kidney, and prostate cancers.

Keywords: biomarkers; bladder cancer; kidney cancer; lipids; matrix-assisted laser desorption/ionization;
mass spectrometry; metabolites; prostate cancer; surface-assisted laser desorption/ionization

1. Introduction

Urinary tract cancers, including bladder, kidney, and prostate cancers, are among the
most common cases and account for over 12% of all cancers [1]. According to GLOBO-
CAN, in 2020, approximately 2.5 million new cases of urinary tract cancers and almost
800,000 deaths due to them were recorded around the world [1]. For this reason, uro-
logical cancers remain a great challenge, and it is necessary to search for new diagnostic
and prognostic procedures, for example, those based on the detection of characteristic
chemical compounds that may indicate the development of cancer, called biomarkers. The
National Institutes of Health provide a definition for “biomarker” as a characteristic that is
objectively assessed and analyzed to serve as an indication of normal biological processes,
pathological processes, or the pharmaceutical response to a therapeutic intervention [2].
Cancer biomarkers are generated either by the tumor itself or by the body in reaction to the
presence of the tumor [3]. Various types of biomarkers can be distinguished based on clini-
cal circumstances, including screening/early detection, diagnosis, prognosis, prediction, or
therapeutic target [4]. Cancer markers can be genes [5], proteins [6], metabolites, [7] and
lipids [8]; however, due to the fact that cancer is a disease that changes cellular metabolism,
it seems that the most appropriate approach to search for new biomarkers will be metabolic
profiling. Many instrumental analysis techniques are used for metabolomics and lipidomics
studies, such as mass spectrometry (MS), nuclear magnetic resonance spectroscopy (NMR),
liquid (LC) and gas chromatography (GC), capillary electrophoresis (CE), and methods
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combining them (Table 1). Due to its high resolution and sensitivity, mass spectrometry is
the most frequently used family of analytical techniques in omics research, including the
search for cancer biomarkers. Soft ionization techniques such as electrospray ionization
(ESI) or matrix-assisted laser desorption/ionization (MALDI) are of particular importance
in the analysis of biological samples [9]. The MALDI ion source is commonly used to
analyze high-molecular-weight compounds such as polymers or proteins [10]. Advan-
tages of the MALDI MS technique include relatively simple instrumentation, speed of
analysis, high throughput, uncomplicated spectra as most ions have a single charge, low
fragmentation, and high detection sensitivity over a wide mass range [11]. For these rea-
sons, MALDI is increasingly being used in metabolite [12] and lipid analyses [13]. Prior to
MALDI MS measurement, the sample is mixed with a so-called matrix, which is usually a
low-molecular-weight (LMW) organic acid whose function is to absorb the UV radiation
emitted by the laser and to assist in the ionization process of the analyte by transferring
a proton to the analyzed molecules (Figure 1) [14,15]. The compounds most commonly
used as matrices in MALDI MS analysis of metabolites and lipids are 2,5-dihydroxybenzoic
acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA), and 9-aminoacridine (9-AA) [16,17].
However, MALDI MS spectra contain, in the range below m/z 1000, signals from the
organic acids used as matrices, which interfere with the interpretation of the spectra. There-
fore, for the analysis of small molecules such as metabolites and lipids, whose signals
appear in the same m/z range, the surface-assisted laser desorption/ionization (SALDI)
technique is generally more suitable [18]. In the case of SALDI, a surface consisting of
different types of nanostructures plays a similar role to the matrix in the MALDI technique,
i.e., it absorbs the light of the laser beam and transfers its energy to the test substance,
which is ablated and ionized from the surface [19]. A number of different types of sur-
faces have been developed for use in SALDI MS. These surfaces have been created using
nanoparticles of metals (Au, Ag, Pt) and metal oxides (TiO2, ZnO), as well as carbon and
silicon [20,21]. An interesting extension of standard laser desorption/ionization (LDI) mass
spectrometry analyses is the capability to perform imaging of the spatial distribution of
diverse molecules in biological samples using this technique [22,23]. Working in imaging
mode involves taking measurements point-by-point on the surface of the sample, along
with recording the position from which the MS spectrum was acquired. Subsequently,
using specialized software, it is possible to generate ion images depicting the distribution
of individual molecules in the examined object. Mass spectrometry imaging (MSI) has
also been employed by numerous researchers for the comprehensive mapping of tumor
tissues, enabling the detection of potential tissue biomarkers [24]. The general workflow
of experiments aimed at analyzing potential urological cancer biomarkers using MALDI
and SALDI MS is presented in Figure 2. Admittedly, there are existing review articles that
touch upon the study of metabolomics biomarkers of urological cancers [25], as well as the
application of MSI techniques for analyzing tissues of these cancers [26], yet they possess
certain limitations. In the case of the literature review concerning the use of metabolomics
for the diagnosis of bladder cancer, this study refers to other, aforementioned analytical
techniques but overlooks the application of LDI methods [25]. In the case of a study ad-
dressing MS imaging of kidney, bladder, and prostate cancers, it presents findings not only
on metabolites and lipids but also on proteins, while omitting the SALDI method [26].

Table 1. Comparison of analytical methods used to detect cancer biomarkers.

Method MALDI SALDI LC-MS GC-MS CE-MS NMR

Sample type solid solid liquid volatile liquid liquid
Analysis of LMW compounds difficult yes yes yes yes yes

Quantitative analysis impossible difficult yes yes yes yes
Typical sample volume 1 µL 0.5 µL 1–20 µL 0.5–20 µL 1–50 nL 0.6 mL

LOD (up to) fmol amol amol fmol fmol nmol
Sample preparation time <1 min <1 min 10–30 min 10–60 min 10–30 min 1–10 min
Analysis time per sample <1 min <1 min 10–30 min 10–60 min 3–10 min 10–300 min

References [27,28] [29,30] [31,32] [33,34] [35,36] [37–39]
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Figure 2. General workflow in the analysis of potential metabolic or lipid biomarkers of urologic
cancers using MALDI and SALDI MS.

This study presents the application of MALDI and SALDI mass spectrometry and
mass spectrometry imaging in the search for metabolic and lipid biomarkers of the most
common urological cancers, such as bladder cancer, kidney cancer, and prostate cancer. Due
to the lack of available scholarly literature on similar analyses for rarer types of urological
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cancers, such as ureteral and urethral tumors, these types of cancers have not been included
in this article. This comprehensive review was conducted based on searches of the SCOPUS
database in terms of article titles, keywords, and abstracts using the queries: “bladder
cancer AND laser desorption/ionization AND metabolite OR lipid”, “kidney OR renal
cancer AND laser desorption/ionization AND metabolite OR lipid”, and “prostate cancer
AND laser desorption/ionization AND metabolite OR lipid”.

2. Bladder Cancer

Bladder cancer (BC) is the 12th most frequently diagnosed type of cancer. Globally,
in the year 2020, there were more than 573 thousand new cases of bladder cancer and
212,536 deaths due to this disease [1]. Three times more cases of this cancer have been
recorded in men than in women [41]. Bladder cancer from the urothelial cells accounts for
90% of bladder cancer cases worldwide, 5% are from squamous cells, and the remaining
5% are rare subtypes, such as adenocarcinoma, sarcoma, and metastases to the bladder [42].
Hematuria is the most common sign of bladder cancer [43]. However, current diagnostic
methods rely on information obtained from a procedure called cystoscopy and the results
of urine cytology [44]. While these approaches have contributed to a reduction in bladder
cancer-related deaths, they each have their drawbacks. Cystoscopy is a technically chal-
lenging and invasive procedure that carries risks like infection, bleeding, perforation, and
complications from anesthesia [45]. On the other hand, urine cytology, despite its high
accuracy in identifying cancer (around 86%), often misses cases (only about 48% sensitiv-
ity), especially when the cancer is not highly aggressive [46]. The use of these invasive
procedures, coupled with the limitations in sensitivity and accuracy of current diagnostic
methods, creates a significant unmet need in both diagnosing and monitoring patients
with bladder cancer [45]. Due to the high costs and limitations of existing diagnostic and
screening tests, many individuals are exploring alternative markers for bladder cancer,
such as metabolic and lipid biomarkers analyzed using LDI MS techniques.

An interesting study in this area was conducted by Wang and others [47]. Using
MALDI MS with the matrix of 1-naphthylhydrazine hydrochloride (NHHC), they ob-
tained MS spectra of urine from 38 patients with BC, 39 patients with prostate cancer, and
40 healthy volunteers. Then, they performed machine learning processes on the MALDI
MS data containing metabolic profiles. The used methods allowed for the differentiation of
the group of patients with diagnosed urological tumors from healthy volunteers, as well as
patients with bladder cancer and prostate cancer, achieving an accuracy ranging from 0.6
to 0.9 depending on the applied model.

A similar study was also conducted using the SALDI MS method with the use of
TiO2/MXene heterostructures [48]. The authors of the study obtained the MS spectra of
urine from patients with BC and ureteral calculus and healthy volunteers in the m/z range
of 100–1000 on structures they created. Machine learning allowed for the proposal of a
model in which a high diagnostic accuracy of 96% was achieved in distinguishing patients
from healthy individuals. Among the identified metabolites were pterin-6-carboxylic
acid, leucylproline, phenylacetylglutamine, creatinine, uric acid, gammaglutamylthreonine,
canavaninosuccinate, hydroxytyrosol 3′-glucuronide, histidine, tryptophan, and N6-acetyl-
L-lysine (Table 2).

Another SALDI MS method used in bladder cancer biomarker research was the
technique utilizing vertical silicon nanowire arrays decorated with the fluorinated ethylene
propylene film (FEP@VSiNWs), as proposed by Jiang and colleagues [49]. The proposed
methodology involved not only measuring LDI MS from the developed systems but also
desalting and concentrating urine samples, thereby allowing for the detection of a greater
number of metabolites. The authors identified 13 compounds, of which GABA, serine,
proline, cysteine, N-acetylvaline, N-acetylthreonine, valine, allysine, and nicotinic acid
showed up-regulation in BC samples, while creatinine, taurine, citraconic acid, and lauric
acid exhibited down-regulation (Table 2).
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Ruman’s group, for urine [50] and blood serum [51] metabolite analyses, utilized the
developed SALDI targets coated with monoisotopic silver (109Ag) and gold (Au) nanoparti-
cles generated through the laser ablation synthesis in solution process. Statistical analysis
of the MS data enabled the complete separation of the study group with diagnosed bladder
cancer from healthy volunteers, as well as the selection of m/z values that most differ-
entiated both groups for further analysis. In both urine and serum analyses, putative
identification allowed for the determination of 25 compounds that could potentially serve
as metabolic biomarkers for BC.

The same research group employed a SALDI-based method utilizing silver-109 nanoparticle-
enhanced steel targets for the MS imaging of bladder tissue [52]. Based on the obtained results
and their statistical analysis, the researchers identified m/z values with the greatest intensity
differences between tumor and non-tumor tissues (Figure 3). Among the matched compounds,
only one, hypotaurine, exhibited an up-regulation in BC tissues.
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Figure 3. The outcomes of the LDI-MSI examination conducted on the surface of bladder cancer (BC)
specimens using 109AgNPET. In panels (A−F), the left sections depict ion images corresponding to
ions with specified m/z values indicated beneath each image. On the right side, there are graphs
illustrating the distribution of metabolite abundance values in both control and cancer samples,
with the optimal cutoff represented as a horizontal dashed line. Reprinted from “Ossoliński et al.;
Adv. Med. Sci. 2023, 68, 38−45” [52]. Copyright 2022, with permission from Medical University of
Białystok, published by Elsevier B.V.
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3. Kidney Cancer

Kidney cancer is the 16th most common cancer among both women and men. According
to GLOBOCAN, in 2020, this disease affected over 430,000 individuals and caused more than
179,000 deaths [1]. Renal cancer is not a homogeneous disease entity. A histopathological
classification distinguishes benign neoplastic lesions such as adenoma, oncocytoma, and
angiomyolipoma (AML) and the malignant types of kidney cancer, of which up to 90% are
renal cell carcinoma (RCC) [53]. The WHO distinguishes several subtypes of RCC: clear cell
(ccRCC) accounts for about 80% of cases, papillary subtype (pRCC) accounts for 10% of renal
cell carcinoma, chromophobe (chRCC) accounts for 5% of cases, medullary and collecting
duct accounts for less than 1%), and other unclassified subtypes account for about 5% [54].
The subtypes of RCC have different molecular bases and differ in prognosis [55] and response
to therapies [56]. Kidney cancer can develop asymptomatically over a long period of time and
is usually detected incidentally during ultrasound examinations, computed tomography, or
magnetic resonance imaging. Therefore, kidney cancers are often detected in advanced stages,
and as many as 20% of patients have metastases at the time of diagnosis [57]. For these reasons,
in recent decades, scientists have put a great deal of effort into searching for small-molecular
compounds that could be potential biomarkers of kidney cancer. In the following paragraphs,
all the previous studies on the search for lipid and metabolic biomarkers in tissue and biofluids
using the MALDI and SALDI techniques are presented.

The lipidomics profiling of kidney tissue extracts was performed in 2017 by Jirásko
et al. [28]. This study utilized MALDI-Orbitrap-MS with a 9-aminoacridine (9-AA) matrix
to semiquantitatively compare sulfoglycosphingolipids in RCC and normal tissues. It
identified 52 different sulfoglycosphingolipid species, with varying hexosyl units, and
described gas-phase fragmentation processes to elucidate their structure. Significant differ-
ences in sulfoglycosphingolipid levels were observed between RCC tumors and normal
tissues, linked to the cerebroside sulfotransferase activity. Increased concentrations of Sul-
foHexCer, SulfoHex2Cer, and SulfoHex2Cer (OH) species were observed in cancer tissues
in contrast to their presence in healthy tissues. Additionally, the study highlighted the role
of sulfoglycosphingolipids in urinary pH regulation and ammonium excretion and their
potential connection to RCC metabolic pathways. The findings suggest these concentration
changes may be reflected in body fluids, prompting further research on plasma and urine
analysis for diagnostic and therapeutic insights.

Nizioł et al. in the study from 2021 [58] employed a SALDI MS approach based on monoiso-
topic silver nanoparticles (109AgNPs) to investigate the metabolic profiles of tissues of patients
with kidney cancer. Statistical analyses were conducted for the MS data of metabolite extracts
from the kidney tissues of 50 patients with kidney cancer. Tumor-free tissue removed along with
cancerous tissue during radical nephrectomy was treated as controls in this study. Multivariate
data analysis revealed moderate discrimination between tumor and normal tissues based on
mass spectral features. ROC curve analyses suggested that selected mass spectral features could
serve as diagnostic biomarkers with high specificity and sensitivity for distinguishing cancer
tissue samples from normal ones. The study also made putative identifications of several tissue
m/z features known as metabolites (Table 2).

The same methodology was also applied by this research group to blood serum [59]
and urine analyses [60]. Both body fluids were subjected to LDI MS analysis on 109AgNPs
targets for 50 individuals diagnosed with kidney cancer and 50 healthy volunteers. PLS-DA
analyses of the acquired data exhibited a strong separation between both groups. The
authors identified eight m/z values corresponding to metabolites (Table 2) or lipids (Table 3)
in the serum study [59] and four in the urine analysis [60], which demonstrated high area
under the ROC curve values. These findings suggest the potential application of this
SALDI method for the discovery of cancer biomarkers and the potential of the identified
compounds as diagnostic markers for distinguishing kidney cancer from control groups
with high specificity and sensitivity.

SALDI MS technology using iron-based metal–organic structures (MOFs) has been
applied by Yang et al. for the detection of metabolites in human serum with a focus on
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small molecules associated with cancer including the potential biomarkers for kidney
cancer [61]. The metabolites analyzed in this study, including glucose, ascorbic acid,
arginine, uridine, glycylglycine, malic acid, sucrose, and cytosine, are widely recognized
as indicators of various cancers. Moreover, the study shows that Fe-MOF-UL, due to its
unsaturated coordination structures and ultra-thin layer, significantly increases the signal
intensity in LDI MS detection. The machine learning applied on cohorts of patients with
kidney cancer and healthy volunteers enabled their effective differentiation, underscoring
the feasibility of Fe-MOF-UL as a promising SALDI platform for the early detection of
ultra-low-concentration kidney cancer biomarkers at a low cost.

Another LDI method based on nanoparticles, employed for the analysis of RCC
biomarkers, was the AuNPET technique developed by Ruman’s group [62]. The method,
which relies on gold nanoparticles (AuNPs) synthesized directly on a steel plate, was
utilized for the analysis of low-molecular-weight compounds in the blood serum [63]
and urine [64] of 50 patients diagnosed with kidney cancer and 50 healthy individuals.
The conducted MS measurements revealed differences in the intensities of eleven m/z
values in the serum and fifteen in the urine. Database searches allowed for the putative
assignment of m/z values to metabolite and lipid adducts (Table 2 and Table 3). Statistical
analysis revealed that the area under the curve (AUC) values for selected features ranged
from 0.59 to 0.73 for serum metabolites [63] and 0.56 to 0.84 for urinary metabolites [64].
Interestingly, when employing multivariate ROC analysis for all eleven metabolites de-
tected in the serum, the AUC value was 0.841, and for the panel of fifteen compounds
detected in urine, it reached as high as 0.915. This indicates that this method demonstrates
high efficiency in accurately classifying the studied groups. Additionally, this method
has been successfully employed in distinguishing types, grades, and stages of renal cell
carcinoma [29]. The AuNPET methodology has also been applied to the mass spectrometry
imaging of renal tissue fragments with RCC tumors [65]. Analysis of ion images revealed
differences in the intensities of several signals between the cancerous and healthy tissue
areas (Figure 4). Specifically, the adducts of two compounds, diglyceride DG(18:1/20:0)
and octadecanamide, exhibited significant differences between the examined tissues.
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and distinct regions delineated by yellow dashed lines (B). Images (C–K) present ion images.
Reprinted with permission from “Nizioł et al.; Anal. Chem. 2016, 88, 7365−7371” [65]. Copyright
2016, American Chemical Society.

The search for tissue biomarkers of kidney cancer was also the objective of another
study utilizing SALDI mass spectrometry imaging based on silver nanoparticles [66]. Out
of the generated ion images, ten were selected based on their ability to differentiate between
surgically removed healthy and cancerous tissue regions. Ion images provided insights into
the spatial distribution of various compounds, including glucose and phenylacetylglycine,
which exhibited a higher intensity in healthy tissue, whereas the next seven compounds, i.e.,
octadecanamide, arachidonic acid, riboflavin, eicosenoic acid, S-adenosyl-L-methionine,
and N-(2-hydroxypentadecanoyl)-4,8-sphingadienine, showed a higher intensity in tumor
tissue. Additionally, principal component analysis and k-means clustering were employed
for spatial segmentation, enabling effective differentiation between cancerous and normal
tissue regions. A modification of the aforementioned method involving the application
of silver-109 isotope nanoparticles was also employed to visualize the spatial distribution
of compounds in renal tissues with RCC tumors. The study revealed a slightly higher
abundance of ten amino acids in the non-cancerous tissue region, while the proton adduct
of thymidine and the adduct of inosine with silver-109 exhibited a higher intensity in the
cancerous tissue [67].

The lipid composition in 20 renal tissues was examined using MALDI-FT-ICR MSI
methods in the positive ion mode [68]. Statistical analyses revealed 39 significantly different
peaks (p < 0.05 and AUC > 0.7); however, further structural determination identified only
three peaks as phosphatidylcholines (PC 26:0, PC 30:3, PC 30:2). Further analysis of the
results using the principal component analysis (PCA) method allowed for the separation of
non-tumor and tumor samples, as well as recurrent and non-recurrent ccRCC samples.

In the study by Martín-Saiz et al. [69], the distribution of lipids in kidney specimens
was examined, with a particular focus on distinguishing nephron segments using MALDI
MSI with the application of 1,5-Diaminonaphthalene (DAN) as a matrix. The research also
characterized the lipidome of ccRCC, confirming the high heterogeneity of tumor samples.
PCA analyses demonstrated an effective classification of samples into tumor, healthy cortex,
and healthy medulla. The authors of the study made efforts to associate the histological
grade of the tumor with the lipid fingerprint, revealing that tumors with higher malignancy
grades exhibited a diverse lipid profile. This finding supports the hypothesis that the
dysregulation of sphingolipids and phosphatidylserines contributes to the progression
of ccRCC.

On the other hand, Erlmeier et al. employed MALDI MSI to analyze the enrichment of
metabolic pathways in patients with various subtypes of kidney tumors, such as ccRCC,
pRCC, chRCC, and oncocytoma. As a result of these investigations, differences in the
abundance of several metabolites were observed among different types of kidney cancer.
Specifically, the level of ribose 5-phosphate from the pentose phosphate pathway was
higher in oncocytoma, and the level of glucosamine from the amino sugar and nucleotide
sugar metabolism pathway was significantly elevated in oncocytoma and chRCC, while 3-
dehydrocarnitine exhibited higher levels in ccRCC and pRCC [70]. The same research group
also conducted a MALDI MSI analysis to determine the metabolic prognostic biomarkers
for ccRCC, chRCC, and pRCC. The study emphasized the unique metabolic environments
of each RCC subtype, highlighting the potential of MALDI MSI as a promising approach
for detecting novel tumor-specific prognostic markers. The results concerning the cGMP
pathway suggested its association with poorer prognosis in all RCC types. Additionally, the
study identified subtype-specific prognostic metabolites. For chRCC, these included several
compounds belonging to nucleotides and their derivatives, such as acryloaminosugars
and pentose phosphates, as well as lipids and fatty acids. For ccRCC, cyclic AMP, cytidine
diphosphate, uridine monophosphate, glutathione disulfide, and lysophosphatidic acid
were specified, while for pRCC, glucosamine and 2-sulfinoalanine were highlighted [71].
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Table 2. Studies reporting altered metabolic signature in urinary tract cancers.

Cancer Type Sample Method Matrix Main Observation Ref.

BC urine SALDI-ToF MS TiO2/MXene

up-regulation of pterin-6-carboxylic acid,
phenylacetylglutamine, creatinine, uric acid,

gammaglutamylthreonine, canavaninosuccinate,
hydroxytyrosol 3′-glucuronide, histidine, down-regulation
of leucylproline, tryptophan, and N6-acetyl-L-lysine in BC

[48]

BC urine SALDI-ToF MS FEP@VSiNWs

up-regulation of GABA, serine, proline, cysteine,
N-acetylvaline, N-acetylthreonine, valine, allysine, and

nicotinic acid and down-regulation of creatinine, taurine,
citraconic acid, and lauric acid in BC

[49]

BC tissue SALDI-ToF MSI 109AgNPs

up-regulation of hypotaurine and down-regulation of
glycine, 3-methylbutanal, ethylphosphate, glutamin,

myosmine, aminopentanal, proline betaine, and
methylguanidine in BC

[52]

RCC tissue SALDI-ToF MS 109AgNPs
up-regulation of hydroxyeicosatrienoic

acid, octanediol, diethoxypentane, and oxoalanine in RCC [58]

RCC tissue SALDI-ToF MSI 109AgNPs
up-regulation of thymine and inosine and down-regulation
of alanine, serine, glutamic acid, methionine, and histidine

in RCC
[67]

ccRCC tissue SALDI-ToF MSI AgNPs
down-regulation of glucose and phenylacetylglycine and
up-regulation of sulfinpyrazone sulfide, riboflavin, and

S-adenosyl-L-methionine in ccRCC
[66]

kidney
cancers tissue MALDI-FT-ICR

MSI 9-AA
up-regulation of ribose 5-phosphate in oncocytoma,

glucosamine in oncocytoma and chRCC, and
3-dehydrocarnitine in ccRCC and pRCC

[70]

RCC serum SALDI-ToF MS 109AgNPs
up-regulation of Phe-Thr-Thr, Glu-Arg-Pro, and

His-Ser-Ser-His and down-regulation of Thr-Trp-Cys,
Glu-Asp-Phe, and Ala-Cys-Pro-Pro in RCC

[59]

RCC serum SALDI-ToF MS AuNPs

down-regulation of dihydrouracil and up-regulation of
creatinine, glutamine, tyrosine, 2,3-diaminosalicylic acid,

3-hydroxykynurenine, 2-hydroxylauroylcarnitine,
melatonin glucuronide, and palmitoyl glucuronide in RCC

[63]

ccRCC serum SALDI-ToF MS AuNPs up-regulation of melatonin glucuronide in ccRCC samples [29]

RCC urine SALDI-ToF MS 109AgNPs
down-regulation of succinylacetoacetate, Cys-Gly-Ser-His,

His-Gly-Ser-Ser, and Met-Thr-His in RCC [60]

RCC urine SALDI-ToF MS AuNPs

up-regulation of heptanol, N-acetylglutamine, and LeuHis
and down-regulation of serine, 3-methylene-indolenine,

2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate,
phosphodimethylethanolamine, 4-methoxyphenylacetic

acid, 3,5-dihydroxyphenylvaleric acid,
hydroxyhexanoylglycine, and ValLeu in RCC

[64]

PCa urine SALDI-ToF MS AuNPs down-regulation of peptides, Ile-Ile-Lys-Val and
Ala-Arg-His-His, in PCa samples [30]

PCa serum SALDI-ToF MS AuNPs

up-regulation of monodehydroascorbate, Ala-Cys,
ascorbate 2-sulfate, homovanillicacidsulfate,

2-oxo-3-hydroxy-4-phosphobutanoate, dITP, and
Arg-Leu-Phe-Trp in PCa

[30]

PCa interstitial
fluid SALDI-ToF MS AuNPs down-regulation of maleylpyruvate, 3.2′,3′-cyclic uridine

monophosphate, and Arg-Asp-Gln-His in PCa [30]

PCa tissue MALDI-ToF MSI NEDC down-regulation of aspartate and citrate in PCa [72]

4. Prostate Cancer

Prostate cancer (PCa) is the most frequently diagnosed cancer of the urinary tract
and the third most common type of cancer in the world. Globally, every year, almost
1.5 million new cases of prostate cancer are recorded, which is 7.3% of all cancer cases,
and up to 375 thousand deaths are caused due to this disease [1,73]. Prostate cancer can
be asymptomatic in its early stages, often following an indolent course, necessitating
minimal or no intervention. Nevertheless, the most common manifestation involves
challenges with urination, heightened frequency, and nocturia, symptoms that can also be
associated with prostatic hypertrophy [74]. The introduction of prostate-specific antigen
(PSA) as a biomarker has revolutionized the diagnosis of PCa and has proven to be a
superior indicator of developing cancer compared to the historically employed digital
rectal examination. However, PSA is an organ-specific protein, not specific to cancer itself.
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The conventional cutoff value for prostate-specific antigen (PSA) in serum is >4 ng/mL,
yielding only 33% specificity and 86% sensitivity in detecting prostate cancer. Consequently,
patients with elevated PSA levels are frequently overdiagnosed, and tissue biopsy is the
standard procedure to confirm the presence of malignancy [30,75]. For these reasons,
there is a need to search for new, more specific biomarkers of PCa. In recent years, the
academic literature has witnessed a significant surge in interest regarding biomarkers.
While numerous biomarkers have been identified and investigated, currently, urologists
commonly employ only PSA in routine practice. Below, studies using MALDI and SALDI
methods to search for metabolic and lipid markers of PCa are presented.

Ossoliński et al. applied the SALDI MS technique based on gold nanoparticles to
analyze urine, serum, and interstitial fluid [30]. In this study, thirty-six m/z values were
selected, showing statistically significant differences in abundance between the patient
and control groups. Preliminary identification allowed the matching of 20 metabolites or
lipids, among which triglyceride TG(12:0/20:1) exhibited up to 10 times higher intensity
in the urine of individuals with prostate cancer compared to healthy individuals (Table 3).
Unfortunately, this study has a limitation of being performed on a small patient group, as
it included five patients who underwent prostate biopsy with positive results, five patients
with negative results, and ten healthy volunteers.

A lipidomics approach using the MALDI MS technique was used by Buszewski’s
group to analyze urine [27] and prostate tissues [76]. The urine analysis study focused on
the selection of sample preparation protocols and analysis parameters. It identified several
compounds belonging to the groups of lysophosphatidylcholine, phosphatidylcholine,
phosphatidylethanolamine, phosphatidylinositol, and triacylglycerols. Additionally, a
statistical model was established to differentiate PCa samples, achieving classification
accuracies ranging from 83 to 100% [27]. In the second study, 40 lipid tissue extracts from
patients diagnosed with PCa and 40 healthy individuals were analyzed using MALDI MS.
The investigation led to the identification of PC(18:0/22:5), whose levels were decreased
in tumor samples compared to controls. The authors also employed machine learning
models enabling the differentiation between control and PCa based on a panel of selected
compounds, with a specificity reaching 96% (Figure 5) [76].
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Li and colleagues employed an approach involving the detection of potential biomark-
ers through MALDI MS imaging of PCa tissue, followed by urine analysis to identify the
same molecules, aiming to propose a non-invasive diagnostic method [77]. The authors of
the study discovered that the ratio of PC(34:2) + PC(34:1) to LPC(16:0) is higher in tumor
tissue than in normal tissues. The same observation was applied to urine samples, where



Metabolites 2024, 14, 173 11 of 16

PC/LPC ratios were significantly higher in the PCa patient group compared to the group
with benign prostatic hyperplasia.

Goto et al. also employed the MALDI mass spectrometry imaging technique on
prostate tissues [78]. In their article, they identified 26 lipids in prostate tissue, with the
intensities of three compounds—PI(18:0/18:1), PI(18:0/20:3), and PI(18:0/20:2)—being
significantly higher in cancerous tissue than in healthy tissue (Table 3).

In another study, a combination of two matrices—quercetin and 9-aminoacridine—along
with a matrix coating assisted by an electric field technique, was employed for the MS imaging of
endogenous compounds in prostate cancer tissue samples using MALDI with Fourier transform
ion cyclotron resonance mass spectrometry [79]. The authors conducted analyses in both positive
and negative ion modes, detecting a total of 1091 compounds, of which 152 metabolites or
lipids exhibited statistically significant differential distributions between the cancerous and
non-cancerous regions. The investigation identified notable irregularities in metabolic processes,
including heightened energy charge and diminished expression of neutral acyl glycerides within
prostate cancer samples. This research constitutes the most extensive set of metabolites ever
visualized in prostate cancer through the utilization of MALDI-MSI.

The application of the MALDI MSI technique with the matrix N-(1-naphthyl) ethylene-
diamine dihydrochloride (NEDC) proved to be effective in the spatial detection of ZnCl3−

anions along with citrate and aspartate in prostate tissues, providing valuable insights into
the molecular composition associated with prostate cancer. Research conducted by Andersen
et al. in 2020 [72] revealed statistically significant differences in the quantities of the analyzed
compounds between cancerous tissue and non-cancerous epithelia (Table 3). Furthermore,
the observed variations in N-acetylaspartate (NAA) levels among cancer, stroma, and healthy
epithelium suggest the potential significance of this compound in understanding metabolic
changes associated with prostate cancer development.

A different workflow was applied by Swinnen’s group in an article published in
2021 [80]. They initially conducted qualitative and quantitative assessments using Electro-
spray Ionization Mass Spectrometry (ESI MS) and subsequently investigated the spatial
distribution of selected lipids in prostate tissue using MALDI mass spectrometry imag-
ing. Thus, they confirmed the distinct distribution of two lipids in benign and malignant
prostate cancer tissues. The first one, PE(42:6), identified at m/z 818.5, exhibited higher
intensities in malignant tissues, while the levels of the second lipid, identified as PI(36:4),
were higher in benign tissues.

Table 3. Studies reporting altered lipid signature in urinary tract cancers.

Cancer
Type Sample Method Matrix Main Observation Ref.

BC tissue SALDI-ToF MSI 109AgNPs down-regulation of PI(22:0/0:0) in BC [52]

RCC tissue MALDI-
Orbitrap MS 9-AA up-regulation of SulfoHexCer, SulfoHex2Cer, and

SulfoHex2Cer (OH) in RCC [28]

ccRCC tissue MALDI-FT-ICR
MSI 2,5-DHB up-regulation of PC 30:3 and down-regulation of

PC 26:0 and PC 30:2 in ccRCC samples [68]

ccRCC tissue SALDI-ToF MSI AuNPs up-regulation of DG(18:1/20:0) and
octadecanamide in ccRCC [65]

ccRCC tissue SALDI-ToF MSI AgNPs

up-regulation of octadecanamide, arachidonic
acid, eicosenoic acid, and

N-(2-hydroxypentadecanoyl)-4,8-
sphingadienine in ccRCC

[66]

RCC serum SALDI-ToF MS 109AgNPs
up-regulation of [FA(20:4)] eicosatetraenoyl amine

and MG(0:0/16:0/0:0) in RCC [59]

RCC serum SALDI-ToF MS AuNPs up-regulation of TG(52:4) and PC(42:0) in RCC [63]
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Table 3. Cont.

Cancer
Type Sample Method Matrix Main Observation Ref.

ccRCC serum SALDI-ToF MS AuNPs up-regulation of 2-hydroxylauroylcarnitine in
ccRCC samples [29]

RCC urine SALDI-ToF MS AuNPs
up-regulation of oleamide,

9,12,13-trihydroxyoctadecenoic acid, stearidonyl
carnitine, and squalene in RCC

[64]

ccRCC urine SALDI-ToF MS AuNPs
up-regulation of 9,12,13-trihydroxyoctadecenoic
acid and 3-hydroxydecanoyl carnitine in ccRCC

samples
[29]

PCa urine SALDI-ToF MS AuNPs up-regulation of TG(12:0/20:1) in PCa [30]

PCa serum SALDI-ToF MS AuNPs
down-regulation of nonanoylcarnitine, palmitoyl

glucuronide, squalene, calcitriol, and (9Z, 12Z,
15Z)-octadecatrienoic acid in PCa

[30]

PCa interstitial
fluid SALDI-ToF MS AuNPs down-regulation of pregnanediol in PCa [30]

PCa tissue MALDI-ToF MS CHCA down-regulation of PC(18:0/22:5) in PCa samples [76]

PCa tissue/urine MALDI-ToF MS 9-AA ratio of PC(34:2) + PC(34:1) to LPC(16:0) is higher
in PCa [77]

PCa tissue MALDI-QToF
MS 9-AA up-regulation of PI(18:0/18:1), PI(18:0/20:3), and

PI(18:0/20:2) in PCa [78]

PCa tissue MALDI-ToF MSI CHCA up-regulation of PE(42:6) and down-regulation of
PI(36:4) in malignant PCa tissues [80]

5. Future Directions

Regrettably, despite substantial endeavors undertaken over recent decades to ascer-
tain distinctive small-molecular markers associated with urinary tract cancers, a notable
deficiency persists in the availability of dependable biomarkers that can offer guidance for
more efficacious therapeutic interventions, diagnostic procedures, or disease prognosis.
Consequently, there is an urgent need for the continuation of research endeavors and the
exploration of novel biomarkers with sensitivity to bladder, kidney, and prostate cancers,
as well as rarer types of urological cancers, such as ureteral and urethral tumors. This need
arises not only to enhance prognostic capabilities, facilitate early detection, and monitor
treatment effectiveness but also to advance our comprehension of the intricate molecular
mechanisms underpinning these cancers. Another aspect of the studies presented here is
the frequent absence of comparative analysis between the positive and negative ion modes.
This is challenging in the case of MALDI, due to the necessity of using different matrices for
these two modes, as seen in lipid analyses [81], and for SALDI, the topic of negative mode is
practically unaddressed in scientific publications. This is significant for future experiments
aimed at determining the full metabolomics or lipidomics profiles of tumors using LDI
methods and may contribute to the improved coverage of metabolites or lipids in subse-
quent analyses. Moreover, the approach of researchers for conducting experiments and the
use of not only the classical data-dependent acquisition (DDA) but also data-independent
acquisition (DIA) approaches must be considered [82]. In this context, the integration of
findings from various biomolecules also appears crucial, particularly encompassing omics
analyses at the levels of genes, transcripts, proteins, and metabolites. Such integration
would facilitate the exploration of cellular pathways responsible for oncogenic processes.

6. Conclusions

In recent years, there has been an increasing interest among researchers in identify-
ing effective and precise oncological biomarkers. Studies conducted by various scientific
groups also focus on the diagnostic and prognostic markers of urological cancers. These
efforts include the search for distinctive molecules, such as metabolites and lipids, utiliz-
ing a variety of analytical techniques, including MALDI and SALDI mass spectrometry.
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However, in the context of analyses utilizing the SALDI technique, comparing outcomes
across laboratories presents a challenge due to the absence of standardized methods. Fur-
thermore, LDI methods cannot be integrated online with separation techniques, thereby
often necessitating that the metabolite identification occurs solely on the basis of m/z
values or requiring the additional fragmentation of compounds to be performed. Despite a
considerable volume of research in this area, to date, there are no biomarkers with proven
effectiveness validated in a large patient group. This underscores the importance of the
pioneering analyses presented in this article, which may contribute to the earlier detection
of urinary tract cancers and the understanding of cancer biochemistry. However, it is worth
emphasizing that the majority of these studies are based on small cohorts, and there is a lack
of multicentric analyses among the presented articles; in the future, larger-scale medical
research may either corroborate the findings presented herein or entirely refute them.
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